Skip to main content
Log in

Self-assembly of boehmite nanopetals to form 3D high surface area nanoarchitectures

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A flower-like boehmite nanostructure was prepared through a template-free chemical route by the self-assembly process of nanosize petals 800–1000 nm long, 200–250 nm wide, 20–50 nm thick and having an average crystallite size of about 2.21 nm. X-ray diffraction analysis (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), DTA/TGA analyses and Brunauer–Emmet–Teller (BET-N2) analyses were used in order to characterize the product obtained. XRD results exhibited that the obtained nanostructures composed of pure orthorhombic AlOOH phase. The effects of Cl ions and TEA on the growth of boehmite three-dimensional nanoarchitectures in the presence of \(\mathrm{NO}_{3}^{-}\) ions were investigated. BET analyses of as-prepared material demonstrate that this nanostructure material has a high specific surface area, as high as 123 m2 g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Zhigang, Y. Linhai, Z. Yifan, X. Zhude, Mater. Chem. Phys. 107, 137–141 (2008)

    Article  Google Scholar 

  2. J.M. Ting, K.H. Liao, T.L. Chou, Thin Solid Films 515, 5123–5130 (2007)

    Article  ADS  Google Scholar 

  3. J.P. Kottmann, O.J.F. Martin, D.R. Smith, S. Schultz, Chem. Phys. Lett. 341, 1–6 (2001)

    Article  ADS  Google Scholar 

  4. A.P. Alivisatos, Science 289, 736–737 (2000)

    Article  Google Scholar 

  5. M. Reches, E. Gazit, Science 300, 625–627 (2003)

    Article  ADS  Google Scholar 

  6. C. Tang, Y. Bando, D. Golberg, R.Z. Ma, Angew. Chem. Int. Ed. 44, 576–578 (2005)

    Article  Google Scholar 

  7. Q. Tang, W. Zhou, J. Shen, W. Zhang, L. Kong, Y. Qian, Chem. Commun. 6, 712–713 (2004)

    Article  Google Scholar 

  8. Y. Sun, G.M. Fuge, N.A. Fox, D.J. Riley, M.N.R. Ashfold, Adv. Mater. 17, 2474–2478 (2005)

    Article  Google Scholar 

  9. J. Wang, L. Gao, Solid State Commun. 132, 269–271 (2004)

    Article  ADS  Google Scholar 

  10. F. Wen, W. Li, J. Moon, J. Kima, Solid State Commun. 135, 34–37 (2005)

    Article  ADS  Google Scholar 

  11. J. Zhang, L. Sun, C. Liao, C. Yan, Chem. Commun. 3, 262–263 (2002)

    Article  Google Scholar 

  12. S. Iijima, Nature 354, 56–58 (1991)

    Article  ADS  Google Scholar 

  13. R.A. Pai, R. Humayun, M.T. Schulberg, A. Sengupta, J.N. Sun, J.J. Watkins, Science 303, 507–509 (2004)

    Article  ADS  Google Scholar 

  14. M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, E. Weber, R. Russo, P. Yang, Science 292, 1987–1989 (2001)

    Article  Google Scholar 

  15. A. Hatzor, P.S. Weiss, Science 291, 1019–1020 (2001)

    ADS  Google Scholar 

  16. Y.H.B. Wu, J. Yang, G.C. Han, B.Y. Zong, H.Q. Ni, P.T. Luo, T.C. Chong, T.S. Low, Z.X. Shen, Adv. Funct. Mater. 12, 489–494 (2002)

    Article  Google Scholar 

  17. P. Alphonse, M. Courty, Thermochim. Acta 425, 75–89 (2005)

    Article  Google Scholar 

  18. M.K. Naskar, M. Chatterjee, J. Am. Ceram. Soc. 88, 3322–3327 (2005)

    Article  Google Scholar 

  19. S.C. Kuiry, E. Megen, S.D. Patil, S.A. Deshpande, S. Seal, J. Phys. Chem. B 109, 3686–3690 (2005)

    Google Scholar 

  20. M. Mazloumi, M. Attarchi, A. Lak, M. Mohajerani, A. Kajbafvala, S. Zanganeh, S.K. Sadrnezhaad, Mater. Lett. 62, 4184–4186 (2008)

    Article  Google Scholar 

  21. P. Gao, Y. Xie, Y. Chen, L.N. Ye, Q.X. Guo, J. Cryst. Growth 285, 555–558 (2005)

    Article  ADS  Google Scholar 

  22. D.B. Kuang, Y.P. Fang, H.Q. Liu, C. Frommen, D. Fenske, J. Mater. Chem. 13, 660–664 (2003)

    Article  Google Scholar 

  23. J. Zhang, S.J. Liu, J. Lin, H.S. Song, J.J. Luo, E.M. Elssfah, E. Ammar, Y. Huang, X. Ding, J. Gao, S. Qi, C. Tang, J. Phys. Chem. B 110, 14249–14253 (2006)

    Article  Google Scholar 

  24. A. Corma, F. Rey, J. Rius, M.J. Sabater, S. Valencia, Nature 431, 287–290 (2004)

    Article  ADS  Google Scholar 

  25. W.G. Lu, P.X. Gao, W.B. Jian, Z.L. Wang, J.Y. Fang, J. Am. Chem. Soc. 126, 14816–14821 (2004)

    Article  Google Scholar 

  26. M. Mazloumi, S. Taghavi, H. Arami, S. Zanganeh, A. Kajbafvala, M.R. Shayegh, S.K. Sadrnezhaad, J. Alloys Compd. 468, 303–307 (2009)

    Article  Google Scholar 

  27. D. Panias, P. Asimidis, I. Paspaliaris, Hydrometallurgy 59, 15–29 (2001)

    Article  Google Scholar 

  28. P. Li, Y. Wei, H. Liu, Xk. Wang, J. Solid State Chem. 178, 855–860 (2005)

    Article  ADS  Google Scholar 

  29. W.A. Harrell, J.T. Davis, Self-Assembly: Guanine Nucleobases (Taylor & Francis, London, 2006)

    Google Scholar 

  30. Y. Zhao, J. Yang, R.L. Frost, J. Kristóf, E. Horváth, J. Mater. Sci. 44, 3662–3673 (2009)

    Article  ADS  Google Scholar 

  31. J.J. Yang, R.L. Frost, Y. Yong, Thermochim. Acta 483, 29–35 (2009)

    Article  Google Scholar 

  32. Y. Wu, Y.F. Zhang, X.X. Huang, J.K. Guo, Ceram. Int. 27, 265–268 (2001)

    Article  Google Scholar 

  33. F.S. Yen, H.S. Lo, H.L. Wen, R.J. Yang, J. Cryst. Growth 249, 283–293 (2003)

    Article  ADS  Google Scholar 

  34. F.S. Yen, M.Y. Wang, J.L. Chang, J. Cryst. Growth 236, 197–209 (2002)

    Article  ADS  Google Scholar 

  35. M. Kumagai, G.L. Messing, J. Am. Ceram. Soc. 68, 500–505 (1985)

    Article  Google Scholar 

  36. J.L. McArdle, G.L. Messing, J. Am. Ceram. Soc. 76, 214–222 (1993)

    Article  Google Scholar 

  37. G.C. Bye, D.G. Gavin, J. Am. Ceram. Soc. 57, 55–57 (1974)

    Article  Google Scholar 

  38. Y. Wu, Y. Zhang, G. Pezzotti, J. Guo, Mater. Lett. 52, 366–369 (2002)

    Article  Google Scholar 

  39. J. Li, Y. Wu, Y. Pan, W. Liu, J. Guo, Ceram. Int. 33, 919–923 (2007)

    Article  Google Scholar 

  40. K. Daimon, E. Kato, J. Cryst. Growth 75, 348–352 (1986)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Sadrnezhaad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zanganeh, S., Kajbafvala, A., Zanganeh, N. et al. Self-assembly of boehmite nanopetals to form 3D high surface area nanoarchitectures. Appl. Phys. A 99, 317–321 (2010). https://doi.org/10.1007/s00339-009-5534-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-009-5534-2

Keywords

Navigation