Skip to main content
Log in

Adsorption of transition metal atoms (Co and Ni) on zigzag graphene nanoribbon

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The geometry structures and electronic properties of zigzag graphene nanoribbon (ZGNR) with the adsorption of transition metal atoms (Co and Ni) are investigated by using the density functional theory. The calculated results show that the interaction between Ni atom and ZGNR are stronger than that between Co atom and ZGNR. It is found that the ZGNR with Co adatom adsorbing has more possibility to show the character from semiconducting to the half-metallic one than that of the ZGNR with Ni adatom adsorbing. It is hoped that it may be valuable for investigating the GNR-based electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. V.M. Pereira, F. Guinea, J.M.B. Lopes dos Santos, N.M.R. Peres, A.H. Castro Neto, Phys. Rev. Lett. 96, 036801 (2006)

    Article  ADS  Google Scholar 

  2. Y.-W. Son, M.L. Cohen, S.G. Louie, Nature (London) 444, 347 (2006)

    Article  ADS  Google Scholar 

  3. Y.-W. Son, M.L. Cohen, S.G. Louie, Phys. Rev. Lett. 97, 216803 (2006)

    Article  ADS  Google Scholar 

  4. V. Barone, O. Hod, G.E. Scuseria, Nano Lett. 6, 2748 (2006)

    Article  ADS  Google Scholar 

  5. E. Rudberg, P. Sałek, Y. Luo, Nano Lett. 7, 2211 (2007)

    Article  ADS  Google Scholar 

  6. O. Hod, V. Barone, J.E. Peralta, G.E. Scuseria, Nano Lett. 7, 2295 (2007)

    Article  ADS  Google Scholar 

  7. L. Brey, H.A. Fertig, S. Das Sarma, Phys. Rev. Lett. 99, 116802 (2007)

    Article  ADS  Google Scholar 

  8. H. Zeng, J. Zhao, J.W. Wei, H.F. Hu, Eur. Phys. J. B 79, 335–340 (2011)

    Article  ADS  Google Scholar 

  9. Z. Wang, H. Hu, H. Zeng, Appl. Phys. Lett. 96, 243110 (2010)

    Article  ADS  Google Scholar 

  10. K.S. Novoselov, A.K. Geim, S.V. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  11. Y. Zhang, Z. Jiang, J.P. Small, M.S. Purewal, Y.W. Tan, M. Fazlollahi, J.D. Chudow, J.A. Jaszczak, H.L. Stormer, P. Kim, Phys. Rev. Lett. 96, 136806 (2006)

    Article  ADS  Google Scholar 

  12. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature (London) 438, 197 (2005)

    Article  ADS  Google Scholar 

  13. M. Fujita, K. Wakabayashi, K. Nakada, J. Phys. Soc. Jpn. 65, 1920 (1996)

    Article  ADS  Google Scholar 

  14. R. Saito, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Appl. Phys. Lett. 60, 2204 (1992)

    Article  ADS  Google Scholar 

  15. D.J. Klein, Chem. Phys. Lett. 217, 261 (1994)

    Article  ADS  Google Scholar 

  16. D.-e. Jiang, B.G. Sumpter, S. Dai, J. Chem. Phys. 126, 134701 (2007)

    Article  ADS  Google Scholar 

  17. O. Hod, V. Barone, J.E. Peralta, G. Scuseria, Nano Lett. 7, 2295 (2007)

    Article  ADS  Google Scholar 

  18. D. Gunlycke, J. Li, J.W. Mintmire, C.T. White, Appl. Phys. Lett. 91, 112108 (2007)

    Article  ADS  Google Scholar 

  19. Z. Wang, H. Hu, Y. Wei, Q. Huang, Physica B 405, 3895–3898 (2010)

    Article  ADS  Google Scholar 

  20. V.A. Rigo, T.B. Martins, A.J.R. da Silva, A. Fazzio, R.H. Miwa, Phys. Rev. B 79, 075435 (2009)

    Article  ADS  Google Scholar 

  21. M. Ushiro, K. Uno, T. Fujikawa, Y. Sato, K. Tohji, F. Watari, W.-J. Chun, Y. Koike, K. Asakura, Phys. Rev. B 73, 144103 (2006)

    Article  ADS  Google Scholar 

  22. N. Gorjizadeh, A.A. Farajian, K. Esfarjani, Y. Kawazoe, Phys. Rev. B 78, 155427 (2008)

    Article  ADS  Google Scholar 

  23. E.J.G. Santos, D. Sánchez-Portal, A. Ayuela, Phys. Rev. B 81, 125433 (2010)

    Article  ADS  Google Scholar 

  24. C. Cao, M. Wu, J. Jiang, H.-P. Cheng, Phys. Rev. B 81, 205424 (2010)

    Article  ADS  Google Scholar 

  25. P. Ordejón, E. Artacho, J.M. Soler, Phys. Rev. B 53, R10441 (1996)

    Article  ADS  Google Scholar 

  26. D. Sánchez-Portal, P. Ordejón, E. Artacho, J.M. Soler, Int. J. Quant. Chem. 65, 453 (1997)

    Article  Google Scholar 

  27. J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, D. Sánchez-Portal, J. Phys. Condens. Matter 14, 2745 (2002), and references therein

    Article  ADS  Google Scholar 

  28. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This study is financially supported by the Scientific Research Foundation of Guilin University of Technology (Grant No. 002401003326), and the Natural Science Foundation of China (Grant No. 11147194 and 11064003), and Scientific Research Fund of Guangxi Provincial Education Department of China (Grant No.201203YB091).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Xiao, J. & Li, M. Adsorption of transition metal atoms (Co and Ni) on zigzag graphene nanoribbon. Appl. Phys. A 110, 235–239 (2013). https://doi.org/10.1007/s00339-012-7119-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7119-8

Keywords

Navigation