Skip to main content
Log in

Modeling of the n-th harmonic spectra used in wavelength modulation spectroscopy and their properties

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this paper a convolution model for the harmonic spectra and harmonic signals used in wavelength modulation spectroscopy (WMS) with arbitrary transmission function is given. This implies a straightforward description of the harmonic spectra in the Fourier domain, which also allows for a new general computation method. Furthermore, the model can be extended to include non-ideal behavior of practical systems by assuming a modified transmission function, e.g. a nonzero laser linewidth, laser intensity modulation during wavelength tuning and additional filtering of the harmonic signals. A recursion formula and a mean value property for n-th harmonic spectra has been found. The harmonic signals occurring in practical systems can be modeled with a system theoretic approach, where these are given as the output of a filter that represents the WMS system and the transmission is regarded as the input signal of the filter. This gives a very intuitive view of WMS systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Reid, D. Leibrie, Appl. Phys. B 26, 203 (1981)

    Article  ADS  Google Scholar 

  2. C.P. Poole, Electron Spin Resonance: A Comprehensive Treatise on Experimental Techniques, 2nd edn. (Wiley, New York, 1983)

  3. R. Arndt, J. Appl. Phys. 36, 2522 (1965)

    Article  ADS  Google Scholar 

  4. G.V.H. Wilson, J. Appl. Phys. 34, 3276 (1963)

    Article  ADS  Google Scholar 

  5. O. Axner, P. Kluczynski, A.M. Lindberg, J. Quant. Spectrosc. Radiat. Transf. 68, 299 (2001)

    Article  ADS  Google Scholar 

  6. P. Kluczynski, A.M. Lindberg, O. Axner, J. Quant. Spectrosc. Radiat. Transf. 83, 345 (2004)

    Article  ADS  Google Scholar 

  7. O.E. Meyers, E.J. Putzer, J. Appl. Phys. 30, 1987 (1959)

    Article  ADS  Google Scholar 

  8. J. Evans, P. Morgan, R. Renaud, Anal. Chim. Acta 103, 175 (1978)

    Article  Google Scholar 

  9. M. Peric, H.J. Halpern, J. Magn. Reson. A 109, 198 (1994)

    Google Scholar 

  10. W. Spry, J. Appl. Phys. 28, 660 (1957)

    Article  ADS  Google Scholar 

  11. C.P. Flynn, E. Seymour, J. Sci. Instrum. 39, 352 (1962)

    Article  ADS  Google Scholar 

  12. J. Evans, P. Morgan, R. Renaud, J. Magn. Reson. 52, 529 (1983)

    Google Scholar 

  13. J.M. Supplee, E.A. Whittaker, W. Lenth, Appl. Opt. 33, 6294 (1994)

    ADS  Google Scholar 

  14. G.C. Bjorklund, Opt. Lett. 5, 15 (1980)

    Article  ADS  Google Scholar 

  15. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1970)

    Google Scholar 

  16. P. Kluczynski, Å.M. Lindberg, O. Axner, Appl. Opt. 40, 770 (2001)

    Article  ADS  Google Scholar 

  17. S. Schilt, L. Thévenaz, P. Robert, Appl. Opt. 42, 6728 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hangauer.

Additional information

PACS

42.62.Fi; 39.30.+w

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hangauer, A., Chen, J. & Amann, MC. Modeling of the n-th harmonic spectra used in wavelength modulation spectroscopy and their properties. Appl. Phys. B 90, 249–254 (2008). https://doi.org/10.1007/s00340-007-2902-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-007-2902-5

Keywords

Navigation