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AA
magic square is a square array of numbers so
arranged that their sum taken in any row, any
column, or along either diagonal, is the same.

Figure 1a shows a famous example, the ‘‘Lo shu’’, a 3 9 3
specimen of Chinese origin dating from the 4th century BC.

The topic enjoys an extensive literature: books, articles
and websites abound. By now we might expect that vir-
tually every aspect of these curiosities had been exhaus-
tively explored.

Nevertheless, in 2001 I hit upon an innovation that has cast
magic squares in an entirely new light. Viewed anew, numer-
ical magic squares are better understood as a special instance
of a wider class of geometrical magic squares. Traditional
magic squares featuring numbers are then revealed as that
particular case of such a ‘‘geomagic’’ square in which the
elements are all one-dimensional (1-D), which is to say, they
are straight-line segments of a given length.

Consider, for example, a spatial equivalent of the Lo shu
seen in Figure 1b, in which line segments of length 1,2,3,..
replace like-valued numbers in each cell. The three lines
occupying each row, column, and diagonal can be joined
head to tail so as to form or ‘‘pave’’ the same straight line
segment of length 15.

But just as line segments canpave longer line segments, so
areas can pave larger areas, volumes can pack roomier vol-
umes, and so on up through higher dimensions. In traditional
magic squares we add numbers to form a constant sum,
which is to say,we ‘‘pave’’ a one-dimensional spacewithone-
dimensional ‘‘tiles’’. What happens beyond the one-dimen-
sional case?

Figure 2 shows a 3 9 3 two-dimensional (geo)magic
square, its cells occupied by nine distinct planar or 2-D
shapes or ‘‘pieces’’. Any three entries in a straight line can be
assembled to pave an identically shaped region known as the
target, in this case a 6 9 6 square, as shown to right and
below in thefigure.Notehowsomepieces appear oneway in
one target, while flipped and/or rotated in another. Thin grid
lines on pieces within the square help identify their precise
shape and relative size.

(a) (b)
Figure 1. The Lo shu magic square in numerical form (left)

and in geometrical form (right).
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Analogously, 3-D magic squares in which solid pieces
combine to form a constant 3-D target can also be found. I
have one before me as I write, the target of which is a cube;
seeFigure 3. Likewisegeomagic squaresusinghigherdimen-
sional entries also exist, if less easy to visualize. By the
dimension of a geomagic square we refer to the dimension of
its entries. For a formal definition of geomagic squares, see
http://www.GeomagicSquares.com/, which also includes a
large gallery of geomagic squares exhibiting a rich variety of
special properties.

Staying with 2-D types, an array of N 9 N planar pieces is
called ‘‘magic’’ when the N entries occurring in each row,
column, and both main diagonals, can be fitted together jig-
saw-wise to tile an identical region without gaps or overlaps.
In tessellating this target, pieces may be rotated or reflected.

Below we shall see that pieces may also be disjoint or
disconnected. As with numerical magic squares, geomagics
showing repeated entries are deemed trivial. Rotated or

reflected versions of the same specimen are counted identi-
cal. A square of size N 9 N is said to be of order N.

As we have seen, every numerical magic square corre-
sponds to a 1-D geometrical magic square written in
shorthand notation. But this is not to say that numerical
squares account forall possible 1-Dgeomagic squares. In fact
they account only for that subset of 1-D squares using con-
nected line segments. Figure 4 shows a 1-D geomagic square
of order 3 that includesdisjointpieces, or pieces composedof
two or more separated islands bearing a fixed spatial relation
to each other. The overall shape of the compound piece is
thus preserved even if moved. Here the 1-D lines have been
broadened and coloured to enhance clarity, a trick that could
obviously be extended so as to yield a true 2-D geomagic
square sporting rectangular targets. However, the point to be
madehere is that Figure 3 is a 1-Dgeomagic square forwhich
there exists no corresponding numericalmagic square.Magic
squares using numbers thus account for no more than a small
fraction of all 1-D geomagic squares.

There is a second way to create a geometrical analog of
any numerical magic square, which is to use circular arcs or
sectors of appropriate angle, rather than straight line seg-
ments. Figure 5 shows an example based on the Lo shu. Since
the constant sum is 15, the smallest sector subtends an angle
of 360 7 15 = 248. Clearly the target could be replaced by a

Figure 2. A 2-D geomagic square of order 3. The 3 pieces in

any row, column or diagonal tile the same 6 9 6 square target.

Figure 3. A 3-D geomagic square of order 3. The 3 pieces in

any row, column or diagonal pack the same 3 9 3 9 3 cube.

Figure 4. A one-dimensional geomagic square of order 3

using (thickened) disjoint line segments. The target is of length

12 units.
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regular 15-gon, the sectors then changing to 15-gon segments
of corresponding size. Further possible targets may occur to
the reader.

As before, circular arc pieces do not have to be connected.
Figure 6 shows a 3 9 3 square using disjoint arcs, their unit
segments here simplified into single coloured dots. Once
again, such disconnected pieces cannot be represented by

single numbers. But Figure 6 is of greater interest in dem-
onstrating an important, if unsurprising, fact, namely that 2-D
geomagic squares listen to laws different from those holding
for 1-D types.

As shown by the two targets at top, Figure 6 is a ‘‘semi-
panmagic’’ square. That is, in addition to rows, columns, and
main diagonals, the target is tiled by the ‘‘broken’’ diagonals
AFH and CDH. However, the impossibility of a 3 9 3
numerical semi-panmagic square is shown by Figure 7,
which is Lucas’ general formula that describes the structure of
every 3 9 3 numerical magic square.

As with AFH in Figure 6, suppose now that a,b,c in Fig-
ure 7 are assigned values such that (c + a) + (c + a - b) +

(c + a + b) = 3c = the magic constant. But then a equates
to zero, which entails c + a = c - a = c, meaning repeated
entries. A non-trivial solution therefore does not exist.

It was in fact Lucas’s formula that first led to the idea of
geomagic squares. Such algebraic formulas had long held for
me a peculiar fascination. As I put it in an unpublished essay
(Magic Formulae, 1980) on the topic, ‘‘Every algebraic square
is like an x-ray photograph exposing a skeletal structure
underlying the numbers.’’ A vague notion of finding some
kind of graphical representation that would make that skel-
eton visible haunted me for years.

Twenty years later, thinking once again about Lucas’s
formula, I hit on a newapproach. Suppose the three variables
in the formula are each represented by a distinct planar
shape. Then the entry c + a could be shown as shape c
appended to shape a, whereas the entry c - a would become
shape c from which shape a has been excised. And so on for

Figure 6. A semi-panmagic square of order 3 using disjoint

circular arcs. The latter are represented by unit colored dots of

size 360/15 = 24 degrees.

Figure 5. A geometrical version of the Lo shu using circular,

rather than linear segments. Here the target is a complete circle

but could have been any desired fraction thereof.
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Figure 7. An algebraic generalization of numerical magic

squares of order 3, due to the renowned French mathematician

Édouard Lucas [1842–91].

Figure 8. This pictorial representation of Figure 7 first

prompted the idea of a geomagic square.
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the remaining entries. A back-of-the-envelope trial then led
to Figure 8, in which a is a rectangle, b a semi-circle, and c a
relatively larger square, three essentially arbitrary choices.
This result was more effective than anticipated, the match
between keys and keyholes making it easy to imagine the
pieces interlocking, and thus visually obvious that the total
area of any three in a straight line is the same as a rectangle of
size 1 9 3, or three times the area of the central piece, in
agreement with the formula.

However, the fact that the three central row and three
central column pieces do not fit together to complete a
rectangle, as the pieces in all other cases will, now seemed a
glaring flaw. The desire to find a similar square lacking this
defect was then inevitable, and the idea of a geometric magic
square was born. Figure 9 shows a second attempt that made
good the shortcomings of the first.

Note that, like Figure 9, 5 is itself a geometrical analog of
Lucas’s formula, the variables a, b, and c then corresponding
to circular segments of 728, 248, and 1208, respectively. And
the same will go for variants of Figure 5 using alternative
targets. However, although it is natural to regard all such
trivial variants as essentially the same geomagic square, we
should hardly describe Figures 5 and 9 as equivalent, even
though they share a common algebraic ancestor. In fact a
clear definition of equivalence has thus far proved an elusive
quarry, a shortcoming that can sometimes reveal itself in a
degree of ambiguity.

The problem of how to go about producing new geo-
metric magic squares now took centre stage. Followingmuch
deliberation on this question, two approaches gradually
emerged: (1) pencil and paper methods based on algebraic

templates, along the lines just mentioned, (2) in the case of
squares restricted to polyforms or shapes built up from
repeated atoms, brute force searches by computer. Foremost
among the polyforms are polyominos (built up from unit
squares), polyiamonds (equilateral triangles) and polyhexes

Figure 9. A true geomagic square derived by interpreting

Lucas’s formula as a template.

Figure 10. A geomagic square using polyominoes of sizes 1–9.

The very existence of such a square had once seemed a daring

idea. In reality this is oneof 1411 similar solutions, allwith a same

3 9 5 target.

Figure 11. A further example of a square using pieces of

consecutive size, in this case polyhexes. Here the latter have

been reduced to dots and lines to produce a diagram

reminiscent of a well known Chinese rendering of the Lo shu.
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(regular hexagons).On theaforementionedwebsite I present
a selection of someof themore interesting squares brought to
light by these two methods.

In most cases, the examples shown have been discovered
in response to some pertinent question, such as: Does there
exist a 3 9 3 square composed of nine polyominos with sizes
in consecutive order? As a trophy-hunter, I found theprospect
of getting such an exotic gem enticing. Often such questions
entailed weeks of work before arriving at an answer. In this
case, the outcome shattered every expectation. Figure 10
presents one of the 1411 different solutions, target in each
case being a 3 9 5 rectangle. And if this prolixity was sur-
prising, what to make of Figure 11, which is among 169,344
alternatives, the all using 9 polyhexes of the same size [here
reduced to nodes linked by lines] and the same target?

With a single exception, the 2-D squares to followare all of
size 3 9 3 or 4 9 4, larger squares being to my mind of scant
interest. It is a common fallacy that the bigger the square the
greater the achievement, because of the supposed difficulty
of getting so many numbers to comply with the magic con-
ditions. On the contrary, the constraints implied diminish
rapidly with increasing size, as is shown by the algebraic
generalization of the N 9 N numerical magic square, which
canbe written so that it contains N2 – 2N cells each containing
a single free variable.

Turning to the other end of the scale, clearly a magic
square of size 2 9 2 cannot be realized using four distinct
numbers. The smallest numerical magic squares are thus of
order 3, and the same is true of ‘‘semi-magic’’ squares,
which are those that are magic on rows and columns only.
However, Figure 12 shows a non-trivial 2 9 2 semi-magic
square using 2-D pieces. It is based on a finding due to
Michael Reid. Note that besides rows and columns, one
diagonal is magic.

Figure 12. A near miss at a geomagic square of order 2. The

question of whether or not there exists a fully magic solution

occupied me for years.

Figure 13. The first ever 2 9 2 geomagic square due to Frank

Tinkelenberg of the The Netherlands. The square uses

disconnected pieces and a disconnected target. Does there

exist a solution using connected pieces? The question remains

unanswered.

Figure 14. A deceptively simple-seeming geomagic triangle.

The discovery of such specimens is a lot harder than first sight

suggests.
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Figure 15. Order 3 geomagic squares using pieces of the

same area are far rarer (and thus more difficult to find) than

those using unequal pieces. This one uses nine hexominoes.

In searching for such specialities different target shapes must

be tried. The result in this case was felicitous.

Figure 16. This magic jigsaw puzzle is an example of what I

call a ‘‘self-interlocking’’ geomagic square. The 16 pieces are

no longer separated from each other within their cells, but

interlock so as to pave a single square area. I had never

imagined that such a structure was possible until an exami-

nation of the geometrical analogues of certain algebraic magic

squares forced their existence upon me. The visual harmony of

the square is a reflection of the symmetries to be found in the

algebraic magic square on which it is based.

Figure 17. Here the title, Dudeney Type X, is a reference to H.

E. Dudeney, the famous British counterpart to America’s Sam

Loyd, and author of many wonderful puzzle books during the

late 19th and early 20th centuries. Dudeney’s original work on

numerical magic squares included a classification of the 880

normal squares into 12 types, depending upon how their

complementary pairs, 1 and 16, 2 and 15, etc., were distributed.

In his system, the above square is of Type X, or type ten.

Figure 18. A 3 9 3 panmagic or nasik square, which is one

in which every diagonal, broken or otherwise, is magic. In this

case, the target can alsobe formedby any threeof the four corner

pieces. This square was of particular interest to me because, in

the realm of numerical magic squares, panmagics of 3 9 3 are

impossible. The possibility of finding 2-D panmagics of 3 9 3

was thus exciting and their initial discovery anevent to celebrate.

The resort to disjoint pieces is an indication of the difficulty

encountered in finding it. Such nuggets are thin on the ground.

In anas yet unpublishedpaper Iprove that thenineentries in any

2-D panmagic 3 9 3 square can always be rearranged to yield 54

distinct panmagic squares, rotations and reflectionsnot counted.
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Until very recently, every attempt to discover a fully magic
2-D square of order 2 had failed. However, following an
airing of the problem with the recent launch of my website
GeomagicSquares.com, Frank Tinkelenberg, a Dutch soft-
ware developer, finally cracked the problem with a square
using disconnected pieces and a disconnected target; see
Figure 13. In any case, the extreme difficuly met with in
tracking down this solution is merely further confirmation of
the point just made, that the smaller the square, the
greater the constraints, or the fewer the degrees of freedom.
The question now remaining is whether or not there exists a
2 9 2 square using connected pieces? Meanwhile, a
slightly related device can be seen in the magic triangle of
Figure 14.

Figure 3 illustrated the 3-D square with cubic target
referred to earlier. With a little patience the precise shapes of

the pieces can be inferred, although the deficiencies of trying
to present these and higher-dimensional specimens via the
page will be apparent. Two dimensional squares, on the
other hand, present no such difficulty, being not only almost
self-explanatory, but both elegant and ornamental besides.
Hence my focus on 2-D squares in the present article.

Although I am no artist, in creating pictures I have taken
pains to present each square to the best effect. But appear-
ances should not distract. Fundamentally, every square is a
timeless Platonic form, a constellation in the firmament of
logical space consisting in a nexus of geometrical relations.
The latter are of no particular significance perhaps. But for all
that, they remain among the immutable and eternal patterns
woven into the magic carpet of mathematics.

Thegeomagic squares beloware taken from theGallery of
Lee Sallows’s website http://www.GeomagicSquares.com/,
which includes a wealth of further examples, among them
Figures 15– 20, here reproduced.
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Figure 19. The target here is a variation on the first

ever impossible figure that depicted a similar ‘‘object’’, but

using 9 rather than 15 cubes. This was invented by Oscar Reu-

tersvard in 1934. Later, in 1958, Penrose and Penrose, unaware

of Reutersvard’s work, published an equivalent figure com-

posed of three solid beams, nowadays known as the Penrose

tribar. The above is one of two solutions using the same target

and similar ‘‘pieces’’ of size 1,2,..9. The idea of such a target

had occurred to me long ago. Following countless failed

attempts, I finally found a way to do it, eight years later.

Figure 20. A computer-discovered 4 9 4 geomagic square.

Every magic line contains three hexominoes and one hepto-

mino. 3 9 6 + 7 = 5 9 5, the area of the square target.
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