Skip to main content
Log in

A common strategy for initiating the transition from proliferation to quiescence

  • Review
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Development, tissue renewal and long term survival of multi-cellular organisms is dependent upon the persistence of stem cells that are quiescent, but retain the capacity to re-enter the cell cycle to self-renew, or to produce progeny that can differentiate and re-populate the tissue. Deregulated release of these cells from the quiescent state, or preventing them from entering quiescence, results in uncontrolled proliferation and cancer. Conversely, loss of quiescent cells, or their failure to re-enter cell division, disrupts organ development and prevents tissue regeneration and repair. Understanding the quiescent state and how cells control the transitions in and out of this state is of fundamental importance. Investigations into the mechanics of G1 arrest during the transition to quiescence continue to identify striking parallels between the strategies used by yeast and mammals to regulate this transition. When cells commit to a stable but reversible arrest, the G1/S genes responsible for promoting S phase must be inhibited. This process, from yeast to humans, involves the formation of quiescence-specific complexes on their promoters. In higher cells, these so-called DREAM complexes of E2F4/DP/RBL/MuvB recruit the highly conserved histone deacetylase HDAC1, which leads to local histone deacetylation and repression of S phase-promoting transcripts. Quiescent yeast cells also show pervasive histone deacetylation by the HDAC1 counterpart Rpd3. In addition, these cells contain quiescence-specific regulators of G1/S genes: Msa1 and Msa2, which can be considered components of the yeast equivalent of the DREAM complex. Despite a lack of physical similarities, the goals and the strategies used to achieve a reversible transition to quiescence are highly conserved. This motivates a detailed study of this process in the simple model organism: budding yeast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alland L, David G, Shen-Li H, Potes J, Muhle R, Lee HC, Hou H Jr, Chen K, DePinho RA (2002) Identification of mammalian Sds3 as an integral component of the Sin3/histone deacetylase corepressor complex. Mol Cell Biol 22:2743–2750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen JB, Zhou Z, Siede W, Friedberg EC, Elledge SJ (1994) The SAD1/RAD53 protein kinase controls multiple checkpoints and DNA damage-induced transcription in yeast. Genes Dev 8:2401–2415

    Article  CAS  PubMed  Google Scholar 

  • Allen C, Buttner S, Aragon AD, Thomas JA, Meirelles O, Jaetao JE, Benn D, Ruby SW, Veenhuis M, Madeo F, Werner-Washburne M (2006) Isolation of quiescent and nonquiescent cells from yeast stationary-phase cultures. J Cell Biol 174:89–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashe M, de Bruin RA, Kalashnikova T, McDonald WH, Yates JR 3rd, Wittenberg C (2008) The SBF- and MBF-associated protein Msa1 is required for proper timing of G1-specific transcription in Saccharomyces cerevisiae. J Biol Chem 283:6040–6049

    Article  CAS  PubMed  Google Scholar 

  • Barbet NC, Schneider U, Helliwell SB, Stansfield I, Tuite MF, Hall MN (1996) TOR controls translation initiation and early G1 progression in yeast. Mol Biol Cell 7:25–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertoli C, Klier S, McGowan C, Wittenberg C, de Bruin RA (2013) Chk1 inhibits E2F6 repressor function in response to replication stress to maintain cell-cycle transcription. Curr Biol 23:1629–1637. doi:10.1016/j.cub.2013.06.063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brehm A, Miska EA, McCance DJ, Reid JL, Bannister AJ, Kouzarides T (1998) Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature 391:597–601. doi:10.1038/35404

    Article  CAS  PubMed  Google Scholar 

  • Ceol CJ, Horvitz HR (2001) dpl-1 DP and efl-1 E2F act with lin-35 Rb to antagonize Ras signaling in C. elegans vulval development. Mol Cell 7:461–473

    Article  CAS  PubMed  Google Scholar 

  • Chen YC, Kenworthy J, Gabrielse C, Hanni C, Zegerman P, Weinreich M (2013) DNA replication checkpoint signaling depends on a Rad53-Dbf4N-terminal interaction in Saccharomyces cerevisiae. Genetics 194:389–401. doi:10.1534/genetics.113.149740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costanzo M, Nishikawa JL, Tang X, Millman JS, Schub O, Breitkreuz K, Dewar D, Rupes I, Andrews B, Tyers M (2004) CDK activity antagonizes Whi5, an inhibitor of G1/S transcription in yeast. Cell 117:899–913

    Article  CAS  PubMed  Google Scholar 

  • Cross FR (1988) DAF1, a mutant gene affecting size control, pheromone arrest, and cell cycle kinetics of Saccharomyces cerevisiae. Mol Cell Biol 8:4675–4684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • David G, Grandinetti KB, Finnerty PM, Simpson N, Chu GC, Depinho RA (2008) Specific requirement of the chromatin modifier mSin3B in cell cycle exit and cellular differentiation. Proc Natl Acad Sci USA 105:4168–4172. doi:10.1073/pnas.0710285105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Bruin RA, McDonald WH, Kalashnikova TI, Yates J 3rd, Wittenberg C (2004) Cln3 activates G1-specific transcription via phosphorylation of the SBF bound repressor Whi5. Cell 117:887–898

    Article  PubMed  Google Scholar 

  • de Bruin RA, Kalashnikova TI, Aslanian A, Wohlschlegel J, Chahwan C, Yates JR 3rd, Russell P, Wittenberg C (2008) DNA replication checkpoint promotes G1-S transcription by inactivating the MBF repressor Nrm1. Proc Natl Acad Sci USA 105:11230–11235

    Article  PubMed  PubMed Central  Google Scholar 

  • DeRisi JL, Iyer VR, Brown PO (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278:680–686

    Article  CAS  PubMed  Google Scholar 

  • Dovey OM, Foster CT, Cowley SM (2010) Histone deacetylase 1 (HDAC1), but not HDAC2, controls embryonic stem cell differentiation. Proc Natl Acad Sci USA 107:8242–8247. doi:10.1073/pnas.1000478107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11:4241–4257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Novo A, Jimenez J, Clotet J, Nadal-Ribelles M, Cavero S, de Nadal E, Posas F (2015) Hog1 targets Whi5 and Msa1 transcription factors to downregulate cyclin expression upon stress. Mol Cell Biol 35:1606–1618. doi:10.1128/MCB.01279-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heideman MR, Wilting RH, Yanover E, Velds A, de Jong J, Kerkhoven RM, Jacobs H, Wessels LF, Dannenberg JH (2013) Dosage-dependent tumor suppression by histone deacetylases 1 and 2 through regulation of c-Myc collaborating genes and p53 function. Blood 121:2038–2050. doi:10.1182/blood-2012-08-450916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang D, Kaluarachchi S, van Dyk D, Friesen H, Sopko R, Ye W, Bastajian N, Moffat J, Sassi H, Costanzo M, Andrews BJ (2009) Dual regulation by pairs of cyclin-dependent protein kinases and histone deacetylases controls G1 transcription in budding yeast. PLoS Biol 7:e1000188. doi:10.1371/journal.pbio.1000188

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang JC, Wawryn J, Shantha Kumara HM, Jazwinski SM (2002) Distinct roles of processes modulated by histone deacetylases Rpd3p, Hda1p, and Sir2p in life extension by caloric restriction in yeast. Exp Gerontol 37:1023–1030

    Article  CAS  PubMed  Google Scholar 

  • Koc A, Wheeler LJ, Mathews CK, Merrill GF (2004) Hydroxyurea arrests DNA replication by a mechanism that preserves basal dNTP pools. J Biol Chem 279:223–230. doi:10.1074/jbc.M303952200

    Article  CAS  PubMed  Google Scholar 

  • Koch C, Moll T, Neuberg M, Ahorn H, Nasmyth K (1993) A role for the transcription factors Mbp1 and Swi4 in progression from G1 to S phase. Science 261:1551–1557

    Article  CAS  PubMed  Google Scholar 

  • Korenjak M, Taylor-Harding B, Binne UK, Satterlee JS, Stevaux O, Aasland R, White-Cooper H, Dyson N, Brehm A (2004) Native E2F/RBF complexes contain Myb-interacting proteins and repress transcription of developmentally controlled E2F target genes. Cell 119:181–193. doi:10.1016/j.cell.2004.09.034

    Article  CAS  PubMed  Google Scholar 

  • Lee SE, Pellicioli A, Demeter J, Vaze MP, Gasch AP, Malkova A, Brown PO, Botstein D, Stearns T, Foiani M, Haber JE (2000) Arrest, adaptation, and recovery following a chromosome double-strand break in Saccharomyces cerevisiae. Cold Spring Harb Symp Quant Biol 65:303–314

    Article  CAS  PubMed  Google Scholar 

  • Li JM, Tetzlaff MT, Elledge SJ (2008) Identification of MSA1, a cell cycle-regulated, dosage suppressor of drc1/sld2 and dpb11 mutants. Cell Cycle 7:3388–3398

    Article  CAS  PubMed  Google Scholar 

  • Li L, Lu Y, Qin LX, Bar-Joseph Z, Werner-Washburne M, Breeden LL (2009) Budding yeast SSD1-V regulates transcript levels of many longevity genes and extends chronological life span in purified quiescent cells. Mol Biol Cell 20:3851–3864. doi:10.1091/mbc.E09-04-0347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Miles S, Melville Z, Prasad A, Bradley G, Breeden LL (2013) Key events during the transition from rapid growth to quiescence in budding yeast require posttranscriptional regulators. Mol Biol Cell 24:3697–3709. doi:10.1091/mbc.E13-05-0241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lillie SH, Pringle JR (1980) Reserve carbohydrate metabolism in Saccharomyces cerevisiae: responses to nutrient limitation. J Bacteriol 143:1384–1394

    CAS  PubMed  PubMed Central  Google Scholar 

  • Litovchick L, Sadasivam S, Florens L, Zhu X, Swanson SK, Velmurugan S, Chen R, Washburn MP, Liu XS, DeCaprio JA (2007) Evolutionarily conserved multisubunit RBL2/p130 and E2F4 protein complex represses human cell cycle-dependent genes in quiescence. Mol Cell 26:539–551. doi:10.1016/j.molcel.2007.04.015

    Article  CAS  PubMed  Google Scholar 

  • Luo RX, Postigo AA, Dean DC (1998) Rb interacts with histone deacetylase to repress transcription. Cell 92:463–473

    Article  CAS  PubMed  Google Scholar 

  • Mai B, Breeden L (1997) Xbp1, a stress-induced transcriptional repressor of the Saccharomyces cerevisiae Swi4/Mbp1 family. Mol Cell Biol 17:6491–6501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Margolis DM (2011) Histone deacetylase inhibitors and HIV latency. Curr Opin HIV AIDS 6:25–29. doi:10.1097/COH.0b013e328341242d

    Article  PubMed  PubMed Central  Google Scholar 

  • McKnight JN, Boerma JW, Breeden LL, Tsukiyama T (2015) Global promoter targeting of a conserved lysine deacetylase for transcriptional shutoff during quiescence entry. Mol Cell 59:732–743. doi:10.1016/j.molcel.2015.07.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miles S, Li L, Davison J, Breeden LL (2013) Xbp1 directs global repression of budding yeast transcription during the transition to quiescence and is important for the longevity and reversibility of the quiescent state. PLoS Genet 9:e1003854. doi:10.1371/journal.pgen.1003854

    Article  PubMed  PubMed Central  Google Scholar 

  • Miles S, Croxford MW, Abeysinghe AP, Breeden LL (2016) Msa1 and Msa2 modulate G1-specific transcription to promote G1 arrest and the transition to quiescence in budding yeast. PLoS Genet 12:e1006088. doi:10.1371/journal.pgen.1006088

    Article  PubMed  PubMed Central  Google Scholar 

  • Nevins JR (1992) E2F: a link between the Rb tumor suppressor protein and viral oncoproteins. Science 258:424–429

    Article  CAS  PubMed  Google Scholar 

  • Ouspenski II, Elledge SJ, Brinkley BR (1999) New yeast genes important for chromosome integrity and segregation identified by dosage effects on genome stability. Nucleic Acids Res 27:3001–3008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ragni E, Piberger H, Neupert C, Garcia-Cantalejo J, Popolo L, Arroyo J, Aebi M, Strahl S (2011) The genetic interaction network of CCW12, a Saccharomyces cerevisiae gene required for cell wall integrity during budding and formation of mating projections. BMC Genom 12:107. doi:10.1186/1471-2164-12-107

    Article  CAS  Google Scholar 

  • Rayman JB, Takahashi Y, Indjeian VB, Dannenberg JH, Catchpole S, Watson RJ, te Riele H, Dynlacht BD (2002) E2F mediates cell cycle-dependent transcriptional repression in vivo by recruitment of an HDAC1/mSin3B corepressor complex. Genes Dev 16:933–947. doi:10.1101/gad.969202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadasivam S, DeCaprio JA (2013) The DREAM complex: master coordinator of cell cycle-dependent gene expression. Nat Rev Cancer 13:585–595. doi:10.1038/nrc3556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santoro F, Botrugno OA, Dal Zuffo R, Pallavicini I, Matthews GM, Cluse L, Barozzi I, Senese S, Fornasari L, Moretti S, Altucci L, Pelicci PG, Chiocca S, Johnstone RW, Minucci S (2013) A dual role for Hdac1: oncosuppressor in tumorigenesis, oncogene in tumor maintenance. Blood 121:3459–3468. doi:10.1182/blood-2012-10-461988

    Article  CAS  PubMed  Google Scholar 

  • Savarino A, Mai A, Norelli S, El Daker S, Valente S, Rotili D, Altucci L, Palamara AT, Garaci E (2009) “Shock and kill” effects of class I-selective histone deacetylase inhibitors in combination with the glutathione synthesis inhibitor buthionine sulfoximine in cell line models for HIV-1 quiescence. Retrovirology 6:52. doi:10.1186/1742-4690-6-52

    Article  PubMed  PubMed Central  Google Scholar 

  • Shimoi H, Kitagaki H, Ohmori H, Iimura Y, Ito K (1998) Sed1p is a major cell wall protein of Saccharomyces cerevisiae in the stationary phase and is involved in lytic enzyme resistance. J Bacteriol 180:3381–3387

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shirakawa K, Chavez L, Hakre S, Calvanese V, Verdin E (2013) Reactivation of latent HIV by histone deacetylase inhibitors. Trends Microbiol 21:277–285. doi:10.1016/j.tim.2013.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sidorova J, Breeden LL (2002) Precocious S-phase entry in budding yeast prolongs replicative state and increases dependence upon Rad53 for viability. Genetics 160:123–136

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takahata S, Yu Y, Stillman DJ (2009) The E2F functional analogue SBF recruits the Rpd3(L) HDAC, via Whi5 and Stb1, and the FACT chromatin reorganizer, to yeast G1 cyclin promoters. EMBO J 28:3378–3389. doi:10.1038/emboj.2009.270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang Z (2016) Model organisms for studying the cell cycle. Methods Mol Biol 1342:21–57. doi:10.1007/978-1-4939-2957-3_2

    Article  PubMed  Google Scholar 

  • Tao R, Chen H, Gao C, Xue P, Yang F, Han JD, Zhou B, Chen YG (2011) Xbp1-mediated histone H4 deacetylation contributes to DNA double-strand break repair in yeast. Cell Res. doi:10.1038/cr.2011.58

    Google Scholar 

  • Taunton J, Hassig CA, Schreiber SL (1996) A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272:408–411

    Article  CAS  PubMed  Google Scholar 

  • Travesa A, Kalashnikova T, de Bruin R, Cass SR, Chahwan C, Lee DE, Lowndes N, Wittenberg C (2013) Repression of G1/S transcription is mediated via interaction of the GTB motif of Nrm1 and Whi5 with Swi6. Mol Cell Biol. doi:10.1128/MCB.01333-12

    PubMed  PubMed Central  Google Scholar 

  • Trimarchi JM, Lees JA (2002) Sibling rivalry in the E2F family. Nat Rev Mol Cell Biol 3:11–20

    Article  CAS  PubMed  Google Scholar 

  • Valcourt JR, Lemons JM, Haley EM, Kojima M, Demuren OO, Coller HA (2012) Staying alive: metabolic adaptations to quiescence. Cell Cycle 11:1680–1696. doi:10.4161/cc.19879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vallen EA, Cross FR (1999) Interaction between the MEC1-dependent DNA synthesis checkpoint and G1 cyclin function in Saccaromyces cerevisiae. Genetics 151:459–471

    CAS  PubMed  PubMed Central  Google Scholar 

  • van der Felden J, Weisser S, Bruckner S, Lenz P, Mosch HU (2014) The transcription factors Tec1 and Ste12 interact with coregulators Msa1 and Msa2 to activate adhesion and multicellular development. Mol Cell Biol 34:2283–2293. doi:10.1128/MCB.01599-13

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang H, Carey LB, Cai Y, Wijnen H, Futcher B (2009) Recruitment of Cln3 cyclin to promoters controls cell cycle entry via histone deacetylase and other targets. PLoS Biol 7:e1000189. doi:10.1371/journal.pbio.1000189

    Article  PubMed  PubMed Central  Google Scholar 

  • Winter M, Moser MA, Meunier D, Fischer C, Machat G, Mattes K, Lichtenberger BM, Brunmeir R, Weissmann S, Murko C, Humer C, Meischel T, Brosch G, Matthias P, Sibilia M, Seiser C (2013) Divergent roles of HDAC1 and HDAC2 in the regulation of epidermal development and tumorigenesis. EMBO J 32:3176–3191. doi:10.1038/emboj.2013.243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yahya G, Parisi E, Flores A, Gallego C, Aldea M (2014) A Whi7-anchored loop controls the G1 Cdk-cyclin complex at start. Mol Cell 53:115–126. doi:10.1016/j.molcel.2013.11.015

    Article  CAS  PubMed  Google Scholar 

  • Yang XJ, Seto E (2008) The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nat Rev Mol Cell Biol 9:206–218. doi:10.1038/nrm2346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Strauss AC, Chu S, Li M, Ho Y, Shiang KD, Snyder DS, Huettner CS, Shultz L, Holyoake T, Bhatia R (2010) Effective targeting of quiescent chronic myelogenous leukemia stem cells by histone deacetylase inhibitors in combination with imatinib mesylate. Cancer Cell 17:427–442. doi:10.1016/j.ccr.2010.03.011

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank members of the Breeden lab for helpful comments on the manuscript. This work was supported by the National Institutes of Health, National Institute on Aging Grant R21-AG048595 to L. L. B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda Breeden.

Additional information

Communicated by M. Kupiec.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miles, S., Breeden, L. A common strategy for initiating the transition from proliferation to quiescence. Curr Genet 63, 179–186 (2017). https://doi.org/10.1007/s00294-016-0640-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-016-0640-0

Keywords

Navigation