Skip to main content
Log in

Molecular imaging by Mid-IR laser ablation mass spectrometry

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Mid-IR laser ablation at atmospheric pressure (AP) produces a mixture of ions, neutrals, clusters, and particles with a size distribution extending into the nanoparticle range. Using external electric fields the ions can be extracted and sampled by a mass spectrometer. In AP infrared (IR) matrix-assisted laser desorption ionization (MALDI) experiments, the plume was shown to contain an appreciable proportion of ionic components that reflected the composition of the ablated target and enabled mass spectrometric analysis. The detected ion intensities rapidly declined with increasing distance of sampling from the ablated surface to ∼4 mm. This was rationalized in terms of ion recombination and the stopping of the plume expansion by the background gas. In laser ablation electrospray ionization (LAESI) experiments, the ablation plume was intercepted by an electrospray. The neutral particles in the plume were ionized by the charged droplets in the spray and enabled the detection of large molecules (up to 66 kDa). Maximum ion production in LAESI was observed at large (∼15 mm) spray axis to ablated surface distance indicating a radically different ion formation mechanism compared to AP IR-MALDI. The feasibility of molecular imaging by both AP IR-MALDI and LAESI was demonstrated on targets with mock patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Gunther, S.E. Jackson, H.P. Longerich, Spectrochim. Acta B At. Spectrosc. 54, 381 (1999)

    Article  ADS  Google Scholar 

  2. R.E. Russo, X.L. Mao, S.S. Mao, Anal. Chem. 74, 70A (2002)

    Article  Google Scholar 

  3. V.V. Laiko, M.A. Baldwin, A.L. Burlingame, Anal. Chem. 72, 652 (2000)

    Article  Google Scholar 

  4. M.C. Galicia, A. Vertes, J.H. Callahan, Anal. Chem. 74, 1891 (2002)

    Article  Google Scholar 

  5. V.V. Laiko, N.I. Taranenko, V.D. Berkout, M.A. Yakshin, C.R. Prasad, H.S. Lee, V.M. Doroshenko, J. Am. Soc. Mass Spectrom. 13, 354 (2002)

    Article  Google Scholar 

  6. C.E. Von Seggern, R.J. Cotter, J. Am. Soc. Mass Spectrom. 14, 1158 (2003)

    Article  Google Scholar 

  7. Y. Li, B. Shrestha, A. Vertes, Anal. Chem. 79, 523 (2007)

    Article  Google Scholar 

  8. C.D. Mowry, M.V. Johnston, Rapid Commun. Mass Spectrom. 7, 569 (1993)

    Article  Google Scholar 

  9. A. Leisner, A. Rohlfing, U. Rohling, K. Dreisewerd, F. Hillenkamp, J. Phys. Chem. B 109, 11661 (2005)

    Article  Google Scholar 

  10. H.C. Le, D.E. Zeitoun, J.D. Parisse, M. Sentis, W. Marine, Phys. Rev. E 62, 4152 (2000)

    Article  ADS  Google Scholar 

  11. R. Knochenmuss, L.V. Zhigilei, J. Phys. Chem. B 109, 22947 (2005)

    Article  Google Scholar 

  12. P.V. Tan, V.V. Laiko, V.M. Doroshenko, Anal. Chem. 76, 2462 (2004)

    Article  Google Scholar 

  13. B. Spengler, U. Bahr, M. Karas, F. Hillenkamp, Anal. Instrum. 17, 173 (1988)

    Article  Google Scholar 

  14. K.R. Lykke, P. Wurz, D.H. Parker, M.J. Pellin, Appl. Opt. 32, 857 (1993)

    Article  ADS  Google Scholar 

  15. X.D. Tang, M. Sadeghi, Z. Olumee, A. Vertes, Rapid Commun. Mass Spectrom. 11, 484 (1997)

    Article  Google Scholar 

  16. P. Voumard, Q. Zhan, R. Zenobi, Rev. Sci. Instrum. 64, 2215 (1993)

    Article  ADS  Google Scholar 

  17. A. Leisner, A. Rohlfing, S. Berkenkamp, F. Hillenkamp, K. Dreisewerd, J. Am. Soc. Mass Spectrom. 15, 934 (2004)

    Article  Google Scholar 

  18. D.B. Robb, T.R. Covey, A.P. Bruins, Anal. Chem. 72, 3653 (2000)

    Article  Google Scholar 

  19. J.J. Coon, K.J. McHale, W.W. Harrison, Rapid Commun. Mass Spectrom. 16, 681 (2002)

    Article  Google Scholar 

  20. J.J. Coon, W.W. Harrison, Anal. Chem. 74, 5600 (2002)

    Article  Google Scholar 

  21. J. Shiea, M.Z. Huang, H.J. Hsu, C.Y. Lee, C.H. Yuan, I. Beech, J. Sunner, Rapid Commun. Mass Spectrom. 19, 3701 (2005)

    Article  Google Scholar 

  22. M.Z. Huang, H.J. Hsu, L.Y. Lee, J.Y. Jeng, L.T. Shiea, J. Proteome Res. 5, 1107 (2006)

    Article  Google Scholar 

  23. P. Nemes, A. Vertes, Anal. Chem. 79, 8098 (2007)

    Article  Google Scholar 

  24. P. Nemes, I. Marginean, A. Vertes, Anal. Chem. 79, 3105 (2007)

    Article  Google Scholar 

  25. I. Apitz, A. Vogel, Appl. Phys. A Mater. Sci. Process. 81, 329 (2005)

    Article  ADS  Google Scholar 

  26. Z.Y. Chen, A. Bogaerts, A. Vertes, Appl. Phys. Lett. 89, 041503 (2006)

    Article  ADS  Google Scholar 

  27. N. Arnold, J. Gruber, J. Heitz, Appl. Phys. A Mater. Sci. Process. 69, S87 (1999)

    Article  ADS  Google Scholar 

  28. Y. Li, B. Shrestha, A. Vertes, Anal. Chem. 80, 407 (2008)

    Article  Google Scholar 

  29. P. Nemes, A.A. Barton, Y. Li, A. Vertes, Anal. Chem. 80, 4575 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akos Vertes.

Additional information

Presented at the 9-th International Conference on Laser Ablation, 2007 Tenerife, Canary Islands, Spain

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vertes, A., Nemes, P., Shrestha, B. et al. Molecular imaging by Mid-IR laser ablation mass spectrometry. Appl. Phys. A 93, 885–891 (2008). https://doi.org/10.1007/s00339-008-4750-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-008-4750-5

PACS

Navigation