Skip to main content
Log in

An investigation of a nonlocal hyperbolic model for self-organization of biological groups

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this article, we introduce and study a new nonlocal hyperbolic model for the formation and movement of animal aggregations. We assume that the nonlocal attractive, repulsive, and alignment interactions between individuals can influence both the speed and the turning rates of group members. We use analytical and numerical techniques to investigate the effect of these nonlocal interactions on the long-time behavior of the patterns exhibited by the model. We establish the local existence and uniqueness and show that the nonlinear hyperbolic system does not develop shock solutions (gradient blow-up). Depending on the relative magnitudes of attraction and repulsion, we show that the solutions of the model either exist globally in time or may exhibit finite-time amplitude blow-up. We illustrate numerically the various patterns displayed by the model: dispersive aggregations, finite-size groups and blow-up patterns, the latter corresponding to aggregations which may collapse to a point. The transition from finite-size to blow-up patterns is governed by the magnitude of the social interactions and the random turning rates. The presence of these types of patterns and the absence of shocks are consequences of the biologically relevant assumptions regarding the form of the speed and the turning rate functions, as well as of the kernels describing the social interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bertozzi AL, Carrillo JA, Laurent T (2009) Blow-up in multidimensional aggregation equations with mildly singular interaction kernels. Nonlinearity 22: 683–710

    Article  MATH  MathSciNet  Google Scholar 

  • Bressloff PC (2004) Euclidean shift-twist symmetry in population models of self-aligning objects. SIAM J Appl Math 64: 1668–1690

    Article  MATH  MathSciNet  Google Scholar 

  • Bullis HR (1961) Observations on the feeding behavior of white-tip sharks on schooling fishes. Ecology 42: 194–195

    Article  Google Scholar 

  • Bumann D, Krause J (1993) Front individuals lead in shoals of three-spined sticklebacks (Gasterosteus aculeatus) and juvenile roach (Rutilus rutilus). Behaviour 125: 189–198

    Article  Google Scholar 

  • Buskey E, Peterson J, Amber J (1996) The swarming behavior of the copepod Dioithona oculata: in situ and laboratory studies. Limnol Oceanogr 41(3): 513–521

    Article  Google Scholar 

  • Chowdhury D, Nishinary K, Schadschneider A (2004) Self-organized patterns and traffic flow in colonies of organisms: from bacteria and social insects to vertebrates. Phase Trans 77(5): 601–624

    Article  Google Scholar 

  • Couzin ID, Krause J, James R, Ruxton G, Franks NR (2002) Collective memory and spatial sorting in animal groups. J Theor Biol 218: 1–11

    Article  MathSciNet  Google Scholar 

  • Downes J (1969) The swarming and mating flight of diptera. Ann Rev Entomol 14: 271–298

    Article  Google Scholar 

  • Edelstein-Keshet L, Warmough J, Grunbaum D (1998) Do traveling band solutions describe cohesive swarms? An investigation of migratory locusts. J Math Biol 36: 515–549

    Article  MATH  MathSciNet  Google Scholar 

  • Eftimie R, de Vries G, Lewis MA, Lutscher F (2007a) Modeling group formation and activity patterns in self-organizing collectives of individuals. Bull Math Biol 69(5): 1537–1566

    Article  MATH  MathSciNet  Google Scholar 

  • Eftimie R, de Vries G, Lewis MA (2007b) Complex spatial group patterns result from different animal communication mechanisms. Proc Natl Acad Sci 104(17): 6974–6979

    Article  MATH  MathSciNet  Google Scholar 

  • Eftimie R, de Vries G, Lewis MA (2009) Weakly nonlinear analysis of a hyperbolic model for animal group formation. J Math Biol 59(1): 37–74

    Article  MATH  MathSciNet  Google Scholar 

  • Gazi V, Passino K (2002) Stability analysis of swarms. In: Proceedings of American Control Conference, Anchorage, Alaska, pp 1813–1818

  • Gibson G (1985) Swarming behavior of the mosquito Culex pipiens quinquefascitus: a quantitative analysis. Physiol Entomol 10: 283–296

    Article  MathSciNet  Google Scholar 

  • Hemelrijk CK, Kunz H (2004) Density distribution and size sorting in fish schools: an individual-based model. Behav Ecol 16(1): 178–187

    Article  Google Scholar 

  • Hillen T, Painter K (2009) A user’s guide to PDE models for chemotaxis. J Math Biol 58(1–2): 183–217

    Article  MATH  MathSciNet  Google Scholar 

  • Hillen T, Stevens A (2000) Hyperbolic models for chemotaxis in 1-D. Nonlinear Anal Real World Appl 1: 409–433

    Article  MATH  MathSciNet  Google Scholar 

  • Jarman PJ, Jarman MV (1979) The dynamics of ungulate social organization. In: Sinclair ARE, Norton-Griffiths M (eds) Serengeti. Dynamics of an ecosystem. The university of Chicago Press, pp 185–220

  • Lax PD (1973) Hyperbolic systems of conservation laws and the mathematical theory of shock waves. Society for Industrial and Applied Mathematics, Philadelphia, PA. Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, No 11

  • Leverentz AJ, Topaz CM, Bernoff AJ (2009) Asymptotic dynamics of attractive–repulsive swarms. SIAM J Appl Dyn Syst 8(3): 880–908

    Article  MATH  MathSciNet  Google Scholar 

  • Lutscher F (2002) Modeling alignment and movement of animals and cells. J Math Biol 45: 234–260

    Article  MATH  MathSciNet  Google Scholar 

  • Lutscher F, Stevens A (2002) Emerging patterns in a hyperbolic model for locally interacting cell systems. J Nonlinear Sci 12: 619–640

    Article  MATH  MathSciNet  Google Scholar 

  • Mogilner A, Edelstein-Keshet L (1999) A non-local model for a swarm. J Math Biol 38: 534–570

    Article  MATH  MathSciNet  Google Scholar 

  • Mogilner A, Edelstein-Keshet L, Bent L, Spiros A (2003) Mutual interactions, potentials, and individual distance in a social aggregation. J Math Biol 47: 353–389

    Article  MATH  MathSciNet  Google Scholar 

  • Okubo A, Chang H (1974) An analysis of the kinematics of swarming of Anarete pritchardi kim (diptera: Cecidomyiidae). Popul Ecol 16(1): 1–42

    Article  Google Scholar 

  • Okubo A, Grünbaum D, Edelstein-Keshet L (2001) The dynamics of animal grouping. In: Okubo A, Levin S (eds) Diffusion and ecological problems: modern perspectives. Springer, New York, pp 197–237

    Google Scholar 

  • Onouchi T, Nagatani T (2007) Expansion, compression and triangular shockwaves in traffic flow above critical point. Phys A 373: 713–720

    Article  Google Scholar 

  • Othmer H, Stevens A (1997) Aggregation, blowup, and collapse: the abc’s of taxis in reinforced random walks. SIAM J Appl Math 57(4): 1044–1081

    Article  MATH  MathSciNet  Google Scholar 

  • Palsson E, Othmer HG (2000) A model for individual and collective cell movement in Dictyostelium discoideum. Proc Natl Acad Sci USA 97(19): 10448–10453

    Article  Google Scholar 

  • Parrish JK, Viscido SV (2005) Traffic rules of fish schools: a review of agent-based approaches. In: Hemelrijk CK (eds) Self-organisation and evolution of social systems. Cambridge University Press, Cambridge

    Google Scholar 

  • Partridge BL, Pitcher T, Cullen JM, Wilson J (1980) The three-dimensional structure of fish schools. Behav Ecol Sociobiol 6: 277–288

    Article  Google Scholar 

  • Pfistner B (1990) A one dimensional model for the swarming behavior of Myxobacteria. In: Alt W, Hoffmann G (eds) Biological motion, lecture notes on biomathematics, 89. Springer, Heidelberg, pp 556–563

    Google Scholar 

  • Potts WK (1984) The chorus-line hypothesis of manoeuvre coordination in avian flocks. Nature 309: 344–345

    Article  Google Scholar 

  • Rascle M, Ziti C (1995) Finite time blow up in some models of chemotaxis. J Math Biol 33: 388–414

    Article  MATH  MathSciNet  Google Scholar 

  • Sinclair A, Norton-Griffiths M (1979) Serengeti: dynamics of an ecosystem. University of Chicago Press, Chicago

    Google Scholar 

  • Smoller J (1983) Shock waves and reaction–diffusion equations. Grundlehren der Mathematischen Wissenschaften, vol 258. Springer, New York

    Google Scholar 

  • Springer S (1966) Some observations of the behavior of schools of fishes in the gulf of mexico and adjacent waters. Ecology 38: 166–171

    Article  Google Scholar 

  • Tajima Y, Nagatani T (2000) Scaling behavior of crowd flow outside a hall. Phys A 292: 545–554

    MathSciNet  Google Scholar 

  • Topaz CM, Bertozzi AL (2004) Swarming patterns in a two-dimensional kinematic model for biological groups. SIAM J Appl Math 65: 152–174

    Article  MATH  MathSciNet  Google Scholar 

  • Topaz CM, Bertozzi AL, Lewis MA (2006) A nonlocal continuum model for biological aggregation. Bull Math Biol 68: 1601–1623

    Article  MathSciNet  Google Scholar 

  • Treiber M, Hennecke A, Helbing D (1999) Derivation, properties, and simulation of a gas-kinetic-based nonlocal traffic model. Phys Rev E 59(1): 239–253

    Article  Google Scholar 

  • Uvarov B (1966) Grasshoppers and locusts. Centre for Overseas Pest Research, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Razvan C. Fetecau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fetecau, R.C., Eftimie, R. An investigation of a nonlocal hyperbolic model for self-organization of biological groups. J. Math. Biol. 61, 545–579 (2010). https://doi.org/10.1007/s00285-009-0311-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-009-0311-6

Keywords

Mathematics Subject Classification (2000)

Navigation