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Abstract New method of calculation of the electrical re-
sistivity of liquid and amorphous alloys is presented. The
method is based on the Morgan–Howson–S̆aub (MHS̆)
model but the pseudopotentials are replaced by the scat-
tering matrix operators. The Fermi energy is properly deter-
mined by the accurate values of the phase shifts. The model
depends on a very small number of universal parameters and
gives stable results. The calculated values of the resistivity
agree well with available experimental data for a substan-
tial number of binary alloys. Moreover, the results for some
ternary alloys were also obtained.

1 Introduction

Electron transport in liquid and amorphous materials has
been extensively investigated by many authors. There are
several theoretical models that describe electrical resistivity
of disordered systems. The problem is very complex so that
every approach requires some approximations which obvi-
ously cause the final results to be unreliable. On the other
hand, theoretical models usually depend on a number of pa-
rameters that in many cases can be chosen in a way that
allows us to reproduce experimental resistivities, even when
there exist physical reasons for that such procedure should
not succeed.

The commonly used Faber–Ziman (F-Z) model [1] repre-
sents a quasi-classical approach to this problem. Alloys are
considered as the sets of ions, which relative positions are
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described with use of the partial structure factors (which cor-
respond to pair correlation functions), and the electron-ion
interaction is represented by a pseudopotential. This method
was used to reproduce resistivities of some simple alloys
with rather good agreement with experiment [2, 3]. In our
previous work we examined this model and came to the fol-
lowing important conclusions [4]:

1. The F-Z model gives very unstable results and the most
important cause of this situation is the choice of the
pseudopotentials. By suitable choice of the form of these
pseudopotentials or by suitable choice of their parame-
ters one can fit calculations to the experiment in almost
every single case.

2. The F-Z model neglects multiple scattering effects. The
comparison of the results obtained within the F-Z model
and another one which involves the quantum effects of
the multiple scattering shows that even for low resistive
alloys the difference may be significant.

These two remarks suggest that the parameterization of the
model may cause that some physical effects will not be seen.
Since we cannot do anything better, we suggest that to ob-
tain a useful model, which we may consider as physically
correct, we should demand its universality, what would be
the argument for a specific choice of the values of parame-
ters.

Multiple scattering effects have been included in another
model, formulated by Morgan et al. [5], usually called the
‘2kF’ scattering model (or MHS̆ one), that is based on a
different formalism than the F-Z model and similar ones.
It is completely quantum model, based on the quantum ki-
netic equation. It gives a formula for the resistivity that may
be interpreted as a rescaled F-Z one. In practice, obtain-
ing the MHS̆ results, when someone already has got the
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F-Z ones, requires just a few simple calculations and the
results are much more physically sound, even if the para-
meterization allows for fitting resistivities in both models.
Of course, since the MHS̆ model gives the resistivity in a
similar way as the F-Z one, the results are still unstable and
the model has too many parameters to be useful in prac-
tice.

The Faber–Ziman model was extended by Evans et
al. [6], who replaced the pseudopotentials by the scattering
matrix operators that were calculated basing on the phase
shifts of the wave functions. This approach was necessary
particularly for the transition metals where the first Born ap-
proximation was not accurate enough [7–11]. What we have
found examining this model is that the results here are much
more stable than for the F-Z one, and that there is practically
no free choice of parameters. The next step in our work was
therefore a combination of the Evans model with the MHS̆
one that included multiple scattering effects to obtain stable
resistivities.

After elimination of the direct influence of the pseudo-
potentials on the transport lifetimes, we had to improve the
precision of the Fermi energy determination, since the life-
times were calculated as the integrals that depended on the
Fermi radius. We have found that the Esposito method [12]
is quite effective, and it does not require any additional pa-
rameters, so we have chosen this one for our model. Then,
during the calculation process, we discovered that the phase
shifts used for calculations required more precise approach.
Many authors—in our opinion, which is based on the re-
sults they obtained—took phase shifts computed modulo π ,
or they assumed that the phase shift in zero-energy limit is
equal to zero and continuous for the whole energy range.
Although this approach does not cause any problems for ob-
taining the scattering matrix elements (since they are peri-
odic functions that cut out all 2π phase shifts of the electron
wave), it has a great importance when using the Lloyd for-
mula for the electron number. The change we have made al-
lowed us for elimination of one free parameter and for exact
Fermi energy calculation even for heavier elements. We also
generalized formulas to make calculations for multi-element
systems.

In the whole process of constructing our model we fo-
cused on making it as general as possible. We could define
parameters for each considered element that would allow
us to predict the resistivity of any alloy of these elements.
The results and the theory we present here work very well
for most of simple metals. We did not introduce the tem-
perature dependence of our model parameters, so the model
cannot be used in a wide range of temperatures. It does not
predict properly the resistivities of more complex elements,
either. Nevertheless it gives very good results for many bi-
nary and ternary alloys, and these are presented in this pa-
per.

2 Model

The resistivity in the ‘2kF’ scattering model is calculated
as [5]

ρ = m∗
e

ne2τtr
, (1)

where:

1

τtr
= 1

τFZ

1 + 1
2

τFZ
τ

X2F
1/2
MHS̆

(X)

1 − 3
64X4FMHS̆(X)

. (2)

Here τFZ stands for the transport lifetime and τ is one-
electron lifetime (both taken from the F-Z model), X =
�/(τEF), and

FMHS̆(X)

=
[

2 ln
(1 + X2)1/2 + 1 + 21/2[(1 + X2)1/2 + 1]1/2

(1 + X2)1/2 + 1 − 21/2[(1 + X2)1/2 + 1]1/2
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(3)

Instead of the original formula for F-Z lifetimes we follow
Evans [6], taking

1

τFZ
= m∗

eΩ0

4π�3k3
F

∫ 2kF

0
dqλ(q)q3, (4)

1

τ
= m∗

eΩ0

2π�3kF

∫ 2kF

0
dqλ(q)q, (5)

where Ω0 is the average volume per one atom in the system,
and for p-element alloy we generalized λ(q) to be equal to

λ(q) =
p∑

α=1

p∑
β=1

√
cαcβSαβ(q)tα(q)t∗β(q). (6)

In this equation ci stands for the number concentration of the
ith component, Sij are the Ashcroft–Langreth partial struc-
ture factors [3] and ti (q) are scattering operator matrix ele-
ments (at the Fermi level):

t (q) = − 2π�
3

Ω0m∗
ekF

∑
l

(2l + 1) sinηle
iηlPl(cos θ), (7)

where Pl are the Legendre polynomials, cos θ = 1 − q2/

(2kF)2, and ηl phase shifts at the Fermi level for the lth band
of the considered element.

2.1 Structure factors

We use the Ashcroft–Langreth partial structure factors [3]
calculated by means of the method presented by Hoshino
[13] that allows us to calculate these factors for multi-
element systems. Following previous authors [8], in order
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to reduce the number of parameters, we take the packing
fraction according to Waseda’s empirical rule [14]:

η = Ae−BT , (8)

where A and B are experimentally determined and given
in [14]. Hard-sphere diameters are now given as

σ 3 = 6ηΩ0

π
(9)

and assumed constant with change of the composition.
For calculation of the Ω0 we take densities linearly

interpolated with temperature, using values given by
Waseda [14].

For two-element alloys we assume that number density
n0 = 1/Ω0 changes linearly with composition.

2.2 Phase shifts

Phase shifts are calculated by solving the Schroedinger
equation with the muffin-tin potential calculated by means
of the Mattheiss prescription generalized for disordered sys-
tems by Mukhopadhyay [15, 16].

For the neutral atom the potential v(r) is the sum of the
Coulombic part vC(r) and the exchange correlation potential
vex(r). The first one is obtained from the Poisson equation
and the second one reads:

vex(r) = −3αe2
[

3

8π
ρ(r)

]1/3

. (10)

The charge density ρ(r) is calculated using wave functions
given by the Herman–Skillman program [17] and α is the
Slater exchange parameter.

For disordered systems with spherical symmetry the to-
tal Coulombic potential and the charge density are given,
respectively, by

VC(r) = vC(r) + 2π

Ω0r

∫ ∞

0
dR Rg(R)

∫ |R+r|

|R−r|
dt tvC(t)

(11)

and

ρT(r) = ρ(r) + 2π

Ω0r

∫ ∞

0
dR Rg(R)

∫ |R+r|

|R−r|
dt tρ(t). (12)

The exchange correlation potential for liquid alloy now is

Vex(r) = −3αe2
[

3

8π
ρT(r)

]1/3

(13)

and the total potential is simply the sum:

V (r) = VC(r) + Vex(r). (14)

Fig. 1 Comparison of the scattered and free electron wave functions
for Cu, l = 0

The muffin-tin zero is calculated as

V0 = 3

(rWS)3 − (rMT)3

∫ rMT

rWS

drV (r), (15)

where the Wigner–Seitz radius is

rWS =
(

3Ω0

4π

)1/3

(16)

and the muffin-tin radius is taken as a half of the distance be-
tween the origin of the coordinate system and the first peak
of the pair correlation function g(r).

Comparison of the scattered electron wave function ob-
tained as the solution of the Schroedinger equation with an-
alytical free electron wave function allows us the phase shift
determination; thus [18]

tanηl = − y(r1)S(r2) − y(r2)S(r1)

y(r2)C(r1) − y(r1)C(r2)
(17)

where y(r) is the exact solution of the radial part of the
Schroedinger equation, r1 and r2 are two distinct points in
the asymptotic region, S(r) = krjl(kr), C(r) = krnl(kr),
and jl and nl are the spherical Bessel and Neumann func-
tions, respectively.

In such calculation every 2π component of the phase-
shift is cut off, since the arc tan function is defined in
[−π,π] range. It is not a problem when we use phase shifts
only in 7, where only periodic functions are considered, but
for the Fermi energy calculation it is important to have full
phase shift value. Figure 1 shows an example of the scat-
tered and free electron wave function. It is apparent that
the phase-shift here is about 3π , since the scattered electron
wave function oscillates a couple of times before it reaches
the asymptotic region.

In our method we count these oscillations to obtain
proper values of the phase shifts. Figure 2 presents the phase
shifts calculated in this way.
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2.3 Fermi energy

Proper determination of the Fermi energy seems to be one
of the most important steps of the calculations. Scattering
operator matrix elements (7) depend on the phase shifts on
the Fermi level, and since the phase shift usually changes
rapidly with energy (especially for l = 2) it is crucial to de-
termine the Fermi level as precisely as possible. Esposito et
al. [12] suggested a consistent method to determine Fermi
energy and effective valence Z∗. The method is based on
Lloyd’s formula for the integrated density of states [19]:

N(E) = N0(E) + 2

π

∑
l

(2l + 1)ηl + Nm(E), (18)

where N0(E) is the free electron integrated density of states
and Nm(E) corresponds to multiple scattering effects. After
neglecting of the last term the number of electrons may be
written as:

Z = N(EF) ≈ N0(EF) + 2

π

∑
l

(2l + 1)ηl. (19)

Notice that the shift of the phase by 2π (or its multiplic-
ity) cannot be neglected here. The ηl value is the biggest for
small l (however it may be close to zero when counted mod-
ulo π ), so the sum cannot be reduced to one term with η2.
Also for heavier elements the sum must involve the term
with l = 3 because it gives a significant contribution to the
value of Z.

The Fermi vector dependence on the energy is:

kF = (2meEF)1/2

�
(20)

and the effective valence is:

Z∗ = k3
FΩ0

3π2
= N0(EF). (21)

Fig. 2 Calculated phase shifts for Cu

The value of the Fermi energy EF should satisfy (19)
where Z is the atomic number.

Apart from the Esposito method there are also the
Dreirach one [7] and several other propositions [8, 20],
where the authors notice that the obtained resistivity may
significantly differ from experiment and even the free elec-
tron model calculations may result in better agreement [21].

In this paper we decided to use the Esposito method,
since it was free of any parameters and the shape of the re-
sistivity curve as a function of concentration seemed to be in
good agreement with experiment. We noticed that to achieve
agreement in both of the shape and the absolute value of
the resistivity one additional parameter for a given element
should be used. We made the simplest choice which would
be the effective mass as it appears in (1, 4, 5), and we as-
sumed its linear dependence on the concentration.

3 Results

3.1 Binary alloys

We performed the calculations for the resistivity of more
than 30 alloys, each time obtaining stable results. In order
to make the model as universal as possible, we assumed that
the parameters defined for the considered elements should
not change for various alloys. We also neglected any tem-
perature dependence of the model parameters (m∗

e , α). We
assumed that α should be in the range from 0.6 to 1.0, since
some authors reported that for metals it was approximately
0.7 or put full exchange with α = 1.0. The reasonable val-
ues of the effective mass parameter m∗

e/me should be close
to 1.0. The parameters used in calculations are gathered in
the Table 1.

Figure 3 presents most successful calculations. It is well
apparent that results agree with experimental data and the
parameters given are universal. We performed calculations
for all combinations of elements appearing in Fig. 3. which
were available in literature thus we consider that the model

Table 1 Parameters used in calculations

Element α m∗
e/me

Al 0.7 0.85

Ca 0.98 0.78

Cd 0.75 1.11

Cs 0.6 0.82

K 0.6 1.2

Li 1.0 1.18

Mg 0.7 1.23

Na 0.7 1.0

Rb 0.6 1.3



Electrical resistivity of liquid binary and ternary alloys 383

Fig. 3 Calculated values of the resistivity for alloys as a function of
their composition. Crosses denote experimental values taken from lit-
erature: Al-Mg [22], Cd-Mg [23], Zn-Mg [24], K-Cs [25], Na-Cs [25],

Rb-Cs [26], K-Rb [27], Li-Cd [28], Ca-Al (amorphous) [29]. Details
are given in the text

Fig. 4 Calculated values of the resistivity for two ternary alloys: K-Rb-Cs (on the left) and Mg-Li-Cd (on the right)

is universal for those elements and can be used for prediction
of the resistivity.

3.2 Ternary alloys

While building the model we have generalized formulas to
perform calculations for multi-element systems. Figure 4

presents exemplary calculations for two ternary alloys. Al-

though we did not have experimental data for such systems,

nevertheless for each pair of K-Rb-Cs elements we obtained

good agreement with experiment, and same for Mg-Cd and

Li-Cd (Fig. 3) while we did not have experimental data for

Li-Mg.
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The important fact that we notice here is that adding
the third element does not increase the resistivity of the al-
loy over the highest value of any binary combination.

3.3 Discussion

There are several reasons that may cause differences be-
tween the results of the calculations and experimental data.
Analytical models are created with some approximated as-
sumptions like spherical symmetry, perfect isotropy and oth-
ers. In our model we additionally have to interpolate values
for alloys basing on the values for single elements assum-
ing the linear dependence of the density, parameters α and
meff on concentration or assuming constant hard-sphere di-
ameters. The last ones are used to calculate the analytical
structure factors and such methodology is the approximation
too. Also the assumption that the atomic diameters for ele-
ments may be determined basing on the rule for the packing
fraction η (8) may result in a worse match than a simple ad-
justing of the diameter values. Nevertheless we considered
this approach as optimal, since the calculations were mostly
made for composed systems for which the experimental data
are difficult to obtain.

Moreover, there are many numerical effects that affect fi-
nal results, like calculation of the pair density function g(r)

basing on the structure factors, by the Fourier transform.
This process and also the calculation of the potentials re-
quire integration, and this should be performed to the infin-
ity. In the numerical calculations it is obviously required to
reduce the infinite integral to the finite sum (with parabolic
interpolations).

We noticed two problems which we considered worth to
mention separately. We can see some differences between
experimental and theoretical values of the concentration
where the resistivity reaches its maximum. We suppose that
this may be caused by too simplified effective mass calcula-
tion. It probably does not change linearly as we assumed. To
examine it we calculated the correlation factor between peak
shift and the effective mass difference. The obtained value
was equal to 0.66 that seems to confirm our supposition. We
do not see any improvement which could eliminate this ef-
fect at the moment. The second effect is more serious. For
several elements (Sn, Pb, Bi, Fe, Cu, Ge) we obtained results
that did not match the experiment. We were able to easily fit
the resistivity to experimental data for any single-element
system, but for alloys the results were not satisfying. For
some of considered alloys the calculated values of the resis-
tivity were extremely high (over 1000 µ� cm), and it is very
likely that the model is reaching its limits. In other cases we
had elements with complicated electron structure, for which
the assumption of the spherical symmetry might not be ad-
equate. The numerical errors in computation of the Fourier
transform and other integrals may also be the reason of the

discrepancies between our calculations and the experiment.
Nevertheless, our model presented here is much better than
the previous one presented in [4] because of three reasons:
(i) the calculations are more stable, i.e. the change in the re-
sistivity due to a small change of parameters is also small;
(ii) the number of free parameters is smaller than in the pre-
vious work [4]; (iii) the parameters are unambiguously as-
signed to each element used which results in the universality
of the calculations.

4 Summary

We have developed the model for the resistivity of disor-
dered alloys on the ground of our previous results. We im-
proved the stability and precision by using the MHS̆ model
with the Evans correction. We have corrected the Espos-
ito method for Fermi energy determination by improving
the phase shifts calculations and finally we obtained two-
parameter, fully quantum model, that can be used for multi-
element alloys. The performed calculations have shown that
the model can be considered as universal one for a quite
large group of simpler elements.

Open Access This article is distributed under the terms of the Cre-
ative Commons Attribution Noncommercial License which permits
any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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