Skip to main content
Log in

Thermodegradative study of HDPE–HA nanocomposites: IKP and E 2 function

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

IKP and E 2 function methods were used to study thermal stability of HDPE–HA nanocomposites synthesized by in situ ethylene polymerization at different volumes of solvent and temperatures. Thermal analysis was carried out at five different heating rates, β = 3, 5, 7, 10, and 13 °C/min, under N2 atmosphere. Kinetics parameters calculated by IKP method presented a slight increase on activation energy when HA was incorporated in HDPE. A similar tendency was observed in the results obtained from the E 2 function method, where the activation energy of the nanocomposites increased 100 kJ/mol with respect to unfilled polymer (420–460 kJ/mol). These results implied higher stability of HDPE due to HA incorporation. HDPE and HDPE–HA degradation mechanisms are represented by a set of functions, those with the highest probability were: nucleation and nucleus growth (S3) 23 %, reaction order (S5) 16 %, reaction in the interface (S6. S7, S8) 11–14 %, and potential law (S14, S17) 3 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Dalby MJ, Di Silvio L, Harper EJ, Bonfield W (2002) Increasing hydroxyapatite incorporation into poly(methylmethacrylate) cement increases osteoblast adhesion and response. Biomaterials 23(2):569–576

    Article  CAS  Google Scholar 

  2. Hing K, Best A, Bonfield W (1999) Characterization of porous hydroxyapatite. J Mater Sci Mater Med 10(3):135–145

    Article  CAS  Google Scholar 

  3. Yumei X, Dongxiao L, Hongsong F, Xudong L, Zhongwei G, Xingdong Z (2007) Preparation of nano HA–PLA composites by modified PLA for controlling the grow of HA crystals. Mater Lett 61:59–62

    Article  Google Scholar 

  4. Wang M, Bonfield W (2001) Chemically coupled hydroxyapatite-polyethylene composites: structure and properties. Biomaterials 22(11):1311–1320

    Article  CAS  Google Scholar 

  5. Jia L, Wei Z, Li L, Yufeng Z, Lou X (2009) Thermal degradation kinetics of g-HA/PLA composites. Thermochim Acta 493:90–95

    Article  Google Scholar 

  6. Bonfield W, Grynpas MD, Tully AE, Bowman J, Abram J (1981) Hydroxyapatite reinforced polyethylene—a mechanically compatible implant material for bone replacement. Biomaterials 2(3):185–186

    Article  CAS  Google Scholar 

  7. Bonfield W (1988) Hydroxyapatite-reinforced polyethylene as an analogous material for bone replacement. J Am Chem Soc 523:173–177

    CAS  Google Scholar 

  8. Dalby MJ, Di Silvio L, Davies GW, Bonfield W (2000) Surface topography and HA filler volume effect on primary human osteoblasts in vitro. J Mater Sci Mater Med 11(12):805–810

    Article  CAS  Google Scholar 

  9. Rea SM, Best SM, Bonfield W (2004) Bioactivity of ceramic-polymer composites with varied composition and surface topography. J Mater Sci Mater Med 15(9):997–1005

    Article  CAS  Google Scholar 

  10. Wang M, Joseph R, Bonfield W (1998) Hydroxyapatite-polyethylene composites for bone substitution: effects of ceramic particle size and morphology. Biomaterials 19(24):2357–2366

    Article  CAS  Google Scholar 

  11. Shahbazi R, Javadpour J, Khavandi AR (2006) Effect of nanosized reinforcement particles on mechanical properties of high density polyethylene-hydroxyapatite composites. Adv App Ceram 105(5):253–258

    Article  CAS  Google Scholar 

  12. Albano C, Cataño L, Perera R, Karam A, González G (2010) Thermodegradative and morphological behavior of composites of HDPE with surface treated hydroxyapatite. Polym Bull 64(1):67–79

    Article  CAS  Google Scholar 

  13. Budrugeac P (2005) Some methodological problems concerning the kinetic analysis of non-isothermal data for thermal and thermo-oxidative degradation of polymers and polymeric materials. Polym Degrad Stab 89:265–273

    Article  CAS  Google Scholar 

  14. Bojan J, Borivoj A (2007) The use of the IKP method for evaluating the kinetic parameters and the conversion function of the thermal decomposition of NaHCO3 from nonisothermal thermogravimetric data. Int J Chem Kinet 39(8):462–471

    Article  Google Scholar 

  15. Lesnikovich AJ, Levchik SV (1983) A method of finding invariant values of kinetic parameters. J Therm Anal 27:89–93

    Article  CAS  Google Scholar 

  16. Levchik SV, Levchik GF, Lesnikovich AJ (1985) Analysis and development of effective invariant kinetic parameters finding method based on the non-isothermal data. Thermochim Acta 92:157–160

    Article  CAS  Google Scholar 

  17. Lesnikovich AJ, Levchik SV (1985) Isoparametric kinetic relations for chemical transformations in condensed substance. J Therm Anal 30:677–702

    Article  CAS  Google Scholar 

  18. Francois D, Serge B, Rene D, Le Bras Michel (2000) Kinetic medelling of the thermal degradation of polyamide-6 nanocomposite. Eur Polym J 36:273–284

    Article  Google Scholar 

  19. Bourbigot S, Flambard X, Duquesne S (2001) Thermal degradation of poly(p-phenylenezobisoxazole) and poly(p-phenylenediamine terephthalamide) fibres. Polym Int 50:157–164

    Article  CAS  Google Scholar 

  20. Levchick SV, Levchick GF, Guslev VG (1984) Thermolysis of potassium tetraperoxochromate (V). II Linear heating. Thermochim Acta 77(1–3):357–365

    Google Scholar 

  21. Coats AW, Redfern JP (1964) Kinetic parameters from thermogravimetric data. Nature 201:68

    Article  CAS  Google Scholar 

  22. Cataño L, Albano C, Karam A, Perera R, Silva P (2007) Thermal stability evaluation of PA6/LLDPE/SEBS-g-DEM blends. Macromol Symp 257:147–157

    Article  Google Scholar 

  23. Chen H, Lai K, Lin Y (2004) Methods for determining the kinetic parameters from nonisothermal thermogravimetry: a comparison of reliability. J Chem Eng Jpn 37(9):1172–1178

    Article  CAS  Google Scholar 

  24. Koutsopoulos S (2002) Synthesis and a characterization of hydroxyapatite crystals: a review study in analytical methods. J Biomed Mater Res 62(4):600–612

    Article  CAS  Google Scholar 

  25. Keller L (1995) X-ray powder diffraction pattern of calcium phosphate analyzed by Rietveld method. J Biomed Mater Res 29(11):1403–1413

    Article  CAS  Google Scholar 

  26. Albano C, Karam A, Dominguez N, Sanchez Y, Perera R, Gonzalez G (2006) Optimal conditioning for preparation of HDPE-HA composite in an internal mixer. Mol Cryst Liq Cryst 448:251–259

    Google Scholar 

  27. Minkova L, Magagnini PL (1993) Crystallization behaviour and thermal stability of HDPE filled during polymerization. Polym Degrad Stab 42:107–115

    Article  CAS  Google Scholar 

  28. Shiver DF, Drezdozn MA (1986) The manipulation of air-sensitive compounds. The manipulation of air-sensitive compounds. Wiley, Chichester

  29. Xiaochen D, Li W, Libo D, Jianhua L, Jia H (2006) Preparation of nanopolyethylene wire with carbon nanotubes supported Cp2ZrCl2 catalyst. J Appl Polym Sci 101(3):1291–1294

    Article  Google Scholar 

  30. Arman E, Mats J, Richardson CF, Nancollas GH (1993) The characterization of hydroxyapatite preparations. J Colloid Interface Sci 159(1):158–163

    Article  Google Scholar 

  31. Fowler BO (1974) Infrared studies of apatites. I. Vibrational assignments for calcium, strontium, barium hydroxyapatites utilizing isotopic substitution. Inorg Chem 13:194–207

    Article  CAS  Google Scholar 

  32. Bale WF, Bonner JF, Hodge HC, Adeler H, Wreath AR, Bell R (1945) Optical and X-ray diffraction studies of certain calcium phosphates. Ind Eng Chem 17(8):491–495

    CAS  Google Scholar 

  33. Chrissafisa K, Bikiaris D (2011) Can nanoparticles really enhance thermal stability of polymers? Part I: an overview on thermal decomposition of addition polymers. Thermochi Acta 523:1–24

    Article  Google Scholar 

  34. Bikiaris D (2011) Can nanoparticles really enhance thermal stability of polymers? Part II: an overview on thermal decomposition of polycondensation polymers. Thermo Acta 523:25–45

    Article  CAS  Google Scholar 

  35. Jeffery D, Vyazokin PS, Wight CA (2001) Kinetics of the thermal and thermo-oxidative degradation of polystyrene, polyethylene and poly(propylene). Macromol Chem Phys 202:775–784

    Article  Google Scholar 

  36. Albano C, Cataño L, Figuera L, Perera R, Karam A, González G (2009) Evaluation of a composite based on high-density polyethylene filled with surface-treated hydroxyapatite. Polym Bull 64:45–55

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Hermán.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hermán, V., Albano, C., Karam, A. et al. Thermodegradative study of HDPE–HA nanocomposites: IKP and E 2 function. Polym. Bull. 70, 81–96 (2013). https://doi.org/10.1007/s00289-012-0781-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-012-0781-3

Keywords

Navigation