Skip to main content
Log in

Propagation effects in a polymer-based photonic liquid crystal fiber

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper propagation effects induced by thermal tuning of photonic band gaps (PBGs) in a polymer photonic crystal fiber (Pol-PCF) infiltrated with a specially designed liquid crystal (LC) are observed. When temperature increases PBGs in the transmission spectrum are narrowing and moving towards shorter wavelengths. However, when the temperature approaches the nematic-isotropic phase transition, PBGs are getting wider and shift back towards longer wavelengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. P.St.J. Russell, Photonic crystal fibers. Science 299(5605), 358–362 (2003)

    Article  ADS  Google Scholar 

  2. T.T. Larsen, A. Bjarklev, D.S. Hermann, J. Broeng, Optical devices based on liquid crystal photonic bandgap fibers. Opt. Express 11(20), 2589–2596 (2003)

    Article  ADS  Google Scholar 

  3. T.R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A.W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, J. Wojcik, Influence of temperature and electrical fields on propagation properties of photonic liquid crystal fibers. Meas. Sci. Technol. 17, 985–991 (2006)

    Article  ADS  Google Scholar 

  4. K. Milenko, T.R. Wolinski, P. Shum, J.J. Hu, Temperature-sensitive photonic liquid crystal fiber modal interferometer. IEEE Photonics J. 4(5), 1855–1860 (2012)

    Article  Google Scholar 

  5. M.M. Tefelska, S. Ertman, T.R. Wolinski, P. Mergo, R. Dabrowski, Large area multimode photonic band gap propagation in photonic liquid crystal fiber. IEEE Photonics Technol. Lett. 24, 631–633 (2012)

    Article  ADS  Google Scholar 

  6. T.R. Wolinski, in Photonics Liquid Crystal Fiber Sensors for Safety and Security Monitoring in Photonics Sensing: Principle and Applications for Safety and Security Monitoring, ed. by G. Xiao, W.J. Bock (Wiley, New York, 2012), pp. 147–182

    Chapter  Google Scholar 

  7. T.R. Woliński, S. Ertman, D. Budaszewski, M. Chychłowski, A. Czapla, R. Dąbrowski, A.W. Domański, P. Mergo, E. Nowinowski-Kruszelnicki, K.A. Rutkowska, M. Sierakowski, M. Tefelska, Emerging photonic devices based on photonic liquid crystal fibers. Phot. Lett. Pol. 3(1), 20–22 (2011)

    Google Scholar 

  8. J. Wójcik, P. Mergo, J. Klimek, G. Wójcik, K. Skorupski, J. Pędzisz, J. Kopeć, Technology of high birefringent microstructured polymer optical fibers. Phot. Lett. Poland 2(1), 4–6 (2010)

    Google Scholar 

  9. J. Witt, M. Steffen, M. Schukar, K. Krebber, Investigation of sensing properties of microstructured polymer optical fibres. Proc. SPIE 7714, 77140 (2010)

    Article  ADS  Google Scholar 

  10. W. Yuan, L. Wei, T.T. Alkeskjold, A. Bjarklev, O. Bang, Thermal tunability of photonic bandgaps in liquid crystal infiltrated microstructured polymer optical fibers. Opt. Express 17, 19356–19364 (2009)

    Article  ADS  Google Scholar 

  11. Y. Zhang, L. He, H. Ji, S. Yang, M. Chen, S. Xie, Tunable attenuator based on polymer microstructured optical fibers. Optoelectron. Lett. 3(1), 47–49 (2007)

    Article  ADS  Google Scholar 

  12. A. Argyros, M.A. van Eijkelenborg, S.D. Jackson, R.P. Mildren, Microstructured polymer fiber laser. Opt. Lett. 29, 1882–1884 (2004)

    Article  ADS  Google Scholar 

  13. G. Barton, M.A. van Eijkelenborg, G. Henry, M.C.J. Large, J. Zagari, Fabrication of microstructured polymer optical fibres. Opt. Fiber Technol. 10, 325–335 (2004)

    Article  ADS  Google Scholar 

  14. Y. Zhang, K. Li, L. Wang, L. Ren, W. Zhao, R. Miao, Casting preforms for microstructured polymer optical fibre fabrication. Opt. Express 14, 5541–5547 (2006)

    Article  ADS  Google Scholar 

  15. M.C. Large, R. Lwin, A. Argyros, S.G. Leon-Saval, Low loss microstructured Polymer Optical Fibre (mPOF), in Optical Fiber Communication Conference, (2011). OSA Technical Digest (CD) paper OWS6

    Google Scholar 

  16. J. Zubia, J. Arrue, Plastic optical fibers: an introduction to their technological processes and applications. Opt. Fiber Technol. 7, 101–140 (2001)

    Article  ADS  Google Scholar 

  17. S.N. Kasarova et al., Analysis of the dispersion of optical plastic materials. Opt. Mater. 29, 1481–1490 (2007)

    Article  ADS  Google Scholar 

  18. M. Kovacevic et al., Temperature dependence analysis of mode dispersion in step-index polymer optical fibers. Acta Phys. Pol. A 116(4), 649–651 (2009)

    ADS  Google Scholar 

  19. T.R. Woliński, P. Lesiak, A.W. Domański, K. Szaniawska, S. Ertman, R. Dąbrowski, J. Wójcik, Polarization optics of microstructured liquid crystal fibers. Mol. Cryst. Liq. Cryst. 454, 333–350 (2006)

    Google Scholar 

  20. K.A. Rutkowska, L.W. Wei, Full-vectorial description of the light guidance in anisotropic photonic liquid crystal fibers. Acta Phys. Pol. A 122(5), 880–890 (2012)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Polish National Science Centre (NCN) under the grant no. 2011/01/B/ST7/05015. One of the authors (K.R.) would like to acknowledge Homing Plus Programme (2010-2/11) granted by the Foundation for Polish Science and co-financed by the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Tefelska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolinski, T.R., Tefelska, M., Milenko, K. et al. Propagation effects in a polymer-based photonic liquid crystal fiber. Appl. Phys. A 115, 569–574 (2014). https://doi.org/10.1007/s00339-013-8021-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-8021-8

Keywords

Navigation