Skip to main content

Advertisement

Log in

The Gluconeogenic Pathway in a Soil Mycobacterium Isolate with Bioremediation Ability

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Mycobacterium sp. strain KMS was isolated from soils where remediation of polycyclic aromatic hydrocarbons was active. This isolate is a competent plant root colonizer through utilization of an array of carbon substrates available in the root exudates. Bioinformatic analyses based on the KMS genome propose pathways for C4- and C3-intermediate conversions during growth of the isolate on substrates requiring gluconeogenesis. Expression of candidate genes for these pathways was compared using semi-quantitative RT-PCR from cells grown on acetate, succinate, benzoate, or pyrene as sole carbon sources requiring gluconeogenesis during growth. Expression was examined for cells grown on fructose and mannitol, where gluconeogenesis would not be essential. Transcript accumulation in cells grown on all the carbon sources confirmed expression from genes involved in the glyoxylate shunt and a gene encoding a novel enzyme to complete the tricarboxylic acid cycle, a membrane-associated malate:quinone oxidoreductase (MQO). Transcript accumulations for genes encoding phosphoenolpyruvate carboxykinase, malic enzyme, and phosphoenolpyruvate synthase were weak for mannitol growth but were detected for the other carbon sources. Activities for PEP synthase and the membrane-associated MQO were confirmed in cell extracts at different levels indicating feasibility of their function in production of PEP for gluconeogenesis in this soil Mycobacterium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bertin C, Yang X, Weston LA (2003) The role of exudates and allelochemicals in the rhizosphere. Plant Soil 256:67–83

    Article  CAS  Google Scholar 

  2. Beste DJ, Bonde B, Hawkins N et al (2011) ¹³C metabolic flux analysis identifies an unusual route for pyruvate dissimilation in mycobacteria which requires isocitrate lyase and carbon dioxide fixation. PLoS Pathog 7:e1002091

    Article  PubMed  CAS  Google Scholar 

  3. Brennan PJ, Nikaido H (1995) The envelope of mycobacteria. Annu Rev Biochem 64:29–63

    Article  PubMed  CAS  Google Scholar 

  4. Brennan PJ (2003) Structure, function, and biogenesis of the cell wall of Mycobacterium tuberculosis. Tuberculosis 83:91–97

    Article  PubMed  CAS  Google Scholar 

  5. Bruland N, Voss I, Brämer C et al (2010) Unravelling the C3/C4 carbon metabolism in Ralstonia eutropha H16. J Appl Microbiol 109:79–90

    PubMed  CAS  Google Scholar 

  6. Child R, Miller CD, Liang Y et al (2007) Polycyclic aromatic hydrocarbon-degrading Mycobacterium isolates: their association with plant roots. Appl Microbiol Biotechnol 75:655–663

    Article  PubMed  CAS  Google Scholar 

  7. Child R, Miller CD, Liang Y et al (2007) Pyrene mineralization by Mycobacterium sp. strain KMS in a barley rhizosphere. J Environ Qual 36:1260–1265

    Article  PubMed  CAS  Google Scholar 

  8. Cooper RA, Kornberg HL (1965) Net formation of phosphoenolpyruvate from pyruvate by Escherichia coli. Biochim Biophys Acta 104:618–620

    Article  PubMed  CAS  Google Scholar 

  9. de Carvalho LPS, Fischer SM, Marrero J et al (2010) Metabolomics of Mycobacterium tuberculosis reveals compartmentalized co-catabolism of carbon substrates. Chem Biol 17:1122–1131

    Article  PubMed  Google Scholar 

  10. Gourdon P, Baucher MF, Lindley ND et al (2000) Cloning of the malic enzyme gene from Corynebacterium glutamicum and role of the enzyme in lactate metabolism. Appl Environ Microbiol 66:2981–2987

    Article  PubMed  CAS  Google Scholar 

  11. Höner Zu, Bentrup K, Miczak A, Swenson DL et al (1999) Characterization of activity and expression of isocitrate lyase in Mycobacterium avium and Mycobacterium tuberculosis. J Bacteriol 181:7161–7167

    Google Scholar 

  12. Hutchins AM, Holden JF, Adams MW (2001) Phosphoenolpyruvate synthetase from the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 183:709–715

    Article  PubMed  CAS  Google Scholar 

  13. Kather B, Stingl K, van der Rest ME et al (2000) Another unusual type of citric acid cycle enzyme in Helicobacter pylori: the malate:quinone oxidoreductase. J Bacteriol 182:3204–3209

    Article  PubMed  CAS  Google Scholar 

  14. Kim YH, Engesser KH, Cerniglia CE (2003) Two polycyclic aromatic hydrocarbon o-quinone reductases from a pyrene-degrading Mycobacterium. Arch Biochem Biophys 416:209–217

    Article  PubMed  CAS  Google Scholar 

  15. Kim SJ, Kweon O, Jones RC et al (2007) Complete and integrated pyrene degradation pathway in Mycobacterium vanbaalenii PYR-1 based on systems biology. J Bacteriol 189:464–472

    Article  PubMed  CAS  Google Scholar 

  16. Kim SJ, Kweon O, Jones RC et al (2008) Genomic analysis of polycyclic aromatic hydrocarbon degradation in Mycobacterium vanbaalenii PYR-1. Biodegradation 19:859–881

    Article  PubMed  CAS  Google Scholar 

  17. Kitagawa W, Miyauchi K, Masai E et al (2001) Cloning and characterization of benzoate catabolic genes in the gram-positive polychlorinated biphenyl degrader Rhodococcus sp. strain RHA1. J Bacteriol 183:6598–6606

    Article  PubMed  CAS  Google Scholar 

  18. Kornberg HL (1966) The role and control of the glyoxylate cycle in Escherichia coli. Biochem J 99:1–11

    PubMed  CAS  Google Scholar 

  19. Kretzschmar U, Rückert A, Jeoung JH et al (2002) Malate:quinone oxidoreductase is essential for growth on ethanol or acetate in Pseudomonas aeruginosa. Microbiology 148:3839–3847

    PubMed  CAS  Google Scholar 

  20. Imanaka H, Yamatsu A, Fukui T et al (2006) Phosphoenolpyruvate synthase plays an essential role for glycolysis in the modified Embden-Meyerhof pathway in Thermococcus kodakarensis. Mol Microbiol 61:898–909

    Article  PubMed  CAS  Google Scholar 

  21. Lewis DH, Smith DC (1967) Sugar alcohols (polyols) in fungi and green plants: distribution, physiology and metabolism. New Phytol 66:143–184

    Article  CAS  Google Scholar 

  22. Liang Y, Gardner DR, Miller CD et al (2006) Study of biochemical pathways and enzymes involved in pyrene degradation by Mycobacterium sp. strain KMS. Appl Environ Microb 72:7821–7828

    Article  CAS  Google Scholar 

  23. Liu K, Yu J, Russell DG (2003) pckA-deficient Mycobacterium bovis BCG shows attenuated virulence in mice and in macrophages. Microbiology 149:1829–1835

    Article  PubMed  CAS  Google Scholar 

  24. Marrero J, Rhee KY, Schnappinger D et al (2010) Gluconeogenic carbon flow of tricarboxylic acid cycle intermediates is critical for Mycobacterium tuberculosis to establish and maintain infection. Proc Natl Acad Sci USA 107:9819–9824

    Article  PubMed  CAS  Google Scholar 

  25. Miller CD, Hall K, Liang YN et al (2004) Isolation and characterization of polycyclic aromatic hydrocarbon-degrading Mycobacterium isolates from soil. Microb Ecol 48:230–238

    Article  PubMed  CAS  Google Scholar 

  26. Molenaar D, van der Rest ME, Petrović S (1998) Biochemical and genetic characterization of the membrane-associated malate dehydrogenase (acceptor) from Corynebacterium glutamicum. Eur J Biochem 254:395–403

    Article  PubMed  CAS  Google Scholar 

  27. Molenaar D, van der Rest ME, Drysch A et al (2000) Functions of the membrane-associated and cytoplasmic malate dehydrogenases in the citric acid cycle of Corynebacterium glutamicum. J Bacteriol 182:6884–6891

    Article  PubMed  CAS  Google Scholar 

  28. Niersbach M, Kreuzaler F, Geerse RH et al (1992) Cloning and nucleotide sequence of the Escherichia coli K-12 ppsA gene, encoding PEP synthase. Mol Gen Genet 231:332–336

    PubMed  CAS  Google Scholar 

  29. Pliego C, Kamiova F, Lugtenberg B (2011) Plant growth-promoting bacteria: fundamentals and exploitation. In: Bacteria in agrobiology: crop ecosystems. Springer, Berlin. doi:10.1007/978-3-642-18357-7_11

  30. Riedel C, Rittmann D, Dangel P et al (2001) Characterization of the phosphoenolpyruvate carboxykinase gene from Corynebacterium glutamicum and significance of the enzyme for growth and amino acid production. J Mol Microbiol Biotechnol 3:573–583

    PubMed  CAS  Google Scholar 

  31. Titgemeyer F, Amon J, Parche S et al (2007) A genomic view of sugar transport in Mycobacterium smegmatis and Mycobacterium tuberculosis. J Bacteriol 189:5903–5915

    Article  PubMed  CAS  Google Scholar 

  32. Tjaden B, Plagens A, Dörr C et al (2006) Phosphoenolpyruvate synthetase and pyruvate, phosphate dikinase of Thermoproteus tenax: key pieces in the puzzle of archaeal carbohydrate metabolism. Mol Microbiol 60:287–298

    Article  PubMed  CAS  Google Scholar 

  33. van der Rest ME, Frank C, Molenaar D (2000) Functions of the membrane-associated and cytoplasmic malate dehydrogenases in the citric acid cycle of Escherichia coli. J Bacteriol 182:6892–6899

    Article  PubMed  Google Scholar 

  34. Wisselink HW, Weusthuis RA, Eggink G et al (2002) Mannitol production by lactic acid bacteria: a review. Int Dairy J 12:151–161

    Article  CAS  Google Scholar 

  35. Zhang C, Anderson AJ (2012) Multiplicity of genes for aromatic ring-hydroxylating dioxygenases in Mycobacterium isolate KMS and their regulation. Biodegradation. doi:10.1007/s10532-012-9535-z

    Google Scholar 

  36. Zhang C, Anderson AJ (2012) Utilization of pyrene and benzoate in Mycobacterium isolate KMS is regulated differentially by catabolic repression. J App Microbiol. doi:10.1002/jobm.201100480

    Google Scholar 

Download references

Acknowledgments

The authors thank Dr. C. Dimkpa and Dr. D. Welker for comments on the manuscript and the JGI for the funding for sequencing and annotation of the genome. The study was supported in part by the Utah Agricultural Experiment Station, paper number 3045.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 229 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, C., Anderson, A.J. The Gluconeogenic Pathway in a Soil Mycobacterium Isolate with Bioremediation Ability. Curr Microbiol 66, 122–131 (2013). https://doi.org/10.1007/s00284-012-0248-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-012-0248-7

Keywords

Navigation