Skip to main content
Log in

How Far Can Chemotactic Cross-diffusion Enforce Exceeding Carrying Capacities?

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We consider nonnegative solutions of the Neumann initial-boundary value problem for the chemotaxis-growth system

$$\begin{aligned} \left\{ \begin{array}{l} u_t=\varepsilon u_{xx} -(uv_x)_x +ru -\mu u^2, \qquad x\in \Omega , \ t>0, \\ 0=v_{xx}-v+u, \qquad x\in \Omega , \ t>0, \end{array} \right. \quad (\star ) \end{aligned}$$

in \(\Omega :=(0,L)\subset \mathbb {R}\) with \(L>0, \varepsilon >0, r\ge 0\) and \(\mu >0\), along with the corresponding limit problem formally obtained upon taking \(\varepsilon \searrow 0\). For the latter hyperbolic–elliptic problem, we establish results on local existence and uniqueness within an appropriate generalized solution concept. In this context we shall moreover derive an extensibility criterion involving the norm of \(u(\cdot ,t)\) in \(L^\infty (\Omega )\). This will enable us to conclude that in this case \(\varepsilon =0\),

  • if \(\mu \ge 1\), then all solutions emanating from sufficiently regular initial data are global in time, whereas

  • if \(\mu <1\), then some solutions blow-up in finite time.

The latter will reveal that the original parabolic–elliptic problem (\(\star \)), though known to possess no such exploding solutions, exhibits the following property of dynamical structure generation: given any \(\mu \in (0,1)\), one can find smooth bounded initial data with the property that for each prescribed number \(M>0\) the solution of (\(\star \)) will attain values above \(M\) at some time, provided that \(\varepsilon \) is sufficiently small. In particular, this means that the associated carrying capacity given by \(\frac{r}{\mu }\) can be exceeded during evolution to an arbitrary extent. We finally present some numerical simulations that illustrate this type of solution behavior and that, moreover, inter alia, indicate that achieving large population densities is a transient dynamical phenomenon occurring on intermediate time scales only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aida, M., Tsujikawa, T., Efendiev, M., Yagi, A., Mimura, M.: Lower estimate of the attractor dimension for a chemotaxis growth system. J. London Math. Soc. 74(2), 453–474 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Biler, P.: Local and global solvability of come parabolic systems modeling chemotaxis. Adv. Math. Sci. Appl. 8, 715–743 (1998)

    MathSciNet  MATH  Google Scholar 

  • Bournaveas, N., Calvez, V., Gutiérrez, S., Perthame, B.: Global existence for a Kinetic model of chemotaxis via dispersion and strichartz estimates. Commun. Part. Differ. Equ. 33(1), 79–95 (2008)

    Article  MATH  Google Scholar 

  • Carrillo, J.A., Hittmeir, S., Jüngel, A.: Cross diffusion and nonlinear diffusion preventing blow up in the Keller–Segel model. Math. Models Methods Appl. Sci. 22, 1250041 (2012)

    Article  MathSciNet  Google Scholar 

  • Chaplain, M.A.J., Lolas, G.: Mathematical modelling of cancer invasion of tissue: the role of the urokinase plasminogen activation system. Math. Mod. Methods Appl. Sci. 15, 1685–1734 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Childress, S., Percus, J.K.: Nonlinear aspects of chemotaxis. Math. Biosci. 56, 217–237 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  • Cieślak, T., Laurençot, P.H.: Finite time blow-up for a one-dimensional quasilinear parabolic–parabolic chemotaxis system. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 27(1), 437–446 (2010)

    Article  MATH  Google Scholar 

  • Cieślak, T., Laurençot, Ph.: Global existence vs. blowup in a one-dimensional Smoluchowski-Poisson system. Escher, Joachim (ed.) et al., Parabolic problems. The Herbert Amann Festschrift. Based on the conference on nonlinear parabolic problems held in celebration of Herbert Amann’s 70th birthday at the Banach Center in Bedlewo, Poland, May 1016, 2009. Birkhäuser, Basel. Progress in Nonlinear Differential Equations and Their Applications 80, 95–109 (2011).

  • Cieślak, T., Stinner, C.: Finite-time blowup and global-in-time unbounded solutions to a parabolic–parabolic quasilinear Keller–Segel system in higher dimensions. J. Differ. Equ. 252(10), 5832–5851 (2012)

    Article  MATH  Google Scholar 

  • Cieślak, T., Winkler, M.: Finite-time blow-up in a quasilinear system of chemotaxis. Nonlinearity 21, 1057–1076 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Eberl, H.J., Parker, D.F., van Loosdrecht, M.C.M.: A new deterministic spatio-temporal continuum model for biofilm development. J. Theor. Med. 3(3), 161175 (2001)

    Article  Google Scholar 

  • Funaki, M., Mimura, M., Tsujikawa, T.: Travelling front solutions arising in the chemotaxis-growth model. Interfaces Free Bound. 8(2), 223–245 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Hašcovec, J., Schmeiser, C.: Stochastic particle approximation for measure valued solutions of the 2D Keller–Segel system. J. Stat. Phys. 135, 133–151 (2009)

    Article  MathSciNet  Google Scholar 

  • Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Springer, Berlin (1981)

    MATH  Google Scholar 

  • Herrero, M.A., Velázquez, J.J.L.: A blow-up mechanism for a chemotaxis model. Ann. Scu. Norm. Super. Pisa Cl. Sci. 24, 663–683 (1997)

    Google Scholar 

  • Hillen, T., Painter, K.J.: A user’s guide to PDE models for chemotaxis. J. Math. Biol. 58(1), 183–217 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Horstmann, D.: From 1970 until present: the Keller–Segel model in chemotaxis and its consequences I. Jahresber. DMV 105, 103–165 (2003)

    MathSciNet  MATH  Google Scholar 

  • Jäger, W., Luckhaus, S.: On explosions of solutions to a system of partial differential equations modelling chemotaxis. Trans. Am. Math. Soc. 329, 819824 (1992)

    Article  Google Scholar 

  • Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970)

    Article  MATH  Google Scholar 

  • Kuto, K., Osaki, K., Sakurai, T., Tsujikawa, T.: Spatial pattern formation in a chemotaxis-diffusion-growth model. Physica D 241, 1629–1639 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Maini, P.K., Myerscough, M.R., Winters, K.H., Murray, J.D.: Bifurcating spatially heterogeneous solutions in a chemotaxis model for biological pattern generation. Bull. Math. Biol. 53(5), 701719 (1991)

    Article  Google Scholar 

  • Meral, G., Stinner, C., Surulescu, C.: On a multiscale model involving cell contractivity and its effects on tumor invasion (2014)

  • Mizoguchi, N., Winkler, M.: Is finite-time blow-up a generic phenomenon in the two-dimensional Keller–Segel system? (2014)

  • Nadin, G., Perthame, B., Ryzhik, L.: Traveling waves for the Keller–Segel system with Fisher birth terms. Interfaces Free Bound. 10(4), 517–538 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Nagai, T.: Blowup of nonradial solutions to parabolicelliptic systems modeling chemotaxis in two-dimensional domains. J. Inequal. Appl. 6, 37–55 (2001)

    MathSciNet  MATH  Google Scholar 

  • Nakaguchi, E., Osaki, K.: Global existence of solutions to a parabolic–parabolic system for chemotaxis with weak degradation. Nonlinear Anal. TMA 74(1), 286–297 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Osaki, K., Tsujikawa, T., Yagi, A., Mimura, M.: Exponential attractor for a chemotaxis-growth system of equations. Nonlinear Anal. 51, 119–144 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Osaki, K., Yagi, A.: Global existence for a chemotaxis-growth system in \({\mathbb{R}}^2\). Adv. Math. Sci. Appl. 12(2), 587–606 (2002)

    MathSciNet  MATH  Google Scholar 

  • Othmer, H.G., Stevens, A.: Aggregation, blowup and collapse: the ABCs of taxis in reinforced random walks. SIAM J. Appl. Math. 57, 10441081 (1997)

    MathSciNet  Google Scholar 

  • Painter, K.J., Hillen, T.: Volume-filling and quroum-sensing in models for chemosensitive movement. Can. Appl. Am. Quart. 10(4), 501–543 (2002)

    MathSciNet  MATH  Google Scholar 

  • Painter, K.J., Hillen, T.: Spatio-temporal chaos in a chemotaxis model. Physica D 240, 363–375 (2011)

    Article  MATH  Google Scholar 

  • Painter, K.J., Maini, P.K., Othmer, H.G.: Complex spatial patterns in a hybrid chemotaxis reaction-diffusion model. J. Math. Biol. 41(4), 285314 (2000)

    Article  MathSciNet  Google Scholar 

  • Perthame, B.: Transport Equations in Biology. Birkhäuser-Verlag, Basel (2007)

    MATH  Google Scholar 

  • Poupaud, F.: Diagonal defect measures, adhesion dynamics and Euler equation. Methods Appl. Anal. 9(4), 533–561 (2002)

    MathSciNet  MATH  Google Scholar 

  • Szymańska, Z., Morales, Rodrigo C., Lachowicz, M., Chaplain, M.A.: Mathematical modelling of cancer invasion of tissue: the role and effect of nonlocal interactions. Math. Mod. Methods Appl. Sci. 19, 257–281 (2009)

    Article  MATH  Google Scholar 

  • Tello, J.I., Winkler, M.: A chemotaxis system with logistic source. Commun. Partial Differ. Equ. 32(6), 849–877 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Temam, R.: Navier–Stokes Equations: Theory and Numerical Analysis. Studies in Mathematics and its Applications, vol. 2. North-Holland, Amsterdam (1977)

    Google Scholar 

  • Winkler, M.: Boundedness in the higher-dimensional parabolic–parabolic chemotaxis system with logistic source. Commun. Partial Differ. Equ. 35, 1516–1537 (2010)

    Article  MATH  Google Scholar 

  • Winkler, M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model. J. Differ. Equ. 248, 2889–2905 (2010)

    Article  MATH  Google Scholar 

  • Winkler, M.: Does a volume-filling effect always prevent chemotactic collapse? Math. Methods Appl. Sci. 33, 12–24 (2010)

    MathSciNet  MATH  Google Scholar 

  • Winkler, M.: Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction. J. Math. Anal. Appl. 384, 261–272 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Winkler, M.: Finite-time blow-up in the higher-dimensional parabolic–parabolic Keller–Segel system. J. Math. Pures Appl. 100, 748–767 (2013)

  • Winkler, M., Djie, K.: Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect. Nonlinear Anal. TMA 72(2), 1044–1064 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Woodward, D.E., Tyson, R., Myerscough, M.R., Murray, J.D., Budrene, E.O., Berg, H.C.: Spatiotemporal patterns generated by Salmonella typhimurium. Biophys. J. 68(5), 21812189 (1995)

    Article  Google Scholar 

  • Wrzosek, D.: Volume filling effect in modelling chemotaxis. Math. Model. Nat. Phenom. 5, 123–147 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Yagi, A.: Norm behavior of solutions to a parabolic system of chemotaxis. Math. Jpn. 45, 241–265 (1997)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Winkler.

Additional information

Communicated by P. K. Maini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Winkler, M. How Far Can Chemotactic Cross-diffusion Enforce Exceeding Carrying Capacities?. J Nonlinear Sci 24, 809–855 (2014). https://doi.org/10.1007/s00332-014-9205-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-014-9205-x

Keywords

Mathematics Subject Classification

Navigation