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ABSTRACT We describe the virtues of the pump–probe ap-
proach for controlled supercontinuum generation in nonlinear
media, using the example of pulse compression by cross-phase
modulation in dielectrics. Optimization of a strong (pump) pulse
and a weak (probe) pulse at the input into the medium opens
the route to effective control of the supercontinuum phases at
the output. We present an approximate semi-analytical approach
which describes nonlinear transformation of the input pulse into
the output pulse. It shows how the input and the output chirps
are connected via a time-warp transformation which is almost
independent of the shape of the probe pulse. We then show how
this transformation can be used to optimize the supercontinuum
generation to produce nearly single-cycle pulses tunable from
mid-infrared to ultraviolet.

PACS 42.65.Re; 42.65.Ky

1 Introduction

Extreme spectral broadening of intense pulses
propagating in nonlinear media is a basis for generating ultra-
short pulses and supercontinua with applications ranging
from controlling quantum dynamics to standards.

Analysis of the interplay of self- and cross-phase modula-
tion (SPM and XPM), self-steepening, dispersion, wave mix-
ing, etc. [1, 2] during the propagation of intense ultra-short
pulses is a challenging problem. For such pulses the famil-
iar slowly varying envelope approximation (SVEA) breaks
down [3]. The standard second-order Taylor expansion of the
medium dispersion around the carrier frequency is unwar-
ranted. The concept of the carrier frequency for octave-wide
spectra becomes ambiguous. Analytical solutions appear to
be impossible and repeated numerical simulations for a var-
iety of input pulses are usually needed to obtain a compre-
hensive physical picture. Any optimization problem such as
pulse compression, where one looks for the best input pulse
to match the desired frequency-converted output after the non-
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linear medium, appears even more difficult: a very large num-
ber of trial pulses is required for the convergence of standard
iterative search algorithms.

We show that, contrary to this first impression, strong
dispersion combined with nonlinearity and large bandwidth
allow for semi-analytical solutions and a substantial simpli-
fication of the analysis. For standard approaches to spectral
broadening, especially those based on XPM [4], molecular
phase modulation (MPM) [5–7] and – within certain import-
ant restrictions – SPM, it is possible to define an effective re-
sponse function for the medium which is almost independent
of the input pulse. Then the result of nonlinear propagation of
many trial pulses can be obtained as a simple, easily visualized
transformation. This allows us to quickly analyze the degree
to which one can control phases of the supercontinuum at the
output of a nonlinear medium by optimizing the input into the
medium.

Flexible engineering of the output phases across the super-
continuum spectrum is the most critical part of pulse compres-
sion. In standard pulse-compression schemes [8–11], where
supercontinuum is generated starting with SPM of an intense
laser pulse, required phase adjustments are done at the out-
put of the medium, usually using spatial light modulators or
acousto-optic modulators [12, 13]. As the output bandwidth
grows, the adjustment of the output phases becomes more de-
manding. From the pulse-shaping perspective alone, it would
be much easier to shape the narrow spectrum at the input
rather than the octave-wide (or broader) spectrum at the out-
put. The pulse-compression approach proposed below allows
one to do exactly that: move the required shaping to the input
spectrum.

In our approach, a strong pump pulse induces a nonlinear
response of the medium. A weaker probe pulse scatters off
the induced nonlinear polarization. The intensity of the probe
is limited by the requirement that the probe does not change
the nonlinear response of the medium induced by the strong
pump. This setup decouples the medium response from the
details of the probe pulse being compressed. The probe can
then be pre-shaped at the input [14]. Shaping can include pre-
compensation for dispersion in the medium and in the optical
elements after the medium, to all orders. With the pump pulse
held constant, the probe propagation is almost linear [16].
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Therefore, small changes at the input do not lead to large
changes at the output, making the optimization robust. Fur-
thermore, the pump–probe approach also allows one to easily
tune the output spectrum by keeping the pump wavelength
fixed while tuning the probe wavelength at the input.

As an example, we consider the scheme where a strong
pump pulse and a weak probe pulse are sent through a thin
piece of dielectric; see Fig. 1. The pulses propagate at a small
angle: nearly collinear inside the glass, they spatially separate
afterward. The pump is fixed, say at 800 nm, while the probe
is tunable. Both pulses can be shaped at the input, with the
goal of maximum compression of the probe down to one or
two cycles at the output. Dispersion is used as a part of the
compression scheme.

Motivated by practical considerations, we almost always
constrain the pump pulse to a single-peaked envelope with no
chirp underneath. The only exception is the compression of
a UV probe, where very high dispersion in glasses has forced
us to allow for a double-peaked envelope of the pump, still
without any initial chirp.

In our previous publication [17] we have shown how this
XPM-based approach can be used to compress pulses down to
one or two optical cycles tunable from UV to mid-IR. A simi-
lar idea can be applied to MPM in hollow fibers [14, 15],
where the compression is even better due to weaker disper-
sion. Here, we concentrate on the detailed description of the
semi-analytical optimization procedure. Using the example of
XPM in dielectric materials, we show how the semi-analytical
analysis can be used to find the limits and the optimal region of
the compression. Full numerical calculations are then used to
fine-tune the initial guess provided by the analytical analysis.

The numerical simulations include the Kerr and the Ra-
man responses of the glass [1], cascade wave-mixing pro-
cesses whenever important, dispersion, and self-steepening.
Thin glasses (typically less than 1 mm) and the assumption
of loose focusing allow us to use 1D propagation and neglect
pulse filamentation and self-focusing.

The paper is organized as follows. In Sect. 2 we present
the numerical model and approximate semi-analytical results

Strong,
optimized

pump

Weak, shaped
probe

Primary
glass plate

Experiment
(vacuum chamber )

Additional glass plate (window)
used as a compressor

FIGURE 1 Scheme for pulse compression using XPM with optimization of
the pulses at the input. Two pulses, one (probe) weaker than the other (pump),
are loosely focused into a nonlinear medium – a transparent dielectric such
as fused silica or CaF2. The pulses propagate at a small angle, so that they
spatially separate in the far field. Both pulses are optimized to compress the
weaker pulse inside the vacuum chamber

which describe the transformation of the input pulse and in-
troduce the time-warp function. We complete Sect. 2 with
a detailed recipe describing how the time-warp analysis can be
used to evaluate the controllability of the generated supercon-
tinuum and to find the optimal regime for achieving a desired
target (in our case, pulse compression). Section 3 illustrates
the application of the time-warp analysis, using pulse com-
pression as an example of the optimization problem. A step-
by-step description of the time-warp analysis is accompanied
by full numerical simulations.

2 Semi-analytical and computational models

A numerical search for an optimal regime of su-
percontinuum generation, e.g. with the eventual goal of pulse
compression, resembles searching for a needle in a haystack.
The semi-analytical model described below provides a basis
for the first-order analysis of the supercontinuum generation.
Loosely speaking, it points to the corner of the haystack where
the needle (optimal solution) resides.

Experimentally, a search for the optimal solution can be
done very efficiently using feedback-based algorithms, in
which a measurement of an output pulse vs. the desired tar-
get is fed back to the input to modify the next trial pulse, until
the desired target is approximated with sufficient precision.
A specific version of such closed-loop search algorithms, ge-
netic algorithms, has been successfully used in many appli-
cations other than pulse compression: optimization of laser-
induced fluorescence [18], high-harmonic generation [19],
molecular dynamics and photochemical reactions [20–23],
etc. Recently, Omenetto et al. used adaptive pulse shaping to
suppress unwanted nonlinear effects [24], so that pulse propa-
gation in fibers over long distances would not suffer from
self-induced nonlinearities.

Finding an optimal solution may take many tens or even
hundreds of thousand of trial pulses, but with kHz or even
MHz repetition rates of modern lasers the search is over in
a matter of minutes.

Theoretically, the situation is completely different. Prop-
agating each trial pulse through the nonlinear medium on
the computer takes much longer (many orders of magnitude
longer) than in the laboratory. In this case, a theoretician
does not have the luxury of running tens of thousands of
trial pulses. A blind search must be replaced with a more
intelligent procedure. One possible approach is described in
Sect. 2.2.

2.1 Numerical model

Without using the slowly varying envelope approx-
imation (SVEA), in the frequency domain the Maxwell equa-
tion can be reduced to (see e.g. [25] or the derivation in Ap-
pendix A below):

[
∂

∂x
− i

ω

c
n(ω)

]
E(x, ω) = 2π

cn(ω)
iωPNL(x, ω) . (1)

Here E(x, ω) is the Fourier transform of the electric field
E(x, t), PNL is the nonlinear polarization per unit volume, and
n(ω) is the linear refractive index. Here we restrict ourselves
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to the 1D case, which is justified by the loose-focusing geom-
etry and thin glasses.

For the numerical solution we use the time-domain version
of (1):

∂E(x, t)

∂x
+ 1

c

∂

∂t
F̂T

−1
[

n(ω)E(x, ω)+2π
PNL(x, ω)

n(ω)

]
= 0 ,

(2)

where F̂T
−1

means inverse Fourier transform.
Note that any complex electric field E(x, t) can be written

as

E(x, t) = F(x, t) exp (−iϕ(x, t)) . (3)

Here F, ϕ are the time-dependent amplitude and phase of the
complex field E(x, t).

Equation 2 is first solved for the strong pump pulse Es =
Fs exp (−iϕs), in which case F̂T

−1
[2πPNL(x, ω)/n(ω)] is set

to n2 F2
s Es. The pump field Es and the pump-induced nonlin-

earity 2n2 F2
s acting on the weak probe field Ew are recorded

along the propagation length and are used as inputs to calcu-
late the propagation of the probe pulse.

In the case of XPM one might need to be careful with the
cascade wave-mixing processes, which start with the gener-
ation of the new field with frequency ωc and wave vector kc:

ωc = ωs +ωs −ωw �= ωPR ,
(4)

kc = ks +ks −kw .

Here the subscript ‘s’ denotes strong pump field, the subscript
‘w’ denotes weak probe field, and the subscript ‘c’ denotes
the first wave in the cascade wave-mixing sequence. The field
ωc, kc can in turn mix with the pump to generate the field with
frequency and wave vector equal to those of the probe, etc.

Due to the geometry of the problem (see Fig. 1) the waves
ks, kw, kc all propagate in different directions and these cas-
cade wave-mixing processes are generally not phase matched.
We ignore them unless the pump and the probe have similar
input wavelength, i.e. ∼ 800 nm. In this latter case the cascade
processes are included in the numerical calculation. We find
that, while for a given input the output is somewhat changed,
the cascade processes virtually do not affect the results of the
optimization procedure. In fact, we found that the optimal
output pulses were even somewhat shorter when the cascade
processes were included for the case of a 800-nm probe (the
pump is fixed at 800 nm).

To solve (2), we go to the moving frame t ′ = t − x/vs,
where vs is the group velocity with which the pump pulse
propagates. The wave equation can be written as

∂E

∂x
= L̂E , (5)

where the operator L̂ includes direct and inverse Fourier
transforms between the time and frequency domains as seen in
(2). The pulse is specified for all times at the initial x position

and is then propagated by standard finite-difference methods:

E
∣∣t
x+1 = E

∣∣t
x−1 +2∆xL̂E

∣∣t
x , (6)

where ∆x is the step size in the x direction. The first step in x
is executed using a simple forward-difference representation:

E
∣∣t
x=1 = E

∣∣t
x=0 +∆xL̂E

∣∣t
x=0 . (7)

2.2 Time warp, frequency map, and optimization

The first step in our semi-analytical approach is to
simplify the inverse transform of (1) back to the time domain.
We begin by writing E(t) as

E(t) = F(t) exp (−iϕ(t)) . (8)

Due to dispersion and nonlinearity in the medium the broad-
band pulse becomes strongly chirped. Even though its spec-
trum can be broad, due to the strong chirp the amplitude F
would usually be a slower function of time compared to
exp(−iϕ), with the phase ϕ(t) depending nonlinearly on time.
At any given time, the instantaneous frequency of the pulse,

ω(t) = dϕ(t)/dt ≡ ϕ̇(t) , (9)

is well defined. It is this strong chirp which allows one to sim-
plify the Fourier transform of (1) back to the time domain. The
approach breaks down when one runs into catastrophic self-
steepening and F develops a shock-wave front (or rear end),
or when the strong chirp is simply not there.

To make the discussion both simpler and more specific,
we will restrict ourselves to nonlinearities of the type n2 F2,
where n2 is the nonlinear part of the refractive index. In the
case of XPM, the nonlinearity is 2n2 F2

s , where Fs is the am-
plitude of the strong (pump) pulse, and for SPM it is n2 F2

s .
Generalization of the results to the case of Raman excitation
and MPM is rather straightforward. Full numerical analysis
should, of course, include all other important contributions to
nonlinear polarization, such as Raman response and the cas-
cade wave-mixing processes.

Usually, for the inverse Fourier transform of n(ω)E(ω) in
(1) back to the time domain, one expands n(ω) in Taylor series
to the second order:

n(ω) ≈ n0 +ωn′ + 1

2!n
′′ω2. (10)

Here primes denote derivatives with respect to the whole ar-
gument. In our case of a broad spectrum n(ω) should be ex-
panded to all orders:

n(ω) = n0 +ωn′ + 1

2!n
′′ω2 + 1

3!n′′′ω3 +· · · , (11)

and none can be neglected. The inverse Fourier transform of
a term ωk E(ω) yields ∂kE/∂tk = (

∂k/∂tk
)

Fe−iϕ , and all of
them (with k → ∞) have to be included. At first glance, the
situation seems rather grim.

Physically, the simplification comes from the fact that due
to strong chirp different instantaneous frequencies ω(t) = ϕ̇(t)
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arrive at different times (here the dot denotes time deriva-
tive). Hence, at any given time it is sufficient to know n(ϕ̇(t)),
n′(ϕ̇(t)), and n′′(ϕ̇(t)) at the instantaneous frequency ω(t) ≡
ϕ̇(t). That is, while the spectrum is very broad, at any given
time local expansion of the refractive index around the instan-
taneous frequency is sufficient.

Mathematically, strong chirp means ∆ωT � 1, where ∆ω

is the bandwidth and T is the duration of the pulse. This allows
us to write

∂k

∂tk
Fe−iϕ ≈ (−iϕ̇)k Fe−iϕ + (−iϕ̇)k−1 kḞe−iϕ

+ k(k −1)

2
(−i)k−1(ϕ̇)k−2ϕ̈Fe−iϕ, (12)

where all terms with the derivatives of the amplitude F higher
than Ḟ have been neglected compared to ϕ̇.

While this approximation might be reminiscent of the
slowly varying envelope approximation, the key difference is
the appearance of the instantaneous (rather than the carrier)
frequency ω(t) = ϕ̇(t). This frequency may change signifi-
cantly during the pulse; in the limit ∆ωT � 1 the range of its
change determines the pulse bandwidth ∆ω. The amplitude
F(t) is not the same as the usual pulse envelope A(t), which
is frequently defined as E(t) = A(t) exp (−iω0t) (ω0 is the car-
rier frequency). In our case not only the carrier, but also all
chirps – which could be quite large – are removed from F(t).

After somewhat tedious but straightforward algebra and
using ∆ωT � 1, the Fourier transform of (1) can be reduced
to

∂

∂x
Fe−iϕ + 1

c

∂

∂t

[
n(ϕ̇)+n2 F2] Fe−iϕ

+ i

c

∂

∂t

[
n′(ϕ̇)Ḟ + 1

2
n′′(ϕ̇)ϕ̈F

]
e−iϕ = 0 . (13)

While this is similar to the equation obtained with the usual
second-order Taylor expansion of n(ω), the key difference is
the instantaneous frequency ϕ̇ = ω(t): the expansion of n(ω)

is always local near ω(t). Separating real and imaginary parts,
we obtain

∂

∂x
F + 1

c

∂

∂t

[
ngr(ϕ̇)+n2F2] F − 1

2c
F

[
∂ngr(ϕ̇)

∂t

]
= 0 ,

(14)
∂

∂x
ϕ+ 1

c

[
n(ϕ̇)+n2 F2] ∂

∂t
ϕ = 0 ,

where ngr(ω) ≡ n(ω)+ n′(ω)ω. In the second equation we
used the condition of strong chirp, ∆ωT � 1, to drop ∂(n′ F +
0.5n′′ Fϕ̈)/∂t compared to nFϕ̇. For a weak pulse in the case
of XPM, the term n2 F2 is replaced by 2n2 F2

s , where Fs is the
amplitude of the strong pulse (pump).

Input into (14) are the time-dependent amplitude Fin(t)
and the time-dependent phase ϕin(t) at the beginning of the
medium, x = 0. The most important function at the output
x = L is the phase ϕout(t) = ϕ(L, t).

Equations (14) suggest a two-step iterative scheme to ana-
lyze the transformation of the input pulses for various input
chirps ϕin(t), in the case of both SPM and XPM. Suppose
that at the input into the nonlinear medium the pulse car-
rier frequency is ω0. For the first iteration, we solve (14) (or

(1)) numerically only once for a constant input frequency ω0,
i.e. setting ϕ

(0)
in = ω0t. We obtain ϕ(0)(x, t) and Fs(x, t) every-

where in the medium, for a given input amplitude Fs,in(t) of
the strong pulse.

For the second iteration, we can substitute the solutions
Fs(x, t) and ϕ(0)(x, t) into (14), replacing n(ϕ̇), ngr(ϕ̇) with
n(ϕ̇(0)), ngr(ϕ̇

(0)). Now, n(ϕ̇), ngr(ϕ̇), and the terms in the
square brackets in (14) are all known, fixed functions of x, t
as long as the amplitude of the strong pulse at the input Fs,in

is fixed.
This simple approximation immediately decouples the

second of the equations (14) from the first, as long as the
amplitude of the strong pulse at the input is fixed. Note that
fixing the input amplitude of the pump while varying its time-
dependent phase ϕin(t) – which is what we will be doing if we
are trying to control SPM – means that we will be dealing with
different input spectra, i.e. with amplitude modulations at the
input. Thus, for SPM the family of input–output transform-
ations characterized by a single map function described below
is somewhat unusual: members of the same family will have
different input spectral amplitudes but similar time-domain
envelopes Fin(t).

With the fixed amplitude of the strong pulse, one can see
that the propagation of an arbitrary input chirp (for either the
pump or the probe) ϕin(t) = ω0 fin(t) is determined by a single
time-warp transformation defined as

τ(x, t ′) ≡ ϕ(0)(x, t ′)/ω0 . (15)

Here t ′ = t − xn(ω0)/c is time in the co-propagating frame; re-
member that ϕ(0)(x, t ′) corresponds to ϕin = ω0t. Indeed, one
can check that for an arbitrary input ϕin(t ′) = ω0 fin(t ′) the so-
lution of the desired propagation equation

∂ϕ

∂x
+ ∆n(x, t ′)

c

∂ϕ

∂t ′
= 0 (16)

(where ∆n(x, t ′) = n(ϕ̇(0)) + n2 F2(x, t ′) − n(ω0) for SPM
or ∆n(x, t ′) = n(ϕ̇(0))+ 2n2 F2

s (x, t ′)− n(ω0) for XPM) is
simply

ϕ(x, t ′) = ω0 fin
(
τ(x, t ′)

)
. (17)

This statement becomes obvious when (17) is substituted
into (16) and one recalls that τ(x, t ′) ≡ ϕ(0)(x, t ′)/ω0 satis-
fies (16) by definition: this is precisely where τ(x, t ′) was
obtained from. The same applies to MPM where the change
in the refractive index is determined by Raman excitation; this
change for intense pump pulses is given in e.g. [15].

The result (17) allows us to introduce the frequency map
R(t ′) to characterize nonlinear transformation of the input fre-
quency ωin(t ′) = ω0 ḟin(t ′). Realizing that the instantaneous
output frequency ωout(t ′) is dϕout(t ′)/dt ′, where ϕout is given
by (17), we see that

R(t ′) = ωout(t ′)
ωin(t ′)

=
[

ḟin
(
τ(t ′, L)

)
ḟin(t ′)

]
∂τ(L, t ′)

∂t ′
. (18)

The factor in square brackets is determined by the input chirp
only and is close to unity for a sufficiently narrow input spec-
trum. The frequency map is dominated by ∂τ(L, t ′)/∂t ′. The
latter is determined from a single numerical solution of (1) for
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a constant input frequency ϕin = ω0t and is independent of the
initial chirp. For negligible dispersion and a pre-set Raman ex-
citation of the medium a similar frequency map is implicit in
the results of [14, 26].

We can now summarize the approach to analyzing the su-
percontinuum.
1. First, one solves the Maxwell equations for a fixed in-

stantaneous input frequency and amplitude of a strong
pulse, using its time-domain representation Es(t) = Fs(t)
× exp (−iϕs(t)). The solution is done in the co-propagating
frame t ′ = t − xn(ω0)/c. This yields ϕ(L, t ′) at the output;

2. Second, one obtains the time warp (15) and the frequency
map ∂τ(L, t ′)/∂t ′;

3. Third, for any initial chirp in the time domain, the output
chirp, also in the time domain, can be obtained from (17);
the range of frequencies at the output can be obtained from
(18).

We stress that it turns out to be very convenient to use chirps
in the time domain and base the analysis on instantaneous
frequencies.

In Sect. 3.1 we give a detailed illustration of this approach
for the specific case of pulse compression.

3 Compression by cross-phase modulation

In the XPM example considered here, a strong
pump pulse and a weak probe pulse are sent through a thin
piece of dielectric, as shown in Fig. 1. Depending on the probe
wavelength, we use either CaF2 or fused silica. The pump
is fixed at 800 nm, while the probe is tunable: we consider
wavelengths between 3 µm and 400 nm. Both pump and probe
pulses can be shaped at the input, with the goal of maximum
compression of the probe down to one or two cycles. We keep
the shape of the pump as simple as possible. Dispersion in the
glass, included to all orders, is used as a part of the compres-
sion scheme. An additional CaF2 plate can be added after the
nonlinear medium for the final compression of the probe pulse
by a purely linear propagation.

As an illustration, consider the compression of a 3-µm
probe pulse down to the single-cycle regime. As a target of the
optimization procedure, we choose a near-single-cycle 15-fs
pulse at 3 µm shown in Fig. 2a. Propagating this target pulse
backwards through the additional CaF2 plate, which serves as
the final compressor and was chosen to be 1.5 mm thick, de-
fines the target at the output of the nonlinear medium shown
in Fig. 2b.

FIGURE 2 Optimization target. a Target near-single-cycle transform-
limited 3-µm pulse. b Target pulse after backwards propagation through the
additional 1.5-mm CaF2 plate. Thin line shows instantaneous frequency ω(t)
in the time domain, which shows strong nonlinear chirp

3.1 Time-warp analysis and optimization

The time-warp analysis can now be used to find the
limits and the optimal conditions for generating such a pulse
using XPM in glass.

Figure 3a shows the frequency map τt′ ≡ ∂τ/∂t ′ for the
propagation lengths of 0, 0.5, 1, and 1.2 mm. The pump pulse
was Es(t) ∝ exp

[−(t/σ)2 − iω0t
]
, with σ = 90 fs and carrier

wavelength of 800 nm (see Fig. 4a). The intensity of the pump
was such that n2 F2 = 3.2 ×10−3 at the maximum of the field,
for CaF2 as a medium. For larger propagation lengths the
function τt′ grows in amplitude. If the propagation length is
increased much beyond 1 mm (for the present case) the fre-
quency map stops growing in amplitude and starts to ‘smear’
in the horizontal direction. This is due to dispersive effects of
the medium.

The input probe pulse needed for compression to the near-
single-cycle regime is found as follows. From the target 15-fs
pulse, propagated backwards through the additional CaF2
plate, we extract the instantaneous output frequency ωout(t)
(see Fig. 3b). The straight lines denote the desired output
bandwidth ∆ωout(t) with the correct target chirp. Now, using
(17) and the function τt′ , we can find the estimated target fre-
quency at the input, ωin(t ′) = ωout(t ′)/τt′ . Panel c shows the
calculated ωin(t) for the nonlinear medium length of 0.5 mm,
while panel d shows ωin(t) for 1 mm and e corresponds to
1.2 mm. The dashed line in these panels re-plots the desired
output frequency ωout(t).

FIGURE 3 Time-warp analysis. a Frequency map τt′ for a range of pump
propagation lengths. b The desired output chirp of the probe pulse. c–e Solid
line: the required input chirp of the probe pulse for a range of propagation
lengths. Dashed line: the desired output chirp ωout(t) (see text for additional
explanation)
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FIGURE 4 Compression of 3-µm probe pulse. a The intensity of the
optimized probe (thick) and pump (thin) before the nonlinear medium.
b Spectrum (thick) and phase (thin) of the probe in (a). c Intensity of com-
pressed probe. d Spectrum and phase of compressed probe

It can be seen in c and d that the target input frequency
develops a plateau as the propagation length is increased. In-
creasing the propagation length further (panel e) changes the
flat-plateau landscape into a hill and a valley. The presence of
the plateau as seen in d means that a small range of ωin(t) will
be mapped onto a broad range of ωout(t) with the desired phase
relationships (i.e. chirp). The straight lines in d illustrate this
point. First, the bandwidth corresponding to the plateau region
(∆ωin) is mapped down onto the time axis. This gives us the
time duration and the delay of the input pulse, relative to the
pump, corresponding to this ∆ωin bandwidth. Furthermore,
the deviations of ωin(t) from a perfectly flat plateau define the
estimated input chirp (in the time domain). Now, projecting
this time interval back onto the vertical axis via the ωout(t)
curve gives us the bandwidth of the output supercontinuum
with the desired output chirp. Repeat this same procedure for
panels c and e and you will see that a broad output with the de-
sired chirp can not be generated from such a narrow input as
seen in d.

Although not stressed in the above analysis, the choice
of the pump plays a critical role. The appearance and length
of the plateau region are due to the sharply rising central re-
gion of the frequency map (Fig. 3a). Lengthening the duration
of the pump stretches this region, while shortening the pump
shrinks this region. The optimal pump corresponds to the case
where the curvature and length of this critical region match
the curvature and length of the desired ∆ωout(t) region (see
panel b). The pump used above has already been optimized
using these criteria.

These results can now be used as input into full numerical
simulations to ‘fine tune’ the approximate optimum by per-
turbing the available parameters to approach the true optimal
solution.

3.2 Full numerical results

The optimization of the above estimated solution
using full numerical simulations proceeds as follows. After
using the time-warp analysis to identify an appropriate pump

pulse, propagation length, and pump–probe delay, the target
output probe was propagated backwards through the nonlin-
ear medium to obtain the actual input pulse corresponding
to this chosen output. The available parameters (propaga-
tion length, pump–probe delay, pump and target pulse com-
position) were then gradually varied until the true optimum
(i.e. the narrowest input spectrum leading to the broadest
transform-limited output spectrum) was found. It should be
stressed that starting from the estimated optimal parameters
found via the time-warp analysis greatly reduced the number
of numerical test runs required to locate the optimal input pa-
rameters.

Figure 4 shows the results of using this full numerical pro-
cedure to ‘fine tune’ the results of the time-warp analysis.
The final numerical solution compresses a 66-fs probe at 3 µm
(panel a) down to 15 fs at 2.7 µm (panel c). Panel a shows the
pump pulse (thin line) and the probe pulse (thick line). Note
that the intensities of both pulses have been arbitrarily scaled
in the plot (i.e. the probe is not meant to have similar intensity
as the pump). The optimal pump–probe delay can then be read
from this plot. Panel b shows the input spectrum along with
the spectral phase (which requires minimal shaping). Panel d
plots the output spectrum and phase, showing that the out-
put is close to transform-limited. The length of the nonlinear
medium was 0.85 mm while the length of the additional CaF2
plate remained at 1.5 mm.

Again using first the time-warp analysis followed by small
corrections using the full numerical solution, compression of
a probe pulse near 800 nm was modeled. The optimal solution,
shown in Fig. 5, compresses a 10.1-fs pulse at 804 nm down
to 2.2 fs at 588 nm. The optimized pump pulse used was a sin-
gle Gaussian with FWHM of 20 fs and is plotted in Fig. 5a.
The intensity of the pump was again n2 F2 = 3.2 ×10−3 at
the maximum of the field. The nonlinear medium used was
fused silica and the nonlinear propagation length was L =
0.15 mm. No additional glass plate was used in this case
for extra compression after the nonlinear medium. Thus, the
whole compression can be done in the window of the vacuum
chamber.

Table 1 lists a variety of compression results we obtained
using this approach. The method is tunable throughout the vis-

FIGURE 5 As in Fig. 4 but for compression near 800 nm
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λin (nm) FWHMin (fs) λout (nm) FWHMout (fs)

388 10.1 396 2.7
495 10.0 480 2.4

654 10.0 481 2.8
703 10.2 530 2.6
744 10.0 560 2.3
804 10.1 588 2.2
859 10.0 631 2.6
901 9.95 637 2.5
960 10.0 639 2.7

3000 66.1 2660 14.8

TABLE 1 Tunability of the pump–probe compression

ible and IR. The middle section of the table shows results of
compressing input probe pulses of duration 10 fs ranging from
650 to 950 nm down to 2.2–2.8 fs at output wavelengths of
480–640 nm. Each case used a single 20 fs FWHM Gaussian
pump at 800 nm as in Fig. 5. The optimal solutions for this
wavelength range did not require any additional glass plate
after the nonlinear medium. The medium used here was fused
silica and had a length of 0.15–0.18 mm.

The results in the first section of the table, for input wave-
lengths 388 and 495 nm, used a pump pulse with a double-
hump structure comprising two Gaussians, the first with
FWHM = 25 fs and the second with FWHM = 15 fs, sep-
arated by 35 fs. The intensity of the pump was once more
n2 F2 = 3.2 ×10−3 at the maximum of the field. The nonlinear
medium used was CaF2 and the nonlinear propagation length
was L = 0.15 mm. An additional CaF2 plate of 0.08-mm
thickness was used after the nonlinear medium. The optimal
pump–probe delay was such that the probe arrived in between
the two humps of the pump.

4 Conclusions and outlook

The pulse-compression technique described above
appears quite successful in the mid- to near-IR range, where
we predict that essentially single-cycle pulses can be gener-
ated. As one goes to higher frequencies, towards UV, the qual-
ity of compression decreases. The reason is the combination
of self-steepening and very strong dispersion: the modifica-
tion of the pump pulse during propagation gets out of hand.

The problem can be remedied by using hollow-core fibers
filled with atomic or molecular gas with low dispersion, such
as Ar or N2. Our calculations for pulse compression using
rotationally excited molecular gases [14, 15] show that 1-fs
pulses in the ‘visible’ (covering all frequencies from near-
IR to UV) are not impossible. The main practical difficulty
with using hollow fibers is the need to separate strong pump
from weak probe afterwards. The XPM setup presented here,
Fig. 1, resolves this problem in a very simple manner.

The main drawback of the method described here is the
need to deal with two pulses. Furthermore, it is the weak pulse
which is compressed, not the strong one. It would be much
more attractive to accomplish the same control over pulse
compression using only one pulse, with spectral broadening
initiated by SPM.

When dealing with pulse compression using SPM, one has
to keep in mind two factors. Firstly, in the time domain SPM

would always produce a chirp which changes its sign during
the pulse (for a simple case of a single-peaked pulse the chirp
will change from negative to positive and back to negative).
This naturally prevents dispersion-assisted pulse compression
during propagation – such compression requires a fixed sign
of the chirp. For example, a down-chirp (negative chirp) is
needed for compression in media with normal dispersion.
Secondly, in the case of SPM, as with any other self-induced
nonlinearity, modification of the input pulse changes the non-
linear response of the medium.

A possible approach to circumventing these difficulties
is to have a fixed compressor at the output of the nonlinear
medium which would compensate the main part of phase vari-
ation in the frequency domain (e.g. quadratic spectral phase).
Then one might attempt to compensate the remaining chirp in
the time domain by pre-chirping the input pulse, again in the
time domain, keeping the amplitude Fin(t) of the input field
constant (in the frequency domain, this would require ampli-
tude modulation). It remains to be seen whether this approach
is viable.
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Appendix A: first-order Maxwell equation for weak re-
flection, without slowly varying envelope approximation

For short pulses – or for pulses with very broad spectra – the
usual slowly varying envelope approximation (SVEA) fails.
Nevertheless, it is possible (see e.g. [25]) to derive a first-
order equation by generalizing the results of [27] for arbitrary
media (and not only low-density gases as in [27]). Here, for
completeness, we present this derivation. The key approxi-
mation in this equation is the assumption of weak reflection.
The assumption is valid if the refractive index does not change
significantly over a wavelength, which is a typical case. The
derivation follows [25]. For simplicity, we restrict ourselves to
a 1D case.

The Maxwell equation in 1D is

∂2 E

∂x2
− 1

c2

∂2 E

∂t2
= 4πN

c2

∂2 P

∂t2
. (A.1)

Here N is number density and P is polarization per unit par-
ticle, i.e. induced dipole per quantum system. The density will
soon be absorbed into the refractive index.

Fourier transforming, we get

∂2 E(ω)

∂x2
+ ω2

c2
E(ω) = −4πN

c2
ω2 P(ω) , (A.2)

and the next step towards a first-order equation is to write the
polarization P as a sum of the linear and nonlinear terms:

P(ω) = χ(ω)E(ω)+ PNL(ω) . (A.3)
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The linear part is moved onto the left-hand side, yielding
(

∂2

∂x2
+ ω2

c2
(1 +4πNχ(ω))

)
E(ω) = −4πN

c2
ω2 PNL(ω) .

(A.4)

Now we can get rid of the number density N and introduce the
linear refractive index of the medium,

n2(ω) = 1 +4πNχ(ω) . (A.5)

With this substitution, the wave equation looks like
[

∂2

∂x2
+ ω2

c2
n2(ω)

]
E(ω) = −4πN

c2
ω2 PNL(ω) . (A.6)

Finally, to prepare for the approximation ahead, we re-write
the square brackets as
[

∂

∂x
+ i

ω

c
n(ω)

][
∂

∂x
− i

ω

c
n(ω)

]
E(ω) = −4πN

c2
ω2 PNL(ω) .

(A.7)

So far, we have made no approximations whatsoever. Now
comes the most critical one: we assume that the electric field
is mostly propagating in one direction. Here is how it comes
into play.

For the right-propagating wave the convention is:

E(ω, x) ∝ e−iωt+ik(ω)x , (A.8)

where the wavenumber k is

k(ω) = ω

c
n(ω) . (A.9)

Therefore, if the waves are mostly right-propagating, in zero
order

∂

∂x
E(ω, x) ≈ ik(ω)E(ω, x) = i

ω

c
n(ω)E(ω, x) . (A.10)

This is the zero-order approximation. If we now put it back
into each of the square brackets in (A.7), we will get nonsense:
zero on the left-hand side, due to the zero in the second square
bracket.

But, in the first approximation, we can keep the small term
in the second square bracket

∂

∂x
E(ω, x)− i

ω

c
n(ω)E(ω, x) (A.11)

intact while dropping this small term in the other square
bracket:

∂

∂x
E(ω, x)+ ik(ω)E(ω, x)

= 2ik(ω)E(ω, x)+
(

∂

∂x
E(ω, x)− ik(ω)E(ω, x)

)

≈ 2ik(ω)E(ω, x) . (A.12)

This is, in fact, the only approximation we need. It includes the
reflected wave in first order by keeping it exactly in the second

square bracket in (A.7), but dropping the reflected wave in the
first square bracket where a big term is sitting beside it.

This simple trick kills one space derivative. Now the equa-
tion is[

∂

∂x
− i

ω

c
n(ω)

]
2

n(ω)

c
iωE(ω) = −4πN

c2
ω2 PNL(ω) . (A.13)

Crossing out ω/c on both sides, we effectively get rid of one
time derivative to add to one of the space derivatives that has
disappeared a moment earlier. We have
[

∂

∂x
− i

ω

c
n(ω)

]
E(ω) = 2πN

cn(ω)
iωPNL(ω) . (A.14)
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