Skip to main content
Log in

The in vivo effects of unloading and compression on T1-Gd (dGEMRIC) relaxation times in healthy articular knee cartilage at 3.0 Tesla

  • Musculoskeletal
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Purpose

The purpose was to investigate the in vivo effects of unloading and compression on T1-Gd relaxation times in healthy articular knee cartilage.

Materials and methods

Ten volunteers were enrolled, and dGEMRIC images of their right knee joints were obtained using 3.0-T MR at three timepoints: directly following exercise (“baseline”), approximately 15 min after unloading (“unloading”) and during application of a compressive force (50% of the body weight) generated by a loading device via a footplate (“compression”).

Results

Our analysis of variance of pooled data from all cartilage zones demonstrated a significant mean T1-Gd decrease of 56.6 ms between baseline and compression (p < 0.001), and a significant mean decrease of 42.1 ms between unloading and compression (p < 0.001). No significant difference was found between baseline and unloading. Higher mean T1-Gd values were observed in the cartilage contact zone (central femoral and tibial zones; 698.3 ± 162.2 ms) than in the non-contact zone (anterior and posterior femoral and tibial zones, and dorsal femoral zone; 662.9 ± 149.3 ms; p < 0.01).

Conclusion

T1-Gd times appear to be sensitive to mechanical cartilage stress, and thus, further studies are warranted that investigate the relationship between the biochemical load response and the biomechanical properties of articular cartilage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bashir A, Gray ML, Boutin RD, Burstein D (1997) Glycosaminoglycan in articular cartilage: in vivo assessment with delayed Gd(DTPA)(2-)-enhanced MR imaging. Radiology 205:551–558

    CAS  PubMed  Google Scholar 

  2. Link TM, Stahl R, Woertler K (2007) Cartilage imaging: motivation, techniques, current and future significance. Eur Radiol 17:1135–1146

    Article  PubMed  Google Scholar 

  3. Burstein D, Gray ML (2006) Is MRI fulfilling its promise for molecular imaging of cartilage in arthritis? Osteoarthritis Cartilage 14:1087–1090

    Article  CAS  PubMed  Google Scholar 

  4. Trattnig S, Millington SA, Szomolanyi P, Marlovits S (2007) MR imaging of osteochondral grafts and autologous chondrocyte implantation. Eur Radiol 17:103–118

    Article  CAS  PubMed  Google Scholar 

  5. Heinegaard D, Bayliss M, Lorenzo P (2003) Biochemistry and metabolism of normal and osteoarthritic cartilage. In: Brandt KD, Doherty M, Lohmander LS (eds) Osteoarthritis. 2nd edn. Oxford University Press, New York, pp 72–82

    Google Scholar 

  6. Wayne JS, Kraft KA, Shields KJ, Yin C, Owen JR, Disler DG (2003) MR imaging of normal and matrix-depleted cartilage: correlation with biomechanical function and biochemical composition. Radiology 228:493–499

    Article  PubMed  Google Scholar 

  7. Williams A, Oppenheimer RA, Gray ML, Burstein D (2003) Differential recovery of glycosaminoglycan after IL-1-induced degradation of bovine articular cartilage depends on degree of degradation. Arthritis Res Ther 5:97–105

    Article  Google Scholar 

  8. Korhonen RK, Laasanen MS, Töyräs J, Rieppo J, Hirvonen J, Helminen HJ et al (2002) Comparison of the equilibrium response of articular cartilage in unconfined compression, confined compression and indentation. J Biomech 35:903–909

    Article  CAS  PubMed  Google Scholar 

  9. Kurkijärvi JE, Nissi MJ, Kiviranta I, Jurvelin JS, Nieminen MT (2004) Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) and T2 characteristics of human knee articular cartilage: topographical variation and relationships to mechanical properties. Magn Reson Med 52:41–46

    Article  PubMed  Google Scholar 

  10. Nieminen MT, Töyräs J, Laasanen MS, Silvennoinen J, Helminen HJ, Jurvelin JS (2004) Prediction of biomechanical properties of articular cartilage with quantitative magnetic resonance imaging. J Biomech 37:321–328

    Article  PubMed  Google Scholar 

  11. Nissi MJ, Rieppo J, Töyräs J, Laasanen MS, Kiviranta I, Nieminen MT et al (2007) Estimation of mechanical properties of articular cartilage with MRI - dGEMRIC, T2 and T1 imaging in different species with variable stages of maturation. Osteoarthr Cartil 15:1141–1148

    Article  CAS  PubMed  Google Scholar 

  12. Juras V, Bittsansky M, Majdisova Z, Szomolanyi P, Sulzbacher I, Gäbler S et al (2008) In vitro determination of biomechanical properties of human articular cartilage in osteoarthritis using multi-parametric MRI. J Magn Reson. doi:10.1016/j.jmr.2008.11.019

  13. Trattnig S, Mamisch TC, Pinker K, Domayer S, Szomolanyi P, Marlovits S et al (2008) Differentiating normal hyaline cartilage from post-surgical repair tissue using fast gradient echo imaging in delayed gadolinium-enhanced MRI (dGEMRIC) at 3 Tesla. Eur Radiol 18:1251–1259

    Article  PubMed  Google Scholar 

  14. Burstein D, Velyvis J, Scott KT, Stock KW, Kim YJ, Jaramillo D et al (2001) Protocol issues for delayed Gd (DTPA)(2-)-enhanced MRI: (dGEMRIC) for clinical evaluation of articular cartilage. Magn Reson Med 45:36–41

    Article  CAS  PubMed  Google Scholar 

  15. Nishii T, Kuroda K, Matsuoka Y, Sahara T, Yoshikawa H (2008) Change in knee cartilage T2 in response to mechanical loading. J Magn Reson Imaging 28:175–180

    Article  PubMed  Google Scholar 

  16. Rubenstein JD, Kim JK, Henkelman RM (2006) Effects of compression and recovery on bovine articular cartilage: appearance on MR images. Radiology 201:843–850

    Google Scholar 

  17. Grunder W, Kanowski M, Wagner M, Werner A (2000) Visualization of pressure distribution within loaded joint cartilage by application of angle-sensitive NMR microscopy. Magn Reson Med 43:884–891

    Article  CAS  PubMed  Google Scholar 

  18. Herberhold C, Faber S, Stammberger T, Steinlechner M, Putz R, Englmeier KH et al (1999) In situ measurement of articular cartilage deformation in intact femoropatellar joints under static loading. J Biomech 32:1287–1295

    Article  CAS  PubMed  Google Scholar 

  19. Chen CT, Fishbein KW, Torzilli PA, Hilger A, Spencer RG, Horton WE Jr (2003) Matrix fixed-charge density as determined by magnetic resonance microscopy of bioreactor-derived hyaline cartilage correlates with biochemical and biomechanical properties. Arthritis Rheum 48:1047–1056

    Article  CAS  PubMed  Google Scholar 

  20. Owman H, Tiderius CJ, Neuman P, Nyquist F, Dahlberg LE (2008) Association between findings on delayed gadolinium-enhanced magnetic resonance imaging of cartilage and future knee osteoarthritis. Arthritis Rheum 58:1727–1730

    Article  PubMed  Google Scholar 

  21. Liess C, Lüsse S, Karger N, Heller M, Glüer CC (2002) Detection of changes in cartilage water content using MRI T2-mapping in vivo. Osteoarthr Cartil 10:907–913

    Article  CAS  PubMed  Google Scholar 

  22. Chen MI, Branch TP, Hutton WC (1996) Is it important to secure the horns during lateral meniscal transplantation? A cadaveric study. Arthroscopy 12:174–181

    Article  CAS  PubMed  Google Scholar 

  23. Kurkijärvi JE, Nissi MJ, Rieppo J, Töyräs J, Kiviranta I, Nieminen MT et al (2008) The zonal architecture of human articular cartilage described by T2 relaxation time in the presence of Gd-DTPA2-. Magn Reson Imaging 26:602–607

    Article  PubMed  Google Scholar 

  24. Roos EM, Dahlberg L (2005) Positive effects of moderate exercise on glycosaminoglycan content in knee cartilage: a four-month, randomized, controlled trial in patients at risk of osteoarthritis. Arthritis Rheum 52:3507–3514

    Article  CAS  PubMed  Google Scholar 

  25. Tiderius CJ, Svensson J, Leander P, Ola T, Dahlberg L (2004) dGEMRIC (delayed gadolinium-enhanced MRI of cartilage) indicates adaptive capacity of human knee cartilage. Magn Reson Med 51:286–290

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siegfried Trattnig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mayerhoefer, M.E., Welsch, G.H., Mamisch, T.C. et al. The in vivo effects of unloading and compression on T1-Gd (dGEMRIC) relaxation times in healthy articular knee cartilage at 3.0 Tesla. Eur Radiol 20, 443–449 (2010). https://doi.org/10.1007/s00330-009-1559-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-009-1559-3

Keywords

Navigation