Skip to main content

Advertisement

Log in

Hyperuricaemia in the Pacific: why the elevated serum urate levels?

  • Review
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

Pacific Island populations, particularly those of Polynesian descent, have a high prevalence of hyperuricaemia and gout. This is due to an inherently higher urate level among these populations with a demonstrated genetic predisposition. While an excess of urate can cause pathology, urate is also important for human health. It has been implicated as an antioxidant, has a neuroprotective role and is involved in innate immune responses. This paper provides a brief review of urate levels worldwide, with a particular focus on island Southeast Asia and the Pacific. We then present possible evolutionary explanations for the elevated serum urate levels among Pacific populations in the context of the physiological importance of urate and of the settlement history of the region. Finally, we propose that ancestry may play a significant role in hyperuricaemia in these populations and that exposure to malaria prior to population expansion into the wider Pacific may have driven genetic selection for variants contributing to high serum urate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wu X, Wakamiya M, Vaishnav S, Geske R, Montgomery C, Jones P, Bradley A, Caskey CT (1994) Hyperuricemia and urate nephropathy in urate oxidase-deficient mice. Proc Natl Acad Sci USA 91(2):742–746. doi:10.1073/pnas.91.2.742

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Oda M, Satta Y, Takenaka O, Takahata N (2002) Loss of urate oxidase activity in hominoids and its evolutionary implications. Mol Biol Evol 19(5):640–653

    CAS  PubMed  Google Scholar 

  3. Johnson RJ, Titte S, Cade JR, Rideout BA, Oliver WJ (2005) Uric acid, evolution and primitive cultures. Semin Nephrol 25(1):3–8. doi:10.1016/j.semnephrol.2004.09.002

    CAS  PubMed  Google Scholar 

  4. Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J (2006) Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440(7081):237–241. doi:10.1038/nature04516

    CAS  PubMed  Google Scholar 

  5. Rock KL, Kataoka H, Lai J-J (2013) Uric acid as a danger signal in gout and its comorbidities. Nat Rev Rheumatol 9(1):13–23. doi:10.1038/nrrheum.2012.143

    CAS  PubMed Central  PubMed  Google Scholar 

  6. de Lau LML, Koudstaal PJ, Hofman A, Breteler MMB (2005) Serum uric acid levels and the risk of Parkinson disease. Ann Neurol 58(5):797–800. doi:10.1002/ana.20663

    PubMed  Google Scholar 

  7. Spitsin S, Hooper DC, Mikheeva T, Koprowski H (2001) Uric acid levels in patients with multiple sclerosis: analysis in mono- and dizygotic twins. Mult Scler 7(3):165–166. doi:10.1177/135245850100700305

    CAS  PubMed  Google Scholar 

  8. Rentzos M, Nikolaou C, Anagnostouli M, Rombos A, Tsakanikas K, Economou M, Dimitrakopoulos A, Karouli M, Vassilopoulos D (2006) Serum uric acid and multiple sclerosis. Clin Neurol Neurosurg 108(6):527–531. doi:10.1016/j.clineuro.2005.08.004

    CAS  PubMed  Google Scholar 

  9. Kim T-S, Pae C-U, Yoon S-J, Jang W-Y, Lee NJ, Kim J-J, Lee S-J, Lee C, Paik I-H, Lee C-U (2006) Decreased plasma antioxidants in patients with Alzheimer’s disease. Int J Geriatr Psychiatry 21(4):344–348. doi:10.1002/gps.1469

    PubMed  Google Scholar 

  10. Maesaka JK, Fishbane S (1998) Regulation of renal urate excretion: a critical review. Am J Kidney Dis 32(6):917–933. doi:10.1016/S0272-6386(98)70067-8

    CAS  PubMed  Google Scholar 

  11. Merriman TR, Dalbeth N (2011) The genetic basis of hyperuricaemia and gout. Joint Bone Spine 78(1):35–40. doi:10.1016/j.jbspin.2010.02.027

    CAS  PubMed  Google Scholar 

  12. Hak AE, Choi HK (2008) Menopause, postmenopausal hormone use and serum uric acid levels in US women—the Third National Health and Nutrition Examination Survey. Arthritis Res Ther 10(5):R116. doi:10.1186/ar2519

    PubMed Central  PubMed  Google Scholar 

  13. Healey LA, Caner JEZ, Bassett DR, Decker JL (1966) Serum uric acid and obesity in Hawaiians. JAMA 196(4):364–365. doi:10.1001/jama.1966.03100170106039

    CAS  PubMed  Google Scholar 

  14. Prior I (1981) Epidemiology of rheumatic disorders in the Pacific with particular emphasis on hyperuricaemia and gout. Semin Arthritis Rheum 11(1):213–229. doi:10.1016/0049-0172(81)90101-3

    CAS  PubMed  Google Scholar 

  15. Suzuki T (1993) Paleopathological and paleoepidemiological investigation of human skeletal remains of early Hawaiians from Mokapu Site, Oahu Island, Hawaii. Jpn Rev 4:83–128. doi:10.2307/25790927

    Google Scholar 

  16. Healey LA, Skeith MD, Decker JL, Bayani-Sioson PS (1967) Hyperuricaemia in Filipinos: interaction of heredity and environment. Am J Hum Genet 19(2):81–85

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Duff IF, Mikkelsen WM, Dodge HJ, Himes DS (1968) Comparison of uric acid levels in some oriental and Caucasian groups unselected as to gout or hyperuricemia. Arthritis Rheum 11(2):184–190. doi:10.1002/art.1780110209

    CAS  PubMed  Google Scholar 

  18. Reed D, Labarthe D, Stallones R (1972) Epidemiologic studies of serum uric acid levels among Micronesians. Arthritis Rheum 15(4):381–390. doi:10.1002/art.1780150409

    CAS  PubMed  Google Scholar 

  19. Wyatt GB, Griew AR, Martin FIR, Campbell DG (1980) Plasma cholesterol, triglyceride and uric acid in urban and rural communities in Papua New Guinea. Aust N Z J Med 10(5):491–495. doi:10.1111/j.1445-5994.1980.tb04964.x

    CAS  PubMed  Google Scholar 

  20. Jackson L, Taylor R, Faaiuso S, Ainuu SP, Whitehouse S, Zimmet P (1981) Hyperuricaemia and gout in Western Samoans. J Chronic Dis 34(2–3):65–75. doi:10.1016/0021-9681(81)90052-7

    CAS  PubMed  Google Scholar 

  21. Finau SA, Stanhope JM, Prior IAM, Joseph JG, Puloka ST, Leslie PN (1983) The Tonga cardiovascular and metabolic study: design, demographic aspects and medical findings. Community Health Stud 7(1):67–77. doi:10.1111/j.1753-6405.1983.tb00393.x

    CAS  PubMed  Google Scholar 

  22. Tuomilehto J, Zimmet P, Wolf E, Taylor R, Ram P, King H (1988) Plasma uric acid level and its association with diabetes mellitus and some biologic parameters in a biracial population of Fiji. Am J Epidemiol 127(2):321–336

    CAS  PubMed  Google Scholar 

  23. Prior IAM, Welby TJ, Østbye T, Salmond CE, Stokes YM (1987) Migration and gout: the Tokelau Island migrant study. Br Med J (Clin Res Ed) 295(6596):457–461. doi:10.1136/bmj.295.6596.457

    CAS  Google Scholar 

  24. Choi HK, Atkinson K, Karlson EW, Willett W, Curhan G (2004) Purine-rich foods, dairy and protein intake, and the risk of gout in men. N Engl J Med 350(11):1093–1103. doi:10.1056/NEJMoa035700

    CAS  PubMed  Google Scholar 

  25. Choi HK, Curhan G (2008) Soft drinks, fructose consumption, and the risk of gout in men: prospective cohort study. BMJ 336(7639):309–312. doi:10.1136/bmj.39449.819271.BE

    PubMed Central  PubMed  Google Scholar 

  26. Batt C, Phipps-Green AJ, Black MA, Cadzow M, Merriman ME, Topless R, Gow P, Harrison A, Highton J, Jones P, Stamp L, Dalbeth N, Merriman TR (2013) Sugar-sweetened beverage consumption: a risk factor for prevalent gout with SLC2A9 genotype-specific effects on serum urate and risk of gout. Ann Rheum Dis. doi:10.1136/annrheumdis-2013-203600

    PubMed  Google Scholar 

  27. Gray RD, Drummond AJ, Greenhill SJ (2009) Language phylogenies reveal expansion pulses and pauses in Pacific settlement. Science 323(5913):479–483. doi:10.1126/science.1166858

    CAS  PubMed  Google Scholar 

  28. Chang SJ, Ko YC, Wang T-N, Chang FT, Cinokotai FF, Chen CJ (1997) High prevalence of gout and related risk factors in Taiwan’s aborigines. J Rheumatol 27(7):1364–1369

    Google Scholar 

  29. Chou CT, Lai JS (1998) The epidemiology of hyperuricaemia and gout in Taiwan aborigines. Rheumatology 37(3):258–262. doi:10.1093/rheumatology/37.3.258

    CAS  Google Scholar 

  30. Cox MP, Nelson MG, Tumonggor MK, Ricaut F-X, Sudoyo H (2012) A small cohort of Island Southeast Asian women founded Madagascar. Proc R Soc Lond [Biol] 279(1739):2761–2768. doi:10.1098/rspb.2012.0012

    Google Scholar 

  31. Capdevielle P, Teyssier P, Valmary J, Perrot J, Delprat J (1980) Goutte et hyperuricemies a Tananarive. Med Trop 40(4):409–418

    CAS  Google Scholar 

  32. Fitzpatrick SM, Callaghan R (2008) Seafaring simulations and the origin of prehistoric settlers to Madagascar. In: Clark G, Leach F, O’Connor S (eds) Islands of inquiry: colonisation, seafaring and the archaeology of maritime landscapes, vol 29. ANU Press, Canberra, pp 47–58

    Google Scholar 

  33. Conen D, Wietlisbach V, Bovet P, Shamlaye C, Riesen W, Paccaud F, Burnier M (2004) Prevalence of hyperuricemia and relation of serum uric acid with cardiovascular risk factors in a developing country. BMC Public Health 4(1):9. doi:10.1186/1471-2458-4-9

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Kayser M (2010) The human genetic history of Oceania: near and remote views of dispersal. Curr Biol 20(4):R194–R201. doi:10.1016/j.cub.2009.12.004

    CAS  PubMed  Google Scholar 

  35. Friedlaender JS, Friedlaender FR, Hodgson JA, Stoltz M, Koki G, Horvat G, Zhadanov S, Schurr TG, Merriwether DA (2007) Melanesian mtDNA complexity. PLoS One 2(2):e248

    PubMed Central  PubMed  Google Scholar 

  36. Hughes RG, Marks GC (2009) Against the tide of change: diet and health in the Pacific islands. J Am Diet Assoc 109(10):1700–1703. doi:10.1016/j.jada.2009.07.015

    PubMed  Google Scholar 

  37. Hanna JM, Pelletier DL, Brown VJ (1986) The diet and nutrition of contemporary Samoans. In: Baker PT, Hanna JM, Baker TS (eds) The changing Samoans: behavior and health in transition. Oxford University Press, Oxford, pp 275–296

    Google Scholar 

  38. Coyne T, Hughes R, Langi S (2000) Lifestyle diseases in Pacific communities, vol 219. Secretariat of the Pacific Community, Noumea

    Google Scholar 

  39. Lenane GAQ, Rose BS, Isdale IC (1960) Gout in Maori. Ann Rheum Dis 19:120–125. doi:10.1136/ard.19.2.120

    Google Scholar 

  40. Rose BS (1975) Gout in the Maoris. Semin Arthritis Rheum 5(2):121–145. doi:10.1016/0049-0172(75)90002-5

    CAS  PubMed  Google Scholar 

  41. Johnson RJ, Rideout BA (2004) Uric acid and diet—insights into the epidemic of cardiovascular disease. N Engl J Med 350(11):1071–1073. doi:10.1056/NEJMp048015

    CAS  PubMed  Google Scholar 

  42. Schlesinger N (2005) Dietary factors and hyperuricaemia. Curr Pharm Des 11:4133–4138. doi:10.2174/138161205774913273

    CAS  PubMed  Google Scholar 

  43. Álvarez-Lario B, Macarrón-Vicente J (2010) Uric acid and evolution. Rheumatology 49(11):2010–2015. doi:10.1093/rheumatology/keq204

    PubMed  Google Scholar 

  44. Buckley H, Tayles N, Halcrow SE, Robb K, Fyfe R (2010) The people of Wairau bar: a re-examination. J Pac Archaeol 1(1):1–20

    Google Scholar 

  45. Campbell M, Hudson B (2011) The Northern Runway Development (NRD) site Community report. Auckland

  46. Buckley HR (2007) Possible gouty arthritis in Lapita-associated skeletons from Teouma, Efate Island, Central Vanuatu. Curr Anthropol 48(5):741–749. doi:10.1086/520967

    Google Scholar 

  47. Rothschild BM, Heathcote GM (1995) Characterization of gout in a skeletal population sample: presumptive diagnosis in a Micronesian population. Am J Phys Anthropol 98(4):519–525. doi:10.1002/ajpa.1330980411

    CAS  PubMed  Google Scholar 

  48. Douglas MT, Pietrusewsky M, Ikehara-Quebral RM (1997) Skeletal biology of Apurguan: a precontact Chamorro site on Guam. Am J Phys Anthropol 104(3):291–313. doi:10.1002/(sici)1096-8644(199711)104:3<291:aid-ajpa3>3.0.co;2-z

    CAS  PubMed  Google Scholar 

  49. Gosling AL, Matisoo-Smith E, Merriman TR (2013) Gout in Maori. Rheumatology. doi:10.1093/rheumatology/ket299

    PubMed  Google Scholar 

  50. Pollock NJ (1992) These roots remain: food habits in islands of the central and eastern Pacific since Western contact. The Institute for Polynesian Studies, Laie, HI

    Google Scholar 

  51. Köttgen A, Albrecht E, Teumer A, Vitart V, Krumsiek J, Hundertmark C, Pistis G, Ruggiero D, O’Seaghdha CM, Haller T (2012) Genome-wide association analyses identify 18 new loci associated with serum urate concentrations. Nat Genet 45(2):145–154. doi:10.1038/ng.2500

    PubMed Central  PubMed  Google Scholar 

  52. Hollis-Moffatt JE, Xu X, Dalbeth N, Merriman ME, Topless R, Waddell C, Gow PJ, Harrison AA, Highton J, Jones PBB, Stamp LK, Merriman TR (2009) Role of the urate transporter SLC2A9 gene in susceptibility to gout in New Zealand Māori, Pacific Island, and Caucasian case–control sample sets. Arthritis Rheum 60(11):3485–3492. doi:10.1002/art.24938

    PubMed  Google Scholar 

  53. Phipps-Green AJ, Hollis-Moffatt JE, Dalbeth N, Merriman ME, Topless R, Gow PJ, Harrison AA, Highton J, Jones PBB, Stamp LK, Merriman TR (2010) A strong role for the ABCG2 gene in susceptibility to gout in New Zealand Pacific Island and Caucasian, but not Māori, case and control sample sets. Hum Mol Genet 19(24):4813–4819. doi:10.1093/hmg/ddq412

    CAS  PubMed  Google Scholar 

  54. Hollis-Moffatt JE, Phipps-Green AJ, Chapman B, Jones GT, van Rij A, Gow PJ, Harrison AA, Highton J, Jones PB, Montgomery GW (2012) The renal urate transporter SLC17A1 locus: confirmation of association with gout. Arthritis Res Ther 14(2):R92. doi:10.1186/ar3816

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Spriggs M (2011) Archaeology and the Austronesian expansion: where are we now? Antiquity 85:510–528

    Google Scholar 

  56. Wilmshurst JM, Hunt TL, Lipo CP, Anderson AJ (2011) High-precision radiocarbon dating shows recent and rapid initial human colonization of East Polynesia. Proc Natl Acad Sci USA 108(5):1815–1820. doi:10.1073/pnas.1015876108

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Pietrusewsky M (1996) The physical anthropology of Polynesia: a review of some cranial and skeletal studies. In: Davidson J, Irwin G, Leach B, Pawley A, Brown D (eds) Oceanic culture history: essays in honour of Roger Green. New Zealand Journal of Archaeology Special Publication. New Zealand Archaeological Association, Dunedin

  58. Kayser M, Brauer S, Cordaux R, Casto A, Lao O, Zhivotovsky LA, Moyse-Faurie C, Rutledge RB, Schiefenhoevel W, Gil D, Lin AA, Underhill PA, Oefner PJ, Trent RJ, Stoneking M (2006) Melanesian and Asian origins of Polynesians: mtDNA and Y chromosome gradients across the Pacific. Mol Biol Evol 23(11):2234–2244. doi:10.1093/molbev/msl093

    CAS  PubMed  Google Scholar 

  59. Ames BN, Cathcart R, Schwiers E, Hochstein P (1981) Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis. Proc Natl Acad Sci USA 78(11):6858–6862

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Scott GS, Hooper DC (2001) The role of uric acid in protection against peroxynitrite-mediated pathology. Med Hypotheses 56(1):95–100. doi:10.1054/mehy.2000.1118

    CAS  PubMed  Google Scholar 

  61. Kutzing MK, Firestein BL (2008) Altered uric acid levels and disease states. J Pharmacol Exp Ther 324(1):1–7. doi:10.1124/jpet.107.129031

    CAS  PubMed  Google Scholar 

  62. Cannon PJ, Stason WB, Demartini FE, Sommers SC, Laragh JH (1966) Hyperuricemia in primary and renal hypertension. N Engl J Med 275(9):457–464. doi:10.1056/NEJM196609012750902

    CAS  PubMed  Google Scholar 

  63. Jossa F, Farinaro E, Panico S, Krogh V, Celentano E, Galasso R, Mancini M, Trevisan M (1994) Serum uric acid and hypertension: the Olivetti heart study. J Hum Hypertens 8(9):677–681

    CAS  PubMed  Google Scholar 

  64. Johnson RJ, Kang D-H, Feig D, Kivlighn S, Kanellis J, Watanabe S, Tuttle KR, Rodriguez-Iturbe B, Herrera-Acosta J, Mazzali M (2003) Is there a pathogenetic role for uric acid in hypertension and cardiovascular and renal disease? Hypertension 41(6):1183–1190. doi:10.1161/01.hyp.0000069700.62727.c5

    CAS  PubMed  Google Scholar 

  65. Watanabe S, Kang D-H, Feng L, Nakagawa T, Kanellis J, Lan H, Mazzali M, Johnson RJ (2002) Uric acid, hominoid evolution, and the pathogenesis of salt-sensitivity. Hypertension 40(3):355–360. doi:10.1161/01.hyp.0000028589.66335.aa

    CAS  PubMed  Google Scholar 

  66. Johnson R, Sautin Y, Oliver W, Roncal C, Mu W, Gabriela Sanchez-Lozada L, Rodriguez-Iturbe B, Nakagawa T, Benner S (2009) Lessons from comparative physiology: could uric acid represent a physiologic alarm signal gone awry in western society? J Comp Physiol [B] 179(1):67–76. doi:10.1007/s00360-008-0291-7

    CAS  Google Scholar 

  67. Gumaa KA, Mustafa KY, Mahmoud NA, Gader AMA (1978) The effects of fasting in Ramadan. Br J Nutr 49:573–581. doi:10.1079/BJN19780161

    Google Scholar 

  68. Lennox WG (1924) Increase of uric acid in the blood during prolonged starvation. JAMA 82(8):602–604. doi:10.1001/jama.1924.02650340012004

    CAS  Google Scholar 

  69. Shi Y, Evans JE, Rock KL (2003) Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425(6957):516–521. doi:10.1038/nature01991

    CAS  PubMed  Google Scholar 

  70. Shi Y, Mucsi AD, Ng G (2010) Monosodium urate crystals in inflammation and immunity. Immunol Rev 233(1):203–217. doi:10.1111/j.0105-2896.2009.00851.x

    CAS  PubMed  Google Scholar 

  71. Martinon F (2010) Mechanisms of uric acid crystal-mediated autoinflammation. Immunol Rev 233(1):218–232. doi:10.1111/j.0105-2896.2009.00860.x

    CAS  PubMed  Google Scholar 

  72. Sabeti PC, Schaffner SF, Fry B, Lohmueller J, Varilly P, Shamovsky O, Palma A, Mikkelsen TS, Altshuler D, Lander ES (2006) Positive natural selection in the human lineage. Science 312(5780):1614–1620. doi:10.1126/science.1124309

    CAS  PubMed  Google Scholar 

  73. Schofield L, Grau GE (2005) Immunological processes in malaria pathogenesis. Nat Rev Immunol 5:722–735. doi:10.1038/nri1686

    CAS  PubMed  Google Scholar 

  74. Conway DJ, Fanello C, Lloyd JM, Al-Joubori BMAS, Baloch AH, Somanath SD, Roper C, Oduola AMJ, Mulder B, Povoa MM, Singh B, Thomas AW (2000) Origin of plasmodium falciparum malaria is traced by mitochondrial DNA. Mol Biochem Parasitol 111(1):163–171. doi:10.1016/S0166-6851(00)00313-3

    CAS  PubMed  Google Scholar 

  75. Kwiatkowski DP (2005) How malaria has affected the human genome and what human genetics can teach us about malaria. Am J Med Genet 77(2):171–192. doi:10.1086/432519

    CAS  Google Scholar 

  76. Griffith JW, Sun T, McIntosh MT, Bucala R (2009) Pure hemozoin is inflammatory in vivo and activates the NALP3 inflammasome via release of uric acid. J Immunol 183(8):5208–5220. doi:10.4049/jimmunol.0713552

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Shio MT, Kassa FA, Bellemare M-J, Olivier M (2010) Innate inflammatory response to the malarial pigment hemozoin. Microbes Infect 12(12–13):889–899. doi:10.1016/j.micinf.2010.07.001

    CAS  PubMed  Google Scholar 

  78. Orengo JM, Leliwa-Sytek A, Evans JE, Evans B, van de Hoef D, Nyako M, Day K, Rodriguez A (2009) Uric acid is a mediator of the Plasmodium falciparum-induced inflammatory response. PLoS ONE 4(4):e5194. doi:10.1371/journal.pone.0005194

    PubMed Central  PubMed  Google Scholar 

  79. Buckley H (2006) ‘The predators within’: investigating the relationship between malaria and health in the prehistoric Pacific Islands. In: Oxenham M, Tayles N (eds) Bioarchaeology of Southeast Asia. Cambridge University Press, Cambridge, pp 309–332

    Google Scholar 

  80. Hay SI, Guerra CA, Tatem AJ, Noor AM, Snow RW (2004) The global distribution and population at risk of malaria: past, present, and future. Lancet Infect Dis 4(6):327–336. doi:10.1016/S1473-3099(04)01043-6

    PubMed Central  PubMed  Google Scholar 

  81. Hill AVS, Bowden DK, Trent RJ, Higgs DR, Oppenheimer SJ, Thein SL, Mickleson KNP, Weatherall DJ, Clegg JB (1985) Melanesians and Polynesians share a unique α-thalassaemia mutation. Am J Hum Genet 37:571–580

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Flint J, Hill A, Bowden D, Oppenheimer S, Sill PR, Serjeantson S, Bana-Koiri J, Bhatia K, Alpers MP, Boyce AJ, Weatherall DJ, Clegg JB (1986) High frequencies of α-thalassaemia are the result of natural selection by malaria. Nature 321:744–750. doi:10.1038/321744a0

    CAS  PubMed  Google Scholar 

  83. Hill AVS, Gentile B, Bonnardot JM, Roux J, Weatherall DJ, Clegg JB (1987) Polynesian origins and affinities: globin gene variants in east Polynesia. Am J Hum Genet 40:453–463

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Hill AVS, O’Shaughnessy D, Clegg JB (1989) Haemoglobin and globin gene variants in the Pacific. In: Hill AVS, Sergeantson SW (eds) The colonization of the Pacific: a genetic trail. Oxford University Press, Oxford

    Google Scholar 

  85. Clark JT, Kelly KM (1993) Human genetics, paleoenvironments, and malaria: relationships and implications for the settlement of Oceania. Am Anthropol 95(3):612–630. doi:10.1525/aa.1993.95.3.02a00040

    Google Scholar 

  86. Hornabrook RW, Sergeantson S, Stanhope J (1975) Normal serum biochemistry in Papua New Guinean adults. P N G Med J 18(4):232–238

    CAS  PubMed  Google Scholar 

  87. Summerhayes GR, Leavesley M, Fairbairn A, Mandui H, Field J, Ford A, Fullagar R (2010) Human adaptation and plant use in highland New Guinea 49,000 to 44,000 years ago. Science 330(6000):78–81. doi:10.1126/science.1193130

    CAS  PubMed  Google Scholar 

  88. Müller I, Bockarie M, Alpers M, Smith T (2003) The epidemiology of malaria in Papua New Guinea. Trends Parasitol 19(6):253–259. doi:10.1016/S1471-4922(03)00091-6

    PubMed  Google Scholar 

  89. Kirch PV, Rallu J-L (eds) (2007) The growth and collapse of Pacific island societies: archaeological and demographic perspectives. University of Hawai’i Press, Honolulu

    Google Scholar 

  90. Denoon D (1995) Pacific Island depopulation: natural or un-natural history? In: Bryder L, Dow DA (eds) New countries and old medicine: proceedings of an international conference on the history of medicine and health. Pyramid Press, Auckland

  91. McArthur N (1968) Island populations of the Pacific. Australian National University Press, Canberra

    Google Scholar 

  92. Harrison GA, Tanner JM, Pilbeam DR, Baker DT (1988) Human biology: an introduction to human evolution, variation, growth and adaptability. Oxford University Press, Oxford

    Google Scholar 

  93. Chang HY, Pan WH, Yeh WT, Tsai KS (2001) Hyperuricemia and gout in Taiwan: results from the Nutritional and Health Survey in Taiwan (1993–96). J Rheumatol 28(7):1640–1646

    CAS  PubMed  Google Scholar 

  94. Brauer GW, Prior IA (1978) A prospective study of gout in New Zealand Maoris. Ann Rheum Dis 37(5):466–472. doi:10.1136/ard.37.5.466

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Stamp LK, Wells JE, Pitama S, Faatoese A, Doughty RN, Whalley G, Richards AM, Cameron VA (2012) Hyperuricaemia and gout in New Zealand rural and urban Māori and non-Māori communities. Intern Med J 43(6):678–684. doi:10.1111/imj.12062

    Google Scholar 

  96. Prior IA, Rose BS (1966) Uric acid, gout and public health in the South Pacific. N Z Med J 65:295–300

    CAS  PubMed  Google Scholar 

  97. Hasselot N, Ott D, Blanchot M (1989) Détermination de quelques valeurs usuelles fréquentes en biochimie clinique dan un échantillon de populations polynésiennes: comparaison avec les valeurs de référence françaises. Med Trop 49(2):179–182

    CAS  Google Scholar 

  98. Healey LA, Caner EZJ, Decker JL (1966) Ethnic variations in serum uric acid I. Filipino hyperuricemia in a controlled environment. Arthritis Rheum 9(2):288–294. doi:10.1002/art.1780090204

    Google Scholar 

  99. Healey LA, Jones KW (1971) Hyperuricemia in American Samoans. Arthritis Rheum 14(2):283–285. doi:10.1002/art.1780140215

    CAS  PubMed  Google Scholar 

  100. Østbye T, Welby T, Prior I, Salmond C, Stokes Y (1989) Type 2 (non-insulin-dependent) diabetes mellitus, migration and westernisation: the Tokelau Island Migrant study. Diabetologia 32(8):585–590. doi:10.1007/bf00285332

    PubMed  Google Scholar 

  101. Jackson L, Taylor R, Whitehouse S, Zimmet P (1980) The high prevalence of hyperuricaemia in a Polynesian populations. Community Health Stud 4(3):175–179

    Google Scholar 

  102. Zimmet PZ, Whitehouse S, Jackson L, Thoma K (1978) High prevalence of hyperuricaemia and gout in an urbanised Micronesian population. BMJ 1(6122):1237–1239. doi:10.1136/bmj.16122.1237

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Adams WH, Harper JA, Heotis PM, Jamner AH (1984) Hyperuricemia in the inhabitants of the Marshall Islands. Arthritis Rheum 27(6):713–716. doi:10.1002/art.1780270620

    CAS  PubMed  Google Scholar 

  104. Burch TA, O’Brien WM, Need R, Kurland LT (1966) Hyperuricaemia and gout in the Mariana Islands. Ann Rheum Dis 25(2):114–116. doi:10.1136/annrheumd00507-0008

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Page LB, Damon A, Moellering RC (1974) Antecedents of cardiovascular disease in six Solomon Islands societies. Circulation 49(6):1132–1146. doi:10.1161/01.cir.49.6.1132

    CAS  PubMed  Google Scholar 

  106. Lindeberg S, Cordain L, Råstam L, Ahrén B (2004) Serum uric acid in traditional Pacific Islanders and in Swedes. J Intern Med 255(3):373–378. doi:10.1046/j.1365-2796.2003.01272.x

    CAS  PubMed  Google Scholar 

  107. Sinnett PF, Whyte HM (1973) Epidemiological studies in a total highland population, Tukisenta, New Guinea: cardiovascular disease and relevant clinical, electrocardiographic, radiological and biochemical findings. J Chronic Dis 26(5):265–290. doi:10.1016/0021-9681(73)90031-3

    CAS  PubMed  Google Scholar 

  108. Brennan PJ, Simpson JM, McGilchrist CA, Blacket RB (1980) Serum lipids and other coronary risk factors in Sydney blood donors: a comparison with other Australian subjects. Community Health Stud 4(1):1–6

    Google Scholar 

  109. Nabipour I, Sambrook PN, Blyth FM, Janu MR, Waite LM, Naganathan V, Handelsman DJ, Le Couteur DG, Cumming RG, Seibel MJ (2011) Serum uric acid is associated with bone health in older men: a cross-sectional population-based study. J Bone Miner Res 26(5):955–964. doi:10.1002/jbmr.286

    CAS  PubMed  Google Scholar 

  110. Emmerson B, Douglas W, Doherty R, Feigl P (1969) Serum urate concentrations in the Australian aboriginal. Ann Rheum Dis 28(2):150–156. doi:10.1136/ard.28.2.150

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Darmawan J, Valkenburg H, Muirden KD, Wigley RD (1992) The epidemiology of gout and hyperuricaemia in a rural population of Java. J Rheumatol 19:1595–1599

    CAS  PubMed  Google Scholar 

  112. Reddy K, Bulliyya G, Rama Chandraiah T, Kumari K, Reddanna P, Thyagaraju K (1991) Serum lipids and lipid peroxidation pattern in industrial and rural workers in India. Age 14(2):33–38. doi:10.1007/bf02434835

    Google Scholar 

  113. Chen W, Liu Q, Wang H, Chen W, Johnson RJ, Dong X, Li H, Ba S, Tan J, Luo N, Liu T, He H, Yu X (2011) Prevalence and risk factors of chronic kidney disease: a population study in the Tibetan population. Nephrol Dial Transplant 26(5):1592–1599. doi:10.1093/ndt/gfq608

    PubMed  Google Scholar 

  114. Li Y, Stamler J, Xiao Z, Folsom A, Tao S, Zhang H (1997) Serum uric acid and its correlates in Chinese adult populations, urban and rural, of Beijing. The PRC-USA Collaborative Study in Cardiovascular and Cardiopulmonary Epidemiology. Int J Epidemiol 26(2):288–296. doi:10.1093/ije/26.2.288

    CAS  PubMed  Google Scholar 

  115. Nan H, Qiao Q, Dong Y, Gao W, Tang B, Qian R, Tuomilehto J (2006) The prevalence of hyperuricemia in a population of the coastal city of Qingdao,China. J Rheumatol 33(7):1346–1350

    PubMed  Google Scholar 

  116. Li D, Yu X, Zhou X, Siriamornpun S, Wahlqvist ML (2006) Uric acid status and its correlates in Hangzhou urban population. Asia Pac J Clin Nutr 15(1):102–106

    PubMed  Google Scholar 

  117. Ford DK, Agatha M (1964) Serum uric acid levels of healthy Caucasian, Chinese and Haida Indian Males in British Columbia. Can Med Assoc J 90(23):1295

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Jee SH, Lee SY, Kim MT (2004) Serum uric acid and risk of death from cancer, cardiovascular disease or all causes in men. Eur J Cardiovasc Prev Rehabil 11(3):185–191. doi:10.1097/01.hjr.0000130222.50258.22

    PubMed  Google Scholar 

  119. Akizuki S (1982) Serum uric acid levels among thirty-four thousand people in Japan. Ann Rheum Dis 41(3):272–274. doi:10.1136/ard.41.3.272

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Nagahama K, Iseki K, Inoue T, Touma T, Ikemiya Y, Takishita S (2004) Hyperuricemia and cardiovascular risk factor clustering in a screened cohort in Okinawa, Japan. Hypertens Res 27(4):227. doi:10.1291/hypres.27.227

    PubMed  Google Scholar 

  121. Yano K, Rhoads GG, Kagan A (1977) Epidemiology of serum uric acid among 8000 Japanese-American men in Hawaii. J Chronic Dis 30(3):171–184. doi:10.1016/0021-9681(77)90083-2

    CAS  PubMed  Google Scholar 

  122. Lohsoonthorn V, Dhanamun B, Williams MA (2006) Prevalence of hyperuricemia and its relationship with metabolic syndrome in Thai adults receiving annual health exams. Arch Med Res 37(7):883–889. doi:10.1016/j.arcmed.2006.03.008

    CAS  PubMed  Google Scholar 

  123. Mikkelsen WM, Dodge HJ, Valkenburg H, Himes S (1965) The distribution of serum uric acid values in a population unselected as to gout or hyperuricemia: Tecumseh, Michigan 1959–1960. Am J Med 39(2):242–251

    CAS  PubMed  Google Scholar 

  124. Acheson RM (1969) Social class gradients and serum uric acid in males and females. BMJ 4(5675):65. doi:10.1136/bmj.4.5675.65

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Zhu Y, Pandya BJ, Choi HK (2011) Prevalence of gout and hyperuricemia in the US general population: the National Health and Nutrition Examination Survey 2007–2008. Arthritis Rheum 63(10):3136–3141. doi:10.1002/art.30520

    PubMed  Google Scholar 

  126. O’Brien WM, Burch TA, Bunim JJ (1966) Genetics of hyperuricaemia in Blackfeet and Pima Indians. Ann Rheum Dis 25:117–119. doi:10.1136/annrheumd00507-0011

    PubMed Central  PubMed  Google Scholar 

  127. Voruganti VS, Göring HH, Mottl A, Franceschini N, Haack K, Laston S, Almasy L, Fabsitz R, Lee E, Best L, Devereux R, Howard B, MacCluer J, Comuzzie A, Umans J, Cole S (2009) Genetic influence on variation in serum uric acid in American Indians: the strong heart family study. Hum Genet 126(5):667–676. doi:10.1007/s00439-009-0716-8

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Acheson R, Florey C (1969) Body-weight, ABO blood-groups, and altitude of domicile as determinants of serum uric acid in military recruits in four countries. Lancet 294(7617):391–395. doi:10.1016/s0140-6736(69)90107-x

    Google Scholar 

  129. Tavares E, Vieira-Filho J, Andriolo A, Sanudo A (2003) Metabolic profile and cardiovascular risk patterns in an indigenous population of Amazonia. Hum Biol 75(1):31–46

    PubMed  Google Scholar 

  130. Gimeno SGA, Rodrigues D, Canó EN, Lima EES, Schaper M, Pagliaro H, Lafer MM, Baruzzi RG (2009) Cardiovascular risk factors among Brazilian Karib indigenous peoples: upper Xingu, Central Brazil, 2000–3. J Epidemiol Community Health 63(4):299–304. doi:10.1136/jech.2008.077966

    CAS  PubMed  Google Scholar 

  131. Sturge RA, Scott JT, Kennedy AC, Hart DP, Buchanan WW (1977) Serum uric acid in England and Scotland. Ann Rheum Dis 36(5):420–427. doi:10.1136/ard.36.5.420

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Badley EM, Meyrick JS, Wood PHN (1978) Gout and serum uric acid levels in the Cotwolds. Rheumatology 17(3):133–142. doi:10.1093/rheumatology/17.3.133

    CAS  Google Scholar 

  133. Reunanen A, Takkunen H, Knekt P, Aromaa A (1982) Hyperuricemia as a risk factor for cardiovascular mortality. Acta Med Scand 212(S668):49–59. doi:10.1111/j.0954-6820.1982.tb08521.x

    Google Scholar 

  134. Zalokar J, Lellouch J, Claude JR, Kuntz D (1972) Serum uric acid in 23,923 men and gout in a subsample of 4257 men in France. J Chronic Dis 25(5):305–312. doi:10.1016/0021-9681(72)90166-x

    CAS  PubMed  Google Scholar 

  135. Strasak A, Ruttmann E, Brant L, Kelleher C, Klenk J, Concin H, Diem G, Pfeiffer K, Ulmer H; the VHM&PP Study Group (2008) Serum uric acid and risk of cardiovascular mortality: a prospective long-term study of 83 683 Austrian men. Clin Chem 54(2):273–284. doi:10.1373/clinchem.2007.094425

    CAS  PubMed  Google Scholar 

  136. Sari I, Akar S, Pakoz B, Sisman A, Gurler O, Birlik M, Onen F, Akkoc N (2009) Hyperuricemia and its related factors in an urban population, Izmir, Turkey. Rheumatol Int 29(8):869–874. doi:10.1007/s00296-008-0806-2

    PubMed  Google Scholar 

  137. Goldbourt U, Medalie JH, Herman JB, Neufeld HN (1980) Serum uric acid: correlation with biochemical, anthropometric, clinical and behavioral parameters in 10,000 Israeli men. J Chronic Dis 33(7):435–443. doi:10.1016/0021-9681(80)90040-5

    CAS  PubMed  Google Scholar 

  138. Snook C, Chang W (1978) Serum uric acid in Jordanian Arabs. J Trop Med Hyg 81:166–171

    CAS  PubMed  Google Scholar 

  139. Hadidy S, Ibrahim AS, Hallag Z, Tabbakh H (1983) Normal serum concentrations of uric acid among a Syrian population. J Trop Med Hyg 86:47–50

    CAS  PubMed  Google Scholar 

  140. Onsi A, Younis K (1961) Blood uric acid in Kuwait. J Kuwait Med Assoc 2:208–210

    Google Scholar 

  141. Al-Aref SA (1971) Hyperuricaemia: an epidemiological study. J Kuwait Med Assoc 5:207–214

    Google Scholar 

  142. Bacchus R, Kilshaw BH, Madkour M, Bassam SA, Farhan BA (1980) Preliminary studies on a reference range for Saudi Arabian males: (1) serum uric acid. Saudi Med J 1(3):160–163

    Google Scholar 

  143. Al-Arfaj AS (2001) Hyperuricemia in Saudi Arabia. Rheumatol Int 20(2):61–64. doi:10.1007/s002960000076

    CAS  PubMed  Google Scholar 

  144. Beighton P, Solomon L, Soskolne C, Sweet B (1973) Serum uric acid concentrations in a rural Tswana community in Southern Africa. Ann Rheum Dis 32(4):346–350. doi:10.1136/ard.32.4.346

    CAS  PubMed Central  PubMed  Google Scholar 

  145. Beighton P, Solomon L, Soskolne C, Sweet B, Robin G (1974) Serum uric acid concentrations in an urbanized South African Negro population. Ann Rheum Dis 33(5):442–445. doi:10.1136/ard.33.5.442

    CAS  PubMed Central  PubMed  Google Scholar 

  146. Beighton P, Daynes G, Soskolne CL (1976) Serum uric acid concentrations in a Xhosa community in the Transkei of Southern Africa. Ann Rheum Dis 35(1):77–80. doi:10.1136/ard.35.1.77

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Palmer IM, Schutte AE, Huisman HW (2010) Uric acid and the cardiovascular profile of African and Caucasian men. J Hum Hypertens 24(10):639–645. doi:10.1038/jhh.2010.1

    CAS  PubMed  Google Scholar 

  148. Kayembe D, Sigg-Farner C, Deplaen J (1973) La goutte dans un hopital universitaire Africain. Ann Soc Belg Med Trop 53(2):89–95

    CAS  PubMed  Google Scholar 

  149. Snook C, Cartwright I (1975) Serum uric acid in Zambians. East Afr Med J 52(4):196–201

    CAS  PubMed  Google Scholar 

  150. Saathoff E, Schneider P, Kleinfeldt V, Geis S, Haule D, Maboko L, Samky E, de Souza M, Robb M, Hoelscher M (2008) Laboratory reference values for healthy adults from southern Tanzania. Trop Med Int Health 13(5):612–625. doi:10.1111/j.1365-3156.2008.02047.x

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna L. Gosling.

Additional information

Elizabeth Matisoo-Smith and Tony R. Merriman have contributed equally to this study.

Appendix: Mean SU levels and prevalence of gout and hyperuricaemia in different adult male populations worldwide summarised from the published literature

Appendix: Mean SU levels and prevalence of gout and hyperuricaemia in different adult male populations worldwide summarised from the published literature

Location

Population

n

Age range

Mean SU

Prevalence

References

mg/dL

mmol/L

HU (%)

Gout (%)

Oceania

New Zealand

Māori

388

>15 years

7.1 ± 1.5

0.42 ± 0.09

49

[94]

New Zealand

Māori

215

20–64 years

27.8

18.4

[95]

New Zealand

NZ “non-Māori”

125

20–64 years

15.3

4.0

[95]

Cook Islands

Rarotongans

243

>20 years

7.0 ± 1.4

0.41 ± 0.08

44

2.5

[96]

Cook Islands

Pukapukans

188

>20 years

7.0 ± 1.1

0.42 ± 0.07

48.5

5.4

[96]

Papeete, Tahiti

Tahitians

179

20–50 years

7.5

0.45

[97]

Hawaii

Hawaiians

49

22–72 years

5.4 ± 1.1

0.32 ± 0.07

[13]

Kaneohe, Hawaii

Hawaiians

11

“Adult”

6.4 ± 1.4

0.38 ± 0.08

[98]

Apia, Samoa

Samoans (urban)

325

>20 years

6.7 ± 1.4

0.40 ± 0.08

36.4

7.2

[20]

Samoa

Samoans (rural)

358

>20 years

6.9 ± 1.2

0.41 ± 0.07

43.3

6.2

[20]

American Samoa

American Samoans

71

6.8 ± 1.2

0.40 ± 0.07

[99]

Nuku’alofa, Tonga

Tongans (urban)

177

20–69 years

6.5 ± 0.1

0.39 ± 0.00

2.7

[21]

Foa Island, Tonga

Tongans (rural)

199

20–69 years

5.3 ± 0.0

0.32 ± 0.00

0

[21]

Suva, Fiji

Fijians (urban)

401

>20 years

6.6 ± 1.2

0.39 ± 0.07

32.4

0.002

[22]

Fiji

Fijians (rural)

242

>20 years

6.0 ± 1.0

0.36 ± 0.06

16.9

0

[22]

Tokelau

Tokelauans

433

35–74 years

6.6 ± 1.3

0.39 ± 0.08

[100]

Tuvalu

Tuvaluans

189

>20 years

6.6

0.39

32.3

0

[101]

Nauru

Nauruans

217

>20 years

7.6 ± 1.6

0.45 ± 0.10

64

6.9

[102]

Marshall Islands

Marshall Islanders

188

>15 years

6.6 ± 1.3

0.39 ± 0.08

1.7

[103]

Rongelap, Marshall Islands

Marshall Islanders

37

>15 years

6.1 ± 1.0

0.36 ± 0.06

[103]

Utirik, Marshall Islands

Marshall Islanders

68

>15 years

6.5 ± 1.4

0.39 ± 0.08

[103]

Ebeye, Marshall Islands

Marshall Islanders

45

>15 years

6.9 ± 1.4

0.41 ± 0.08

[103]

Majuro, Marshall Islands

Marshall Islanders

29

>15 years

6.9 ± 1.2

0.41 ± 0.07

[103]

Caroline Islands

Carolinians

26

>40 years

7.3 ± 1.7

0.43 ± 0.10

[104]

Mariana Islands

Chamorro

160

>40 years

6.2 ± 1.5

0.37 ± 0.09

[104]

Guam, Mariana Islands

Chamorro (urban)

273

>20 years

7.1 ± 1.5

0.42 ± 0.09

48

1.5

[18]

Rota, Mariana Islands

Chamorro (rural)

122

>20 years

7.2 ± 1.4

0.43 ± 0.08

52

4.1

[18]

Palau

Palauans

510

>20 years

6.7 ± 1.6

0.40 ± 0.10

37

1.3

[18]

Kwaio, Solomon Islands

Solomon Islanders

127

18–54 years

6.5 ± 1.6

0.39 ± 0.10

[105]

Aita, Solomon Islands

Solomon Islanders

81

18–54 years

6.1 ± 1.1

0.36 ± 0.07

[105]

Baegu, Solomon Islands

Solomon Islanders

126

18–54 years

6.2 ± 1.6

0.37 ± 0.09

[105]

Lau, Solomon Islands

Solomon Islanders

77

18–54 years

5.5 ± 0.9

0.33 ± 0.06

[105]

Nagovisi, Solomon Islands

Solomon Islanders

109

18–54 years

5.3 ± 0.9

0.31 ± 0.05

[105]

Nasioi, Solomon Islands

Solomon Islanders

59

18–54 years

6.0 ± 0.9

0.36 ± 0.05

[105]

Kitava, Trobiand Island, PNG

Trobriand Islanders

41

40–59 years

5.1

0.30

[106]

East Sepik, PNG

Salatas

71

 

4.9 ± 1.4

0.29 ± 0.09

[17]

Eastern Highlands Province, PNG

Lufa (Highlanders)

329

>15 years

5.6

0.32

[86]

Simbu Province, PNG

Nomane (Highlanders)

39

>15 years

6.1

0.36

[86]

Oro Province, PNG

Managalas (Highlanders)

20

>15 years

5.5

0.33

[86]

Madang Coast. PNG

Madang Coast (Lowlanders)

43

>15 years

4.8

0.29

[86]

Karkar Island, PNG

Karkar Islanders

260

>15 years

5.7

0.34

[86]

Western Province, PNG

Kiunga (Lowlanders)

32

>15 years

5.3

0.32

[86]

Tukisenta, Western Highlands, PNG

Murapin Highlanders

391

>15 years

5.4

0.32

[107]

Koki, Port Moresby, PNG

“Melanesians” (urban)

86

>18 years

6.2 ± 1.3

0.37 ± 0.08

20

[19]

Kalo Village, Central Province, PNG

“Melanesians” (rural)

22

>18 years

4.2 ± 1.3

0.25 ± 0.08

[19]

Australia

Australian Caucasians

200

30–39 years

6.6 ± 0.2

0.39 ± 0.01

12

[108]

Australia

Representative Australian population

1,673

70–97 years

6.0 ± 1.3

0.36 ± 0.08

23

[109]

Mitchell River, Australia

Aborigines

27

20–98 years

5.5 ± 1.0

0.33 ± 0.06

[110]

Aurukun, Australia

Aborigines

82

20–70 years

6.0 ± 1.2

0.36 ± 0.07

[110]

Weipa, Australia

Aborigines

3

>20 years

5.3 ± 1.7

0.31 ± 0.10

[110]

Island Southeast Asia

Java, Indonesia

Malayo-Polynesians

2,184

>15 years

6.2 ± 1.3

0.37 ± 0.08

24.3

1.7

[111]

Manila, Philippines

Filipinos (urban)

140

21–87 years

5.3 ± 1.4

0.32 ± 0.08

[16]

Cebu, Philippines

Filipinos (rural)

146

21–87 years

5.1 ± 1.2

0.30 ± 0.07

[16]

La Union, Philippines

Filipinos (rural)

197

21–87 years

5.3 ± 1.3

0.32 ± 0.08

[16]

Seattle, USA

Filipinos

113

21–87 years

6.3 ± 1.4

0.37 ± 0.08

[16]

Hawaii

Filipinos (urban)

60

21–87 years

6.1 ± 1.3

0.36 ± 0.08

[16]

Singapore, Malaysia

Malays (urban)

169

15–74 years

6.3 ± 1.3

0.38 ± 0.08

[17]

Lenggong, Malaysia

Malays (rural)

35

15–74 years

7.1 ± 1.5

0.42 ± 0.09

[17]

Taiwan

Aborigines

145

7.9 ± 1.7

0.47 ± 0.10

53.8

11.7

[29]

Taiwan

Taiwanese Aborigines and Han Chinese

1,348

>18 years

6.7

0.40

26.1

3.3

[93]

Mainland Asia

India

Indians (rural)

85

20–70 years

5.3 ± 1.7

0.31 ± 0.10

[112]

Tirupati, India

Indians (urban)

97

20–70 years

6.1 ± 2.0

0.36 ± 0.12

[112]

Lhasa City, Tibet, China

Tibetans

1,289

>18 years

6.9 ± 1.6

0.41 ± 1.0

[113]

Beijing, China

Han Chinese (rural)

558

40–58 years

5.6 ± 1.3

0.33 ± 0.08

11.3

[114]

Beijing, China

Han Chinese (urban)

1,062

40–58 years

5.8 ± 1.3

0.34 ± 0.08

15.4

[114]

Qingdao, China

Han Chinese

903

20–74 years

6.5

0.39

32.1

[115]

Hangzhou, China

Han Chinese

186

“adults”

5.5 ± 1.2

0.33 ± 0.07

11

[116]

Vancouver, Canada

Canadian Chinese

100

5.4 ± 1.1

0.32 ± 0.06

[117]

Korea

Koreans

22,698

30–77 years

5.8 ± 1.6

0.35 ± 0.10

[118]

Nagano Prefecture, Japan

Japanese

15,712

>15 years

5.8 ± 1.1

0.35 ± 0.06

[119]

Okinawa, Japan

Japanese

6,163

18–89 years

6.5 ± 1.3

0.39 ± 0.08

34.5

[120]

Hawaii, USA

Japanese Americans

7,971

45–69 years

6.0 ± 1.5

0.36 ± 0.09

[121]

Thailand

Thai

376

6.0 ± 1.4

0.36 ± 0.08

18.4

[122]

Americas

Vancouver, Canada

Caucasian Canadians

200

4.6 ± 1.0

0.27 ± 0.06

[117]

Canada

Haida (Amerindians)

236

4.4 ± 1.0

0.26 ± 0.06

[117]

Tecumeseh, Michigan, USA

Caucasian Americans

2,987

>3 years

4.9 ± 2.0

0.29 ± 0.12

7.5

[123]

New England, USA

Caucasian Americans

534

>20 years

6.4 ± 1.4

0.38 ± 0.08

[124]

NHANES Cohort, USA

Americans of multiple ancestral backgrounds

8,816

>20 years

6.1

0.36

21.2

5.9

[125]

Montana, USAa

Blackfeet (Amerindians)

1,018

4.9 ± 1.2

0.29 ± 0.07

7.17

[126]

Arizona, USAa

Pima (Amerindians)

949

4.2 ± 1.2

0.25 ± 0.07

3.27

[126]

Arizona, USA

“American Indians”

>18 years

5.7 ± 1.4

0.33 ± 0.08

[127]

Dakotas, USA

“American Indians”

>18 years

6.1 ± 1.5

0.36 ± 0.09

[127]

Oklahoma, USA

“American Indians”

>18 years

6.1 ± 1.4

0.36 ± 0.08

[127]

USA

American Army Recruits

2,084

4.9

0.29

[128]

Colombia

Colombian Army Recruits

481

5.0

0.30

[128]

Argentina

Argentinian Army Recruits

491

4.8

0.29

[128]

Brazil

Brazilian Army Recruits

1,990

4.1

0.24

[128]

Brazil

Parkatêjê (Amerindians)

53

20–80 years

5.8 ± 0.9

0.34 ± 0.05

5.6

[129]

Brazil

Kalapalo (Amerindians)

53

20–80 years

5.1 ± 1.3

0.30 ± 0.07

3.2

[130]

Brazil

Kuikuro (Amerindians)

54

20–80 years

4.6 ± 1.0

0.27 ± 0.06

0

[130]

Brazil

Matipo (Amerindians)

5

20–80 years

5.1 ± 0.9

0.30 ± 0.05

0

[130]

Brazil

Nahukwá (Amerindians)

13

20–80 years

4.5 ± 1.0

0.27 ± 0.06

0

[130]

Europe

Birmingham and Dorset, England

English

512

>15 years

5.5 ± 1.0

0.33 ± 0.06

6.6

[131]

Cotwolds, England

English

1,727

>35 years

5.1 ± 1.4

0.30 ± 0.08

6.75

1.68

[132]

Watford, England

English

158

>15 years

5.0 ± 1.2

0.30 ± 0.07

[124]

Wensleydale, England

English (rural)

435

>15 years

4.7 ± 0.9

0.28 ± 0.05

[124]

Glasgow, Scotland

Scottish (urban)

337

>15 years

5.5 ± 1.0

0.33 ± 0.06

8.0

[131]

Finland

Finnish

3,295

40–69 years

5.1 ± 1.2

0.30 ± 0.07

6.6

[133]

France

French

23,923

20–55 years

5.9 ± 1.2

0.35 ± 0.07

17.6

[134]

Austria

Austrians

83,683

>18 years

5.7 ± 1.4

0.34 ± 0.08

[135]

Izmir, Turkey

Turks (urban)

63

“Adult”

5.5 ± 1.3

0.33 ± 0.07

19.0

[136]

Middle East

Israel

Israelis

9,909

>40 years

4.8 ± 1.0

0.28 ± 0.06

[137]

Jordan

Jordanians

96

18–60 years

5.7 ± 1.1

0.35 ± 0.07

[138]

Syria

Syrians

1,042

20–60 years

5.2 ± 1.2

0.31 ± 0.07

[139]

Kuwait

Kuwait

110

20–40 years

4.7 ± 0.9

0.28 ± 0.05

[140]

Kuwait

Kuwait

79

>20 years

5.5 ± 1.4

0.33 ± 0.08

[141]

Saudi Arabia

Saudis

278

14–65 years

5.2 ± 1.0

0.31 ± 0.06

[142]

Saudi Arabia

Saudis

250

14–83 years

5.2 ± 1.5

0.31 ± 0.09

8

[143]

Africa

Phokeng, South Africa

Tswana (rural)

128

14–84 years

4.9 ± 1.9

0.29 ± 0.11

[144]

Soweto, South Africa

Tswana, Zuli and Xhosa (urban)

144

15–90 years

6.1 ± 1.4

0.36 ± 0.08

[145]

Transkei, South Africa

Xhosa (tribal)

80

>15 years

4.7 ± 1.1

0.28 ± 0.06

[146]

South Africa

“Africans”

87

“Adult”

5.9 ± 1.5

0.35 ± 0.09

[147]

South Africa

Caucasians

121

“Adult”

6.7 ± 1.6

0.40 ± 0.10

[147]

Zairea

“Zairois”

75

5.6 ± 1.1

0.33 ± 0.06

[148]

Kinshasa, Zairea

“Zairois” (urban)

100

5.7 ± 1.2

0.34 ± 0.07

[148]

Kasongo-Batetela, Zaire

“Zairois” (rural)

33

5.5 ± 1.1

0.33 ± 0.06

[148]

Zairea

Caucasians

19

5.4 ± 1.1

0.32 ± 0.06

[148]

Zambia

Zambians

50

5.2 ± 1.5

0.31 ± 0.09

[149]

Mbeya, Tanzania

Tanzanians (mixed tribes)

137

19–48 years

5.3

0.32

[150]

Seychelles

Seychellois

482

25–64 years

6.9 ± 2.8

0.41 ± 0.17

35.2

[33]

Sudan

Sudanese

16

20–22 years

4.3 ± 0.2

0.26 ± 0.01

[67]

  1. aMean SU value and prevalence of hyperuricaemia is for a mixed male and female sample

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gosling, A.L., Matisoo-Smith, E. & Merriman, T.R. Hyperuricaemia in the Pacific: why the elevated serum urate levels?. Rheumatol Int 34, 743–757 (2014). https://doi.org/10.1007/s00296-013-2922-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-013-2922-x

Keywords

Navigation