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Abstract The present paper considers the class of polling systems that allow a
multi-type branching process interpretation. This class contains the classical exhaus-
tive and gated policies as special cases. We present an exact asymptotic analysis of the
delay distribution in such systems, when the setup times tend to infinity. The motiva-
tion to study these setup time asymptotics in polling systems is based on the specific
application area of base-stock policies in inventory control. Our analysis provides new
and more general insights into the behavior of polling systems with large setup times.

Keywords Polling systems · Multi-type branching processes · Setup times ·
Delay distribution · Asymptotics

1 Introduction

A typical polling system consists of a number of queues, attended by a single server in
a fixed order. There is a huge body of literature on polling systems that has continued to
grow since the late 1950s, when the papers of Mack et al. (1957) and Mack (1957) con-
cerning a patrolling repairman model for the British cotton industry were published.
Polling systems have a wide range of applications in communication, production,
transportation and maintenance systems. Excellent surveys on polling systems and
their applications may be found in Takagi (1990, 1997, 2000) and in Levy and Sidi
(1990) and Vishnevskii and Semenova (2006). One of the most remarkable results in
the polling literature is the striking dichotomy in complexity between different polling
systems independently illuminated by Fuhrmann (1981) and Resing (1993). That is, if
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78 E. M. M. Winands

the service discipline satisfies a certain branching property, the polling system allows
for an exact analysis by rather standard methods. If this branching property is, how-
ever, violated, the corresponding polling systems can not be analyzed exactly in the
general setting.

Unfortunately, even for branching-type polling systems the interdependence of the
queueing processes prohibits an exact explicit analysis, leading to the need of using
numerical techniques to determine performance measures of interest. However, such
numerical techniques provide only limited insight into the behavior of the system
with respect to its input parameters. In these circumstances, one naturally resorts to
asymptotic estimates. In particular, the present paper presents an exact asymptotic anal-
ysis of the delay distribution in polling systems with general branching-type service
discipline—with the classical exhaustive and gated policies as special cases—when
the setup times tend to infinity. Since the delay obviously grows without bound in such
a case, we focus on the scaled delay, i.e., the delay divided by the total setup time per
cycle.

The present study is both relevant from a theoretical and practical point of view.
From a theoretical point of view, such an analysis is evidently interesting, since it
deepens the understanding of the behavior of systems with large setups. That is, we
obtain explicit expressions for the scaled delay distribution, which lead to significant
insight into the dependence of the performance measures on the system parameters
(e.g., insensitivity and monotonicity properties). From a practical point of view, polling
systems with large setup times find a wide variety of applications in production envi-
ronments. For example, in the stochastic economic lot scheduling problem (SELSP),
where multiple standardized products have to be produced on a single machine with
significant setup times, polling system are frequently encountered as modeling tool
for (widely used) fixed-sequence base-stock policies (details are given in Sect. 4). We
refer to Winands et al. (2005) for a survey on the SELSP and for a large number of
cases of production environments with large setup times. With respect to the distribu-
tion of the setup times, it is important to remark that in production environments setup
times are typically deterministic due to the nowadays efficient control of production
processes.

Although the number of papers on polling systems is impressive, only a few papers
address the problem of large (deterministic) setup times. Mei (1999) explores the
descendant set approach in combination with the strong law of large numbers for
renewal reward processes to analyze polling systems with deterministic setups and
mixtures of exhaustive and gated service. Olsen (2001) presents a somewhat simpler
analysis in the case of an exhaustive system with deterministic setups, where the order
of service is determined by a polling table. Based on the recently proposed mean value
analysis (MVA) for polling systems (Winands et al. 2006), Winands (2007) develop
an alternative simple approach for cyclic exhaustive polling systems. Since MVA is
not limited to exhaustive polling systems, the analysis of the latter can be readily
extended to a wide range of polling systems. The main result in all of the above papers
(Mei 1999; Olsen 2001; Winands 2007) is the fact that the scaled delay converges in
distribution to a uniform distribution. It is, however, worth remarking that all previous
studies deal only with the exhaustive and gated service discipline, whereas the present
paper deals with the general class of branching-type service policies.
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Before leaving the literature review on polling systems, we should also mention the
recent paper (Mei 2006). This paper obtains heavy-traffic asymptotics for branching-
type polling systems. Although both the asymptotic behavior in such a heavy-traffic
regime and the methodology used are fundamentally different from the ones in the
present paper, there are some aspects in both asymptotic regimes that bear a resem-
blance. These similarities are touched upon throughout the present paper. Furthermore,
it is remarkable that since the discovery of the strong connection between polling sys-
tems and multi-type branching process by Fuhrmann (1981) and Resing (1993), the
present paper and Mei (2006) are the first studies actually deriving (asymptotic) results
for the complete class of branching-type polling systems.

To obtain a unifying theorem for setup time asymptotics in branching-type polling
systems, we rely on results from Borst and Boxma (1997). In this paper, a strong
relation between the queue length, as well as delay, distributions in models with and
without setup times is exposed. In particular, using results for the transform of the
marginal distributions we analytically show that the scaled delay converges in dis-
tribution to a uniform distribution for all policies allowing a multi-type branching
process interpretation.

The contribution of the present paper is threefold. First of all, for the large class
of polling systems that allow a multi-type branching process interpretation we derive
setup time asymptotics, thus exposing the general structure as well as the limitations
of the theory. The results of the present paper not only generalize those derived in
Mei (1999), Olsen (2001), and Winands (2007) for the special case of exhaustive
and gated service, but are also obtained via a fundamentally different approach. In
fact, the present paper focusses on two types of limit theorems for (1) polling sys-
tems with increasing deterministic setup times; (2) polling systems with increasing
stochastic setup times under heavy traffic. We stress that the methodology of the pres-
ent paper has a wide range of applications; it can, for example, also be used for the
asymptotic analysis of the delay distribution for cyclic polling systems with the glob-
ally gated service policy, which does not satisfy the branching property, as shown in
Sect. 4.

Secondly, the results obtained in the present paper provide new (and more general)
insights into the behavior of polling systems with large setup times. It is shown that the
asymptotic scaled delay distribution (1) is independent of the visit order; (2) depends
on the service discipline of the corresponding queue only through a single parameter
referred to as the exhaustiveness; (3) is independent of the service disciplines of the
other queues; (4) depends on the arrival rate and service time distribution of the cor-
responding queue only through its occupation rate; (5) depends on the arrival rate and
service time distribution of the other queues only through the total occupation rate. In
this context, it is important to remark that in the heavy-traffic regime studied in Mei
(2006) the exhaustiveness of the service discipline plays a key—but different—role
as well.

Finally, the obtained expressions for the asymptotic scaled delay can be readily used
as approximation of the delay distribution in systems with finite setup times. Thanks
to the simplicity of the derived expressions, these approximations are easily imple-
mentable and allow for back-of-the-envelope calculations. Furthermore, as mentioned
above we envision production in general—and fixed-sequence base-stock policies in
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particular—as the main application of interest for the present paper. Therefore, our
results deepen the understanding of the behavior and performance of base-stock poli-
cies in production environments with significant setup times.

The structure of the present paper is as follows. In Sect. 2, we introduce the model
and summarize notation. Section 3 analyzes the scaled delay distribution for polling
models with general branching-type service policies; firstly, for systems with deter-
ministic setup times and, secondly, for systems with stochastic setup times under heavy
traffic. In Sect. 4, we revisit the results of the present paper and we address a number
of challenging topics for further research.

2 Model description and notation

We consider a system with a single server for N ≥ 1 queues, in which there is infinite
buffer capacity for each queue. The server visits and serves the queues in a fixed cyclic
order. We index the queues by i , i = 1, 2, . . . , N , in the order of the server movement.
For compactness of presentation, all references to queue indices greater than N or less
than 1 are implicitly assumed to be modulo N , e.g., queue N + 1 actually refers to
queue 1. Throughout the present paper, it is assumed that within a queue customers
are served First Come First Served (FCFS). Obviously, the mean waiting times are
the same under any work-conserving non-preemptive service discipline that does not
account for the actual service requests of the customers.

Customers arrive at all queues according to independent Poisson processes with
rates λi , i = 1, 2, . . . , N . The service times at queue i are independent, identically
distributed random variables with mean E[Bi ] and Laplace Stieltjes Transform (LST)
βi (·), i = 1, 2, . . . , N . When the server starts service at queue i , a deterministic setup
time Si is incurred, i = 1, 2, . . . , N . The total setup time S in a cycle is given by

S =
N∑

i=1

Si . (1)

It is assumed that a setup is incurred even if the subsequent queue is empty. Since we
study the system as setup times tend to infinity, this last assumption is irrelevant since
queues will never be empty when polled in this situation.

Throughout the present paper, we assume that the service discipline at each queue
satisfies the following property (Fuhrmann 1981; Resing 1993):

Property 2.1 If the server arrives at queue i to find ki customers there, then during
the course of the server’s visit, each of these ki customers will effectively be replaced
in an i.i.d. manner by a random population having probability generating function
(PGF) hi (z) = hi (z1, . . . , zN ), which can be any N-dimensional probability gener-
ating function.

It is important to remark that we allow different service disciplines at different
queues. The present paper focuses on nonidling service disciplines satisfying Prop-
erty 2.1. The occupation rate ρi (excluding setups) at queue i is defined by
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Branching-type polling systems with large setups 81

ρi = λi E[Bi ] and the total occupation rate ρ is given by

ρ =
N∑

i=1

ρi . (2)

Now, ρ < 1 and S < ∞ constitute necessary and sufficient stability conditions for any
nonidling policy that satisfies Property 2.1 with hi (z1, . . . , zN ) �= zi (see, e.g., Resing
1993). In the remainder of the present paper, these stability conditions are assumed to
hold as we restrict the attention to steady-state behavior.

The performance measure of interest is the delay Wi of a type-i customer, i =
1, 2, . . . , N , in case the setup times tend to infinity. Since the delay grows to infinity
in the limiting case, we focus on the asymptotic scaled delay Wi

S as S → ∞, where
the ratios of the setup times remain constant, i = 1, 2, . . . , N . Of course, our results
for the delay distribution can be readily translated into results for the queue length
distribution via the distributional form of Little’s law (Keilson and Servi 1990).

3 Limit theorems

The present section presents the main results of the paper and is divided into three
subsections. After discussing some preliminary results (Sect. 3.1), we focus on polling
systems with deterministic setup times (Sect. 3.2) and polling systems with stochastic
setup times under heavy traffic (Sect. 3.3).

3.1 Preliminaries

Throughout the present subsection we discuss some basic results of branching-type
polling systems. The reader is referred to Borst and Boxma (1997) and Resing (1993)
for more details. First of all, the partial derivative δ

δzi
hi (z)|z=1 of the generating func-

tion hi (z) as introduced in Property 2.1 represents the mean number of type-i children
residing in queue i at the end of a visit period generated by a type-i customer present
at the start of a visit to queue i (for a formal definition of children, see Sect. 3.2).
Subsequently, we define the exhaustiveness �i of the service discipline at queue i by

�i = 1 − ∂

∂zi
hi (z)|z=1, i = 1, 2, . . . , N . (3)

Since we have assumed that hi (z1, . . . , zN ) �= zi , we have

0 < �i ≤ 1, i = 1, 2, . . . , N . (4)

The exhaustiveness �i has the following intuitively appealing interpretation: each
customer present at the start of a visit to queue i will be replaced by a number of
type-i customers with mean 1 − �i .
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It is convenient to have an expression for E[Ti ], i.e., the mean subvisit period
generated by a type-i customer present at the start of a visit to queue i , in terms of
�i . Since ∂

∂zi
hi (z)|z=1 equals 1 plus the expected number of type-i arrivals λi E[Ti ]

minus E[Ti ]/E[Bi ], which is the expected number of type-i served during this subvisit
period, we can derive, after some rewriting, the following expression

E[Ti ] = �i E[Bi ]
1 − ρi

, i = 1, 2, . . . , N . (5)

Furthermore (5) also leads to an expression for E[Xi ], i.e., the number of type-i
customers present at the start of a visit to queue i , by observing that the mean total visit
period E[Vi ] at queue i , which equals the sum of all subvisit periods, is the product
of E[Xi ] and E[Ti ]. That is,

E[Xi ] = E[Vi ]
E[Ti ] = ρi

1 − ρ

S

E[Ti ] = λi

�i

1 − ρi

1 − ρ
S, i = 1, 2, . . . , N . (6)

Notice that in systems without setup times each time the system becomes empty, the
server will execute, in the limit, an infinite number of visits to each queue. Therefore,
the average number of type-i customers E[Xi ] present at the start of a visit tends to
zero in such systems, as we clearly see in Formula (6). We continue this section with
an example.

Example 3.1 A variety of service disciplines satisfy the Property 2.1 including a num-
ber of classical ones as discussed below.

1. In case of the exhaustive discipline, i.e., a queue must be empty before the server
moves on, we have

hi (z1, . . . , zN ) = θi

⎛

⎝
∑

j �=i

λ j (1 − z j )

⎞

⎠, (7)

where θi (·) denotes the LST of a busy period in an M/G/1 queue with arrival rate
λi and LST of the service time distribution βi (·). The corresponding exhaustive-
ness reads �i = 1.

2. When the gated discipline is implemented, i.e., only those customers in the queue
at the polling instant are served, the function hi (z1, . . . , zN ) reads

hi (z1, . . . , zN ) = βi

⎛

⎝
N∑

j=1

λ j (1 − z j )

⎞

⎠, (8)

with exhaustiveness �i = 1 − ρi .

3. Under the binomial-exhaustive discipline (Levy 1988) each of the type-i custom-
ers present at the start of a visit to this queue generates an M/G/1 busy period
with probability 0 ≤ qi ≤ 1,

123
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hi (z1, . . . , zN ) = qiθi

⎛

⎝
∑

j �=i

λ j (1 − z j )

⎞

⎠ + (1 − qi )zi , (9)

from which the exhaustiveness is found to be �i = qi .

4. In case of the binomial-gated discipline (Levy 1989), where each of the type-i
customers present at the start of a visit to this queue is served with probability
0 ≤ pi ≤ 1,

hi (z1, . . . , zN ) = piβi

⎛

⎝
N∑

j=1

λ j (1 − z j )

⎞

⎠ + (1 − pi )zi , (10)

and, thus, we have for the exhaustiveness �i = pi (1 − ρi ).

Next, define the offspring generating function as follows

f (z) := ( f1(z), . . . , fN (z)), (11)

with for |z j | ≤ 1, j = 1, 2, . . . , N ,

fi (z) := hi (z1, . . . , zi , fi+1(z), . . . , fN (z)), i = 1, 2, . . . , N . (12)

This offspring generating function represents the generating function of the joint dis-
tribution of the numbers of customers at the end of a cycle with respect to queue 1 that
are children of a type-i customer, where a child of a customer is recursively defined
as a customer that has arrived during the service time of this customer or of one of his
children. Furthermore, define for |z j | ≤ 1, j = 1, 2, . . . , N ,

f (0)(z) := z, (13)

f (k)(z) := f
(

f (k−1)(z)
)
, k ≥ 1, (14)

where f (k)(·) represents the kth generation offspring.
Since we are interested in the marginal waiting time distribution, we focus—

without loss of generality—on W1 and introduce for i = 1, 2, . . . , N ,

h̃i (y) := hi (y, 1, . . . , 1), (15)

f̃ (k)
i (y) := f (k)

i (y, 1, . . . , 1), (16)

and

H̃(y) :=
∞∑

k=0

N∑

i=1

λi
(
1 − f̃ (k)

i (y)
)
. (17)
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Since the mean number of type-1 customers present at the start of a visit to queue 1 is
exactly equal to the average offspring of customers which arrived during a setup time,
we have the following relation between H̃ ′(1) and E[X1],

E[X1] = −SH̃ ′(1), (18)

and, thus, by applying (6),

H̃ ′(1) = − λ1

�1

1 − ρ1

1 − ρ
. (19)

3.2 Limit theorems for deterministic setups

In order to derive the limit theorems, we make extensively use of a result of Borst and
Boxma (1997) which derives a strong relation between the waiting time distributions
in models with and without setup times. This relation is established both by relating the
similarities in the offspring generating functions of the underlying branching processes
and by expressing the differences between the underlying immigration functions.

In particular, Borst and Boxma (1997) shows that the LST of the waiting time
distribution of a type-1 customer is given by

E
[
e−ωW1

] = E
[
e−ωW 0

1
] e−SH̃(h̃1(1−ω/λ1)) − e−SH̃(1−ω/λ1)

S
[
H̃(1 − ω/λ1) − H̃(h̃1(1 − ω/λ1))

] , (20)

where W 0
1 is the waiting time in the corresponding polling system with zero setup

times. At this point, we feel it is worth reminding the reader that no closed-form
expression for E[e−ωW 0

1 ] is known. The decomposition as expressed in (20) can be
used to derive an explicit expression for the LST of the distribution of the asymptotic
scaled delay as presented in the lemma below.

Lemma 3.2 In case of deterministic setup times, the LST of the distribution of the
asymptotic scaled delay is given by

E
[
e−ω

W1
S

] → 1 − ρ

(1 − ρ1)ω

(
e
− 1−�1

�1

1−ρ1
1−ρ

ω − e
− 1

�1

1−ρ1
1−ρ

ω
)

(S → ∞). (21)

Proof First of all, the term E[e−ωW 0
1 ] in (20) does not depend on S implying that

E
[
e−ω

W 0
1

S
] → 1 (S → ∞). (22)

Next, we observe that

SH̃

(
1 − ω

λ1S

)
= − ω

λ1

H̃(1 − ω
λ1 S ) − H̃(1)

− ω
λ1 S

S→∞−−−→ − ω

λ1
H̃ ′(1) = 1

�1

1 − ρ1

1 − ρ
ω,

(23)
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where the first follows from the fact that H̃(1) = 0 and the last equation from (19).
Similarly, we have that

SH̃

(
h̃1

(
1 − ω

λ1S

))
= − ω

λ1

H̃(h̃1(1 − ω
λ1 S )) − H̃(h̃1(1))

− ω
λ1 S

S→∞−−−→ − ω

λ1
H̃ ′(h̃1(1))h̃′

1(1)

= 1 − �1

�1

1 − ρ1

1 − ρ
ω, (24)

where the last equality follows from the definition of the exhaustiveness factor and
(19). Substituting (23) and (24) into (20) completes the proof (after some rewriting).

�	
Since the right-hand side of (21) is recognized as the LST of the uniform distribu-

tion, Lemma 3.2 leads to the following result for the distribution of the asymptotic

scaled delay, where we take
d−→ to represent convergence in distribution.

Theorem 3.3 In case of deterministic setup times, the distribution of the asymptotic
scaled delay is given by

W1

S
d−→ W ∗

1 = 1 − ρ1

1 − ρ
U1, (S → ∞), (25)

where U1 is uniformly distributed on
[

1−�1
�1

, 1
�1

]
.

Proof Follows directly from Lemma 3.2 in combination with the convergence the-
orem of Feller for Laplace–Stieltjes Transforms (see, e.g., Cohen 1969, page 652).

�	
With the help of Lemma 3.2 we can derive similar results for the PGF of the distri-

bution of the scaled queue length L1
S of queue 1 at arbitrary moments in time. That is,

E
[
y

L1
S

] = E
[
e−λ1 S(1−y

1
S )

W1
S

] S→∞−−−→ E
[
yλ1W ∗

1
]
, (26)

where the first equality follows from application of the distributional form of Little’s
law (Keilson and Servi 1990) and the subsequent limit from the following standard
limiting result,

lim
x→∞ x

(
1 − a

1
x
) = − ln(a). (27)

We immediately observe from (26) that L1
S equals λ1

W1
S in distribution as S → ∞

implying that—although the individual service requests are discrete—the scaled queue
length converges to a continuous uniform distribution in the limit of increasing setup
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times as well. Intuitively, we can say that, when the setup times tend to infinity, the
system behaves like a fluid model where customers keep trickling in and out like water.
We come back to this issue in Sect. 4.

Besides results for queue lengths at arbitrary moments, our framework also allows
us to derive results for the PGF of the distribution of the scaled queue length X1 of
queue 1 at a polling instant of this queue. That is, using (29) from Borst and Boxma
(1997) yields

E
[
y

X1
S

] = e−SH̃(y
1
S ) S→∞−−−→ y

E

[
X1
S

]

, (28)

since

− SH̃
(
y

1
S
) = −S

(
y

1
S − 1

)
(

H̃(y
1
S ) − H̃(1)

y
1
S − 1

)
S→∞−−−→ − ln(y)H̃ ′(1)

= ln(y)E

[
X1

S

]
, (29)

where we have again used (27). In words, this means that the scaled number of cus-
tomers at queue 1 at a polling instant of queue 1 becomes deterministic in the limit
(up to order o(S)).

Theorem 3.3 reveals a number of properties about the dependence of the asymptotic
scaled delay with respect to the system parameters, which are discussed below.

Property 3.4 We have

1. W ∗
1 is independent of the visit order;

2. W ∗
1 depends on the service discipline of queue 1 only through the exhaustiveness

�1;
3. W ∗

1 is independent of the service disciplines of the other queues;
4. W ∗

1 depends on the arrival rate and service time distribution of queue 1 only
through the occupation rate ρ1;

5. W ∗
1 depends on the arrival rate and service time distribution of the other queues

only through the total occupation rate ρ.

First of all, it is important to stress that the above properties are in general not
valid for systems with finite setup times. Property 3.4(2) has the important implica-
tion that one may classify and order various policies simply by their exhaustiveness
factor without conducting a complete analysis of the policies. Furthermore, it implies
that different policies are equivalent — in terms of the asymptotic scaled delay—in
the asymptotic regime by proper adaptation of the policy parameters. For example,
the binomial-gated policy is equivalent to the binomial-exhaustive policy as S tends
to infinity if we set

qi = pi (1 − ρi ), (30)

since in this way the exhaustiveness of both policies is equalized.
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From Theorem 3.3 the moments of the scaled delay can be easily computed as done
in the corollary below.

Corollary 3.5 In case of deterministic setup times, the moments of the asymptotic
scaled delay are given by

E
[
W ∗

1
k] =

(
1 − ρ1

1 − ρ

)k 1 − (1 − �1)
k+1

(k + 1)�k+1
1

. (31)

The closed-form expression for the moments formed by (31) shows the following
(monotonicity) properties of the system.

Property 3.6 For k = 1, 2, . . .,

1. E[W ∗
1

k] monotonically decreases in �1;
2. E[W ∗

1
k] is minimized for �1 = 1.

More colloquially, this means the greater the exhaustiveness of the service disci-
pline at a queue, the smaller all moments of the delay experienced by its customers.
Recall that Property 3.4(3) has already shown that the delay of the customers at the
other queues is independent of the service discipline at the queue under consideration.
These properties are again not generally valid for stable systems with finite setup
times.

Finally, we take a closer look at the central moments of the asymptotic scaled delay
in the corollary below.

Corollary 3.7 In case of deterministic setup times, the central moments of the asymp-
totic scaled delay are given by

E
[
(W ∗

1 − μ)k] =
{

0, k = 1, 3, . . .
1

(k+1)2k , k = 2, 4, . . . ,
(32)

where μ = E[W ∗
1 ].

It is seen that these central moments are independent of all input parameters of all
queues (arrival intensities, service time distribution, setup time distribution, service
discipline, etc). Among other things, this means that the variance of the asymptotic
scaled delay cannot be influenced by the choice of the service discipline. Once more,
this is not generally true for systems with finite setup times. The subsection is closed
with an example.

Example 3.8 Let us return to the policies introduced in Example 3.1.

1. In case of the exhaustive discipline, the scaled delay is uniformly distributed on
[0,

1−ρ1
1−ρ

].
2. When the gated discipline is implemented, the scaled delay follows a uniform

distribution on [ ρ1
1−ρ

, 1
1−ρ

].

123



88 E. M. M. Winands

3. Under the binomial-exhaustive discipline, the scaled delay is uniformly distributed
on the interval [ 1−ρ1

1−ρ
1−q1

q1
,

1−ρ1
1−ρ

1
q1

]
4. In case of the binomial-gated discipline, the scaled delay follows a uniform dis-

tribution on [ 1
1−ρ

1−p1(1−ρ1)
p1

, 1
1−ρ

1
p1

].

3.3 Limit theorems for general setups under heavy traffic

Very recently, Mei (2006) studied the delay distribution for polling systems with gen-
eral branching-type service policies (and general setup time distributions) under heavy
traffic. That is, the delay distribution is considered as function of ρ where the arrival
rates are variable, while the service time distributions and the ratios of the arrival rates
are fixed. Subsequently, a closed-form expression for the scaled asymptotic delay is
obtained, i.e., the limit of 1−ρ times the delay, when ρ tends to 1. Of particular interest
for us is the fact that in heavy traffic the impact of higher moments of the setup times
on the delay distribution vanishes, i.e., the scaled asymptotic delay depends on the
marginal setup time distributions only through the first moment of the total setup time
in a cycle.

The aim of the present subsection is to study the asymptotic delay in a polling
system with generally distributed setups under heavy traffic when the setup times
tend to infinity. The only restriction we make on the setup times is that the first two
moments of all the setup times should exist, i.e., they should be finite. We, firstly, let
the arrival rates increase in such a way that ρ tends to 1, which allows us to exploit the
heavy-traffic results from Mei (2006). Secondly, we let the mean total setup in a cycle
E[S] tend to infinity. This step-by-step plan is formalized in the following lemma.

Lemma 3.9 In case of general setup times, the LST of the distribution of the asymp-
totic scaled delay under heavy traffic is given by

E
[
e−ω(1−ρ)

W1
E[S]

] → 1

(1 − ρ1)ω

(
e
− 1−�1

�1
(1−ρ1)ω − e

− 1
�1

(1−ρ1)ω
)

,

(ρ ↑ 1 and then E[S] → ∞). (33)

Proof First of all, we let ρ tend to 1 in such a way that we can apply the limit theorems
of Mei (2006), which imply that

E
[
e−ω(1−ρ)W1

] → 1

(1 − ρ1)E[S]ω

[(
δβ�1

δβ�1 + (1 − �1)(1 − ρ1)ω

)βδE[S]

−
(

δβ�1

δβ�1 + (1 − ρ1)ω

)βδE[S]]
, ρ ↑ 1, (34)

where

β =
∑N

i=1 λi E[Bi ]∑N
i=1 λi E[B2

i ] , and δ =
N∑

i=1

⎛

⎝ρi (1 − ρi )(1 − �i )

�i
+ ρi

N∑

j=i+1

ρ j

⎞

⎠. (35)
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Applying the following standard limit result,

lim
x→∞

(
a

a + b
x

)cx

= e− bc
a , (36)

to the scaled delay (1−ρ) W1
E[S] in (34) completes the proof (after some straightforward

manipulations). �	

Lemma 3.9 has the following immediate consequence.

Theorem 3.10 In case of general setup times, the distribution of the asymptotic scaled
delay under heavy traffic is given by

(1 − ρ)W1

E[S]
d−→ W̃1 = (1 − ρ1)U1, (ρ ↑ 1 and then E[S] → ∞), (37)

where U1 is uniformly distributed on [ 1−�1
�1

, 1
�1

].

Proof Follows directly from Lemma 3.9 in combination with the convergence theorem
of Feller for Laplace–Stieltjes Transforms (see, e.g., Cohen 1969, page 652). �	

We note that in the case of deterministic setup times Theorem 3.10 with “ρ ↑ 1
and then E[S] → ∞” replaced by “E[S] → ∞ and then ρ ↑ 1” is implied by
Theorem 3.3 and, subsequently, letting ρ tend to 1. Finally, we close this subsection
with an example.

Example 3.11 For a second time, we return to the policies introduced in Example 3.1.

1. In case of the exhaustive discipline, the scaled delay in heavy traffic is uniformly
distributed on [0, 1 − ρ1].

2. When the gated discipline is implemented, the scaled delay in heavy traffic follows
a uniform distribution on [ρ1, 1].

3. Under the binomial-exhaustive discipline, the scaled delay in heavy traffic is uni-
formly distributed on the interval [(1 − ρ1)

1−q1
q1

, (1 − ρ1)
1
q1

]
4. In case of the binomial-gated discipline, the scaled delay in heavy traffic follows

a uniform distribution on [ 1−p1(1−ρ1)
p1

, 1
p1

].

4 Discussion and extensions

In the present section, we not only elaborate on the applicability of the derived limit
theorems—are they of any practical value—but we also discuss possible ways of
extending the present study—partly this has already been done, partly this is left as
work for further research.
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4.1 Approximation

The derived asymptotic results for infinite setup times can be accurately applied in
practice for systems with finite setup times if:

• The total setup time in the system is large and the setup times have low variance;
• The total setup time in the system is large and the system is in heavy traffic.

More specifically, Theorem 3.3 suggests the following simple closed-form approx-
imation for the delay distribution in systems with finite setups,

P[Wi < x] ≈ P

[
W ∗

i <
x

S

]
, (38)

and, similarly for the moments,

E[W k
i ] ≈ Sk

E[W ∗
i

k], k = 1, 2, . . . , (39)

where closed-form expressions for E[W ∗
i

k] are given in Corollary 3.5. Extensive val-
idations of the above approximations fall outside the scope of the present paper, but
we refer to Mei (1999) and Olsen (2001) for numerical evaluations validating the
above approximation in the special cases of exhaustive and gated service disciplines.
Among other things, they show via some cases how “fast” the limiting distribution is
approached. Furthermore, Olsen (2001) shows via numerical testing that similar limit
theorems carry over to more general systems with, e.g., dynamic visit orders.

Since a whole plethora of parameters influences system performance, it is impos-
sible to give a simple threshold for the total setup time above which the asymptotic
results of the present paper lead to accurate results. However, for the first moments
of the waiting times the asymptotics derived lead to accurate approximations in many
practical cases with finite large times (see also our discussion of the practical appli-
cation of our work in this section). Finally, we stress that the variations in the setup
times tend to be small in production systems.

4.2 Intuitive interpretation

The closed-form expression of the scaled delay distribution has an intuitively appeal-
ing interpretation, certainly worth mentioning. That is, in the case of increasing deter-
ministic setup times the polling system converges to a deterministic cyclic system
with continuous deterministic service rates 1

E[Bi ] and continuous demand rates λi ,
i = 1, 2, . . . , N , which reveals itself, for example, in the fact that the scaled number
of customers at queue i at a polling instant of queue i becomes deterministic in the
limit as shown in (28). This means that in the limit the customers arrive to the system
and are served at constant rates with no statistical fluctuation whatsoever and that the
scaled queue lengths can be seen as continuous quantities, see (26). Therefore, the
uniform distribution emerging in the limiting theorems can be explained by the fact
that it represents the position of the server in the cycle on arrival of a tagged customer.
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Furthermore, it is important to note that the lengths of the scaled visit and intervisit
times in such a system, which also converge to a constant, are independent of the indi-
vidual service disciplines. The minimum m and maximum M of the scaled amount of
work at a certain queue during a cycle, however, do depend on the service discipline.
That is, the scaled amount of work at queue 1 ranges between

m = 1 − �i

�i

ρi (1 − ρi )

1 − ρ
, (40)

which is obtained at the end of a visit period of queue i and,

M = 1

�i

ρi (1 − ρi )

1 − ρ
, (41)

which is obtained at a polling instant of queue i . Both the minimum and maximum
scaled amount of work in a cycle are minimized by the exhaustive discipline, which
is in agreement with Property 3.6.

The above intuitive explanation also clearly indicates the difficulties arising in a
system with increasing stochastic setup times, since it is certainly not obvious how
such a polling system behaves in the limit.

4.3 General arrival process

Throughout the present paper, we have assumed that the arrival processes follow Pois-
son distributions. If we take a second look at the intuitive interpretation of our results,
one would however expect that also in case of general (renewal) arrival processes the
polling systems converge to a deterministic cyclic system when the setup times tend to
infinity. Unfortunately, the techniques used throughout the present paper rely heavily
on the Poisson assumption, i.e., we have exploited known results for polling systems
with finite setup times and, subsequently, we have shown that significant simplifica-
tions result as the setup times tend to infinity. However, corresponding polling results
for general arrival processes are not known.

To numerically test the above conjecture for general arrival processes, we have
performed a couple of simulation experiments of exhaustive polling systems based
on the simulation code described in Vuuren and Winands (2007). We consider a sym-
metric polling system with 3 queues, where the service times are exponential with
mean 0.25. Interarrival times have mean 1 and the corresponding squared coefficient
of variation c2

Ai
is varied between 0.25, 0.5, 1 and 2. In order to obtain a distribution

for these interarrival times, we fit a phase-type distribution on the first two moments
as described in Appendix (cf., e.g., Tijms 1994). In case the squared coefficient of
variation equals 1 the arrival distribution is approximated by a Poisson distribution
and this case is included as benchmark.

Table 1 shows the coefficient of variation of the scaled number of customers Xi

at queue i at a polling instant of queue i for varying values of the marginal setup
times Si in a cycle. From (6) in combination with the value of the exhaustiveness
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Table 1 Coefficient of variation of the scaled number of customers at queue i at a polling instant of queue i

c2
Ai

= 0.25 c2
Ai

= 0.5 c2
Ai

= 1 c2
Ai

= 2

General arrival processes

Si = 1 0.121 0.167 0.259 0.444

Si = 10 0.012 0.017 0.026 0.044

Si = 50 0.002 0.003 0.005 0.009

Si = 100 0.001 0.002 0.003 0.004

factor for the exhaustive discipline, i.e., � = 1, we know that in the case of Poisson
arrivals,

E

[
Xi

S

]
= λi

1 − ρi

1 − ρ
= 3, (42)

which also holds for the other arrival processes as could be argued from a standard bal-
ance argument. From Table 1, we clearly see that the coefficient of variation approaches
zero when the setup times tend to infinity. It goes without saying that a highly variable
arrival process has a negative impact on how “fast” the limiting behavior is approached.
Via Chebyshev’s inequality (see, e.g., Papoulis 1984) we know that a random variable
with zero variance follows a deterministic distribution and, therefore, this observation
provides empirical evidence for the fact that the scaled number of customers at queue
i at a polling instant of queue i becomes deterministic. Therefore, it confirms the
validity of our conjecture that the polling system converges to a deterministic cyclic
system as the setup times increase to infinity. Obviously, a more extensive test bed is
needed to test our hypothesis more rigourously, but without doubt extending our work
to general arrival processes is a very interesting topic for further research.

4.4 Joint distributions

The present paper focusses on the marginal delay and queue length distributions, since
these are in most applications the most important performance measures. Among other
things, we have observed that the polling system converges to a deterministic system:
(28) shows, for example, that the scaled number of customers at queue i at a polling
instant of queue i becomes deterministic when the setup times tend to infinity. In the
special case of exhaustive and gated service, Mei (1999) conjectured that the scaled
numbers of customers of all queues become deterministic at such an instant. Within
the framework of the present paper this can be easily rigorously proven. That is, Borst
and Boxma (1997) proves that the fundamental relationship between polling systems
with and without setup times occurs at the level of the joint queue length distribu-
tions. By applying the exact same steps we took in (28) of the present paper to (29)
of Borst and Boxma (1997), which holds for the joint distributions, the methodology
of the present paper can be readily used to prove (and extend to the complete class of
branching-type policies) the conjecture of Mei (1999).
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4.5 Practical application

Our motivation to study the setup time asymptotics in polling systems is based on the
specific application area of base-stock policies in inventory control. In this section this
area of application is discussed in some detail. That is, consider a production-inventory
system with a single production capacity for multiple products, in which there is an
infinite stock space for each product and raw material is always available. Demands for
the various products arrive according to stationary and mutually independent stochas-
tic processes. Demand that cannot be satisfied directly from stock is backlogged until
the product becomes available after production. The individual products are produced
in a make-to-stock fashion with possibly stochastic production times. A possibly sto-
chastic setup time occurs before the start of the production of a product. Finally, only
one product can be produced at a time. This setting is referred to as the stochastic
economic lot scheduling problem (SELSP) (see Winands et al. 2005, for a survey).

In many firms encountering the SELSP, cyclic base-stock policies are used for the
control of the inventory of each product, which work as follows (see, e.g., Federgruen
and Katalan 1996, 1998):

1. the products are produced according to a fixed production sequence;
2. when the machine starts production of a product, it will continue production until

a pre-defined base-stock level has been reached.

Now, the production facility, where the production orders queue up, can be represented
as a polling model by identifying each product with a queue and the demand process
of a product with the arrival process at the corresponding queue (cf. Federgruen and
Katalan 1996, 1998).

The SELSP is a common problem in process industries, where the setup times are
typically extremely large and deterministic. We believe that the results of the present
paper give, therefore, new and fundamental insights into the behavior and perfor-
mance of base-stock policies in process industries. In particular, we have shown that,
in the case of increasing deterministic setup times, the polling system converges to a
deterministic cyclic system. A reasonable hypothesis is that, in practice, production
managers rely more on deterministic production strategies in production environ-
ments with significant setups than they do in environments with small setups in which
stochastic (dynamic) policies seem to be more appropriate. We hope that this observa-
tion stimulates researchers to conduct a large-scale empirical study that investigates
the main characteristics of production strategies in environments both with no—or
negligible—setup times on the one hand and extremely large setup times on the other
hand.

4.6 Heavy traffic

The stability conditions given at the end of Sect. 2 indicate that the delays grow without
bound not only as S → ∞ but also as ρ ↑ 1. The asymptotic analysis of branching-
type polling system in the latter heavy traffic case is the topic of the recent paper (Mei
2006) (see also Sect. 3.3 of the present paper). The limiting behavior in the present
paper turns out to be fundamentally different from that in the heavy-traffic scenario,
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where the gamma distribution shows up time after time. Surprisingly, in such a heavy-
traffic scenario the delay distributions also depend on the service discipline of the
queues only through the exhaustiveness factors. Therefore, the results of the present
paper and Mei (2006) show that the influence of different service policies, but with the
same exhaustiveness, becomes the same when the system is in overload either due to
large setups or to heavy traffic. We stress that the proper operation of polling systems
is particularly critical in such overload situations.

4.7 Globally gated service policy

As alternative for the standard gated policy, Boxma et al. (1992) proposed the so-
called globally gated service policy on which we focus now. Under this policy, when
the server arrives at queue 1, all customers present in the system are marked and dur-
ing the coming cycle all and only the marked customers are served. It is important
to stress that the globally gated service discipline does not satisfy Property 2.1 for
queue i > 1. That is, the number of customers present at the start of a visit to queue i
can be divided into customers standing before the global gate, which are only served
in the next cycle, and behind the global gate, which are served in the current cycle.
These customers are not replaced in an i.i.d. manner, since the former and latter group
are replaced by a random population having probability generating function zi and
βi (

∑N
j=i λ j (1 − z j )), respectively.

Although the globally gated policy closely resembles the regular gated policy, its
analysis is less intricate which in turn allows for the derivation of an explicit expres-
sion for the LST of the delay distribution (in contrast to the gated policy). That is, by
applying a similar approach as in Sect. 3 to (2.20) of Boxma et al. (1992), in case of
deterministic setup times, the LST of the distribution of the asymptotic scaled delay
can be easily shown to be

E

[
e−ω

Wi
S

]
→ 1 − ρ

(1 − ρi )ω
e−

∑i−1
j=1 S j

S ω

(
e−

∑i
j=1 ρ j
1−ρ

ω − e− 1+∑i−1
j=1 ρ j

1−ρ
ω

)
,

i = 1, 2, . . . , N , (S → ∞), (43)

from which again the continuous uniform distribution can be recognized. That is, the
distribution of the asymptotic scaled delay for the globally gated policy reads, for
i = 1, 2, . . . , N ,

Wi

S
d−→ W ∗

i = Ui , (S → ∞), (44)

where Ui is uniformly distributed on [
∑i−1

j=1 S j

S +
∑i

j=1 ρ j

1−ρ
,

∑i−1
j=1 S j

S + 1+∑i−1
j=1 ρ j

1−ρ
].

Remark that terms like
∑i−1

j=1 S j

S converge since we fix the ratios of the setup times
in our analysis. Finally, the following ordering of the mean asymptotic scaled delays
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is readily observed from (44),

E[W ∗
1 ] < E[W ∗

2 ] < · · · < E[W ∗
N ], (45)

which also turns out to hold for the delay in stable polling systems with finite setups
as demonstrated by Boxma et al. (1992).

We wish to end the present paper with some remarks on the methodology used. We
have applied a generating function technique for the asymptotic analysis of branch-
ing-type polling systems, which generalizes and unifies results that were shown before
for the special cases of gated and exhaustive service policies (Mei 1999; Olsen 2001;
Winands 2007). It is not inconceivable that the approach in Mei (1999) could be
extended to the complete class of branching-type policies as well, since the main
building block of Mei (1999), the descendant set approach, is known to be valid for
all branching-type policies. However, such an extension has not been analyzed before
in the literature and, moreover, our approach possesses some additional merits such
as its directness of use, simplicity and generality. In this view, recall that our approach
is also applicable for the computation of joint distributions and policies violating the
branching property such as the globally gated strategy.
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Appendix

To obtain an approximating distribution of a positive random variable X , one may fit a
phase-type distribution on the mean E[X ] and the coefficient of variation cX by using
the following approach (Tijms 1994). First of all, a random variable X is defined to
have to a Coxian distribution of order k if it has to go through up to at most k expo-
nential phases, where phase n has rate μn , n = 1, 2, . . . , k. It starts in phase 1 and
after phase n, n = 1, 2, . . . , k − 1, it ends with probability 1 − pn , whereas it enters
phase n + 1 with probability pn . Finally, pk is defined to equal zero.

Now, the distribution of X is approximated as follows. If c2
X > 1, then the rate

and coefficient of variation of the Coxian2 distribution matches with E[X ] and cX ,
provided the parameters are chosen as (cf. Marie 1980):

μ1 = 2/E[X ], p1 = 1

2c2
X

, and μ2 = p1μ1.

If 1/k ≤ c2
X ≤ 1/(k − 1) for some k ≥ 2, then the rate and coefficient of variation of

the Erlangk−1,k distribution, which is a special case of a Coxian distribution of order
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k, matches with E[X ] and cX , provided the parameters are chosen as (cf. Tijms 1994):

pn = 1, n = 1, 2, . . . , k − 2,

pk−1 = 1 −
kc2

X −
√

k(1 + c2
X ) − k2c2

X

1 + c2
X

,

μ1 = μ2 = · · · = μk = (k − p)E[X ].

Of course, also other phase-type distributions may be fitted on the mean and the
coefficient of variation, but numerical experiments suggest that choosing other distri-
butions only has a minor effect on the results, as shown in Johnson (1993).
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