Skip to main content

Advertisement

Log in

Transcriptional regulation of mast cell and basophil lineage commitment

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Basophils and mast cells have long been known to play critical roles in allergic disease and in immunity against parasitic infection. Accumulated evidence also supports that basophils and mast cells have important roles in immune regulations, host defense against bacteria and viruses, and autoimmune diseases. However, origin and molecular regulation of basophil and mast cell differentiation remain incompletely understood. In this review, we focus on recent advances in the understanding of origin and molecular regulation of mouse and human basophil and mast cell development. A more complete understanding of how basophils and mast cells develop at the molecular level will lead to development of interventions that are more effective in achieving long-term success.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

BaPs:

Basophil lineage-restricted progenitors

BM:

Bone marrow

BMCPs:

Basophil/mast cell progenitors

C/EBPα:

CCAAT/enhancer binding protein alpha

CMA1:

Mast cell chymase 1

CMPs:

Common myeloid progenitors

CTMCs:

Connective tissue mast cells

EoBPs:

Eosinophil-basophil progenitors

FOG-1:

Friend of GATA protein 1

GATA1:

GATA-binding protein 1

GATA2:

GATA-binding protein 2

GMPs:

Granulocyte-monocyte progenitors

GPs:

Granulocyte progenitors

HSCs:

Hematopoietic stem cells

IL:

Interleukin

ILC2:

Type 2 innate lymphoid cells

IRF8:

Interferon regulatory factor 8

MCPs:

Mast cell lineage-restricted progenitors

MITF:

Microphthalmia-associated transcription factor

MMCs:

Mucosal mast cells

mMCP-1:

Mouse mast cell protease 1

MPPs:

Multiple potential progenitors

P1-RUNX1:

Distal promoter-derived Runt-related transcription factor 1

PB:

Peripheral blood

pre-BMPs:

Pre-basophil/mast cell progenitors

SL-CMPs:

Sca-1 low common myeloid progenitors

SL-GMPs:

Sca-1 low granulocyte-monocyte progenitors

STAT5:

Signal transducer and activator of transcription 5

TC2:

CD8+ cytotoxic type 2 cells

Th2:

CD4+ helper type 2 cells

TSLP:

Thymic stromal lymphopoietin

References

  1. Anthony RM, Rutitzky LI, Urban JF Jr, Stadecker MJ, Gause WC (2007) Protective immune mechanisms in helminth infection. Nat Rev Immunol 7(12):975–987. doi:10.1038/nri2199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Barnes PJ (2012) Severe asthma: advances in current management and future therapy. J Allergy Clin Immunol 129(1):48–59. doi:10.1016/j.jaci.2011.11.006

    Article  CAS  PubMed  Google Scholar 

  3. Galli SJ, Tsai M (2010) Mast cells in allergy and infection: versatile effector and regulatory cells in innate and adaptive immunity. Eur J Immunol 40(7):1843–1851. doi:10.1002/eji.201040559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Karasuyama H, Mukai K, Obata K, Tsujimura Y, Wada T (2011) Nonredundant roles of basophils in immunity. Annu Rev Immunol 29:45–69. doi:10.1146/annurev-immunol-031210-101257

    Article  CAS  PubMed  Google Scholar 

  5. Siracusa MC, Kim BS, Spergel JM, Artis D (2013) Basophils and allergic inflammation. J Allergy Clin Immunol 132(4):789–801. doi:10.1016/j.jaci.2013.07.046, Quiz 788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Voehringer D (2013) Protective and pathological roles of mast cells and basophils. Nat Rev Immunol 13(5):362–375. doi:10.1038/nri3427

    Article  CAS  PubMed  Google Scholar 

  7. Strait RT, Morris SC, Yang M, Qu XW, Finkelman FD (2002) Pathways of anaphylaxis in the mouse. J Allergy Clin Immunol 109(4):658–668

    Article  CAS  PubMed  Google Scholar 

  8. Finkelman FD (2007) Anaphylaxis: lessons from mouse models. J Allergy Clin Immunol 120(3):506–515. doi:10.1016/j.jaci.2007.07.033, Quiz 516–507

    Article  CAS  PubMed  Google Scholar 

  9. Giacomin PR, Siracusa MC, Walsh KP, Grencis RK, Kubo M, Comeau MR, Artis D (2012) Thymic stromal lymphopoietin-dependent basophils promote Th2 cytokine responses following intestinal helminth infection. J Immunol 189(9):4371–4378. doi:10.4049/jimmunol.1200691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mukai K, BenBarak MJ, Tachibana M, Nishida K, Karasuyama H, Taniuchi I, Galli SJ (2012) Critical role of P1-Runx1 in mouse basophil development. Blood 120(1):76–85. doi:10.1182/blood-2011-12-399113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Perrigoue JG, Saenz SA, Siracusa MC, Allenspach EJ, Taylor BC, Giacomin PR, Nair MG, Du Y, Zaph C, van Rooijen N, Comeau MR, Pearce EJ, Laufer TM, Artis D (2009) MHC class II-dependent basophil-CD4+ T cell interactions promote T(H)2 cytokine-dependent immunity. Nat Immunol 10(7):697–705. doi:10.1038/ni.1740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sullivan BM, Liang HE, Bando JK, Wu D, Cheng LE, McKerrow JK, Allen CD, Locksley RM (2011) Genetic analysis of basophil function in vivo. Nat Immunol 12(6):527–535. doi:10.1038/ni.2036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Oh K, Shen T, Le Gros G, Min B (2007) Induction of Th2 type immunity in a mouse system reveals a novel immunoregulatory role of basophils. Blood 109(7):2921–2927

    CAS  PubMed  Google Scholar 

  14. Min B, Prout M, Hu-Li J, Zhu J, Jankovic D, Morgan ES, Urban JF Jr, Dvorak AM, Finkelman FD, LeGros G, Paul WE (2004) Basophils produce IL-4 and accumulate in tissues after infection with a Th2-inducing parasite. J Exp Med 200(4):507–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ohnmacht C, Voehringer D (2010) Basophils protect against reinfection with hookworms independently of mast cells and memory Th2 cells. J Immunol 184(1):344–350. doi:10.4049/jimmunol.0901841

    Article  CAS  PubMed  Google Scholar 

  16. Ha TY, Reed ND, Crowle PK (1983) Delayed expulsion of adult Trichinella spiralis by mast cell-deficient W/Wv mice. Infect Immun 41(1):445–447

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Urban JF Jr, Schopf L, Morris SC, Orekhova T, Madden KB, Betts CJ, Gamble HR, Byrd C, Donaldson D, Else K, Finkelman FD (2000) Stat6 signaling promotes protective immunity against Trichinella spiralis through a mast cell- and T cell-dependent mechanism. J Immunol 164(4):2046–2052

    Article  CAS  PubMed  Google Scholar 

  18. Abe T, Sugaya H, Yoshimura K, Nawa Y (1992) Induction of the expulsion of Strongyloides ratti and retention of Nippostrongylus brasiliensis in athymic nude mice by repetitive administration of recombinant interleukin-3. Immunology 76(1):10–14

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Khan AI, Horii Y, Tiuria R, Sato Y, Nawa Y (1993) Mucosal mast cells and the expulsive mechanisms of mice against Strongyloides venezuelensis. Int J Parasitol 23(5):551–555

    Article  CAS  PubMed  Google Scholar 

  20. Lantz CS, Boesiger J, Song CH, Mach N, Kobayashi T, Mulligan RC, Nawa Y, Dranoff G, Galli SJ (1998) Role for interleukin-3 in mast-cell and basophil development and in immunity to parasites. Nature 392(6671):90–93. doi:10.1038/32190

    Article  CAS  PubMed  Google Scholar 

  21. Knight PA, Wright SH, Lawrence CE, Paterson YY, Miller HR (2000) Delayed expulsion of the nematode Trichinella spiralis in mice lacking the mucosal mast cell-specific granule chymase, mouse mast cell protease-1. J Exp Med 192(12):1849–1856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Finkelman FD, Shea-Donohue T, Morris SC, Gildea L, Strait R, Madden KB, Schopf L, Urban JF Jr (2004) Interleukin-4- and interleukin-13-mediated host protection against intestinal nematode parasites. Immunol Rev 201:139–155. doi:10.1111/j.0105-2896.2004.00192.x

    Article  CAS  PubMed  Google Scholar 

  23. Kumamoto Y, Linehan M, Weinstein JS, Laidlaw BJ, Craft JE, Iwasaki A (2013) CD301b(+) dermal dendritic cells drive T helper 2 cell-mediated immunity. Immunity 39(4):733–743. doi:10.1016/j.immuni.2013.08.029

    Article  CAS  PubMed  Google Scholar 

  24. Otsuka A, Nakajima S, Kubo M, Egawa G, Honda T, Kitoh A, Nomura T, Hanakawa S, Sagita Moniaga C, Kim B, Matsuoka S, Watanabe T, Miyachi Y, Kabashima K (2013) Basophils are required for the induction of Th2 immunity to haptens and peptide antigens. Nat Commun 4:1739. doi:10.1038/ncomms2740

    Article  PubMed  Google Scholar 

  25. Tang H, Cao W, Kasturi SP, Ravindran R, Nakaya HI, Kundu K, Murthy N, Kepler TB, Malissen B, Pulendran B (2010) The T helper type 2 response to cysteine proteases requires dendritic cell-basophil cooperation via ROS-mediated signaling. Nat Immunol 11(7):608–617. doi:10.1038/ni.1883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Charles N, Hardwick D, Daugas E, Illei GG, Rivera J (2010) Basophils and the T helper 2 environment can promote the development of lupus nephritis. Nat Med 16(6):701–707. doi:10.1038/nm.2159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bischof A, Brumshagen C, Ding N, Kirchhof G, Briles DE, Gessner JE, Welte T, Mack M, Maus UA (2014) Basophil expansion protects against invasive pneumococcal disease in mice. J Infect Dis 210(1):14–24. doi:10.1093/infdis/jiu056

    Article  PubMed  Google Scholar 

  28. Denzel A, Maus UA, Rodriguez Gomez M, Moll C, Niedermeier M, Winter C, Maus R, Hollingshead S, Briles DE, Kunz-Schughart LA, Talke Y, Mack M (2008) Basophils enhance immunological memory responses. Nat Immunol 9(7):733–742. doi:10.1038/ni.1621

    Article  CAS  PubMed  Google Scholar 

  29. Cerny-Reiterer S, Ghanim V, Hoermann G, Aichberger KJ, Herrmann H, Muellauer L, Repa A, Sillaber C, Walls AF, Mayerhofer M, Valent P (2012) Identification of basophils as a major source of hepatocyte growth factor in chronic myeloid leukemia: a novel mechanism of BCR-ABL1-independent disease progression. Neoplasia 14(7):572–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yasuda H, Aritaka N, Ando J, Hirama M, Komatsu N, Hirano T (2011) Chronic myelogenous leukemia with mild basophilia as the predominant manifestation at presentation. Intern Med 50(5):501–502

    Article  PubMed  Google Scholar 

  31. Bain BJ, Heller M (2011) Dysplastic basophils in the accelerated phase of chronic myelogenous leukemia. Am J Hematol 86(11):949. doi:10.1002/ajh.22056

    Article  PubMed  Google Scholar 

  32. Wimazal F, Germing U, Kundi M, Noesslinger T, Blum S, Geissler P, Baumgartner C, Pfeilstoecker M, Valent P, Sperr WR (2010) Evaluation of the prognostic significance of eosinophilia and basophilia in a larger cohort of patients with myelodysplastic syndromes. Cancer 116(10):2372–2381. doi:10.1002/cncr.25036

    PubMed  Google Scholar 

  33. Guermonprez P, Helft J, Claser C, Deroubaix S, Karanje H, Gazumyan A, Darasse-Jeze G, Telerman SB, Breton G, Schreiber HA, Frias-Staheli N, Billerbeck E, Dorner M, Rice CM, Ploss A, Klein F, Swiecki M, Colonna M, Kamphorst AO, Meredith M, Niec R, Takacs C, Mikhail F, Hari A, Bosque D, Eisenreich T, Merad M, Shi Y, Ginhoux F, Renia L, Urban BC, Nussenzweig MC (2013) Inflammatory Flt3l is essential to mobilize dendritic cells and for T cell responses during Plasmodium infection. Nat Med 19(6):730–738. doi:10.1038/nm.3197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lu LF, Lind EF, Gondek DC, Bennett KA, Gleeson MW, Pino-Lagos K, Scott ZA, Coyle AJ, Reed JL, Van Snick J, Strom TB, Zheng XX, Noelle RJ (2006) Mast cells are essential intermediaries in regulatory T-cell tolerance. Nature 442(7106):997–1002. doi:10.1038/nature05010

    Article  CAS  PubMed  Google Scholar 

  35. Shen T, Kim S, Do JS, Wang L, Lantz C, Urban JF, Le Gros G, Min B (2008) T cell-derived IL-3 plays key role in parasite infection-induced basophil production but is dispensable for in vivo basophil survival. Int Immunol 20(9):1201–1209. doi:10.1093/intimm/dxn077

    Article  CAS  PubMed  Google Scholar 

  36. Ohmori K, Luo Y, Jia Y, Nishida J, Wang Z, Bunting KD, Wang D, Huang H (2009) IL-3 induces basophil expansion in vivo by directing granulocyte-monocyte progenitors to differentiate into basophil lineage-restricted progenitors in the bone marrow and by increasing the number of basophil/mast cell progenitors in the spleen. J Immunol 182(5):2835–2841. doi:10.4049/jimmunol.0802870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Siracusa MC, Wojno ED, Artis D (2012) Functional heterogeneity in the basophil cell lineage. Adv Immunol 115:141–159. doi:10.1016/B978-0-12-394299-9.00005-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Siracusa MC, Saenz SA, Hill DA, Kim BS, Headley MB, Doering TA, Wherry EJ, Jessup HK, Siegel LA, Kambayashi T, Dudek EC, Kubo M, Cianferoni A, Spergel JM, Ziegler SF, Comeau MR, Artis D (2011) TSLP promotes interleukin-3-independent basophil haematopoiesis and type 2 inflammation. Nature 477(7363):229–233. doi:10.1038/nature10329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Barrett NA, Austen KF (2009) Innate cells and T helper 2 cell immunity in airway inflammation. Immunity 31(3):425–437. doi:10.1016/j.immuni.2009.08.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Miller HR, Pemberton AD (2002) Tissue-specific expression of mast cell granule serine proteinases and their role in inflammation in the lung and gut. Immunology 105(4):375–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Stevens RL, Adachi R (2007) Protease-proteoglycan complexes of mouse and human mast cells and importance of their beta-tryptase-heparin complexes in inflammation and innate immunity. Immunol Rev 217:155–167. doi:10.1111/j.1600-065X.2007.00525.x

    Article  CAS  PubMed  Google Scholar 

  42. Chen CC, Grimbaldeston MA, Tsai M, Weissman IL, Galli SJ (2005) Identification of mast cell progenitors in adult mice. Proc Natl Acad Sci U S A 102(32):11408–11413. doi:10.1073/pnas.0504197102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Franco CB, Chen CC, Drukker M, Weissman IL, Galli SJ (2010) Distinguishing mast cell and granulocyte differentiation at the single-cell level. Cell Stem Cell 6(4):361–368. doi:10.1016/j.stem.2010.02.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Arinobu Y, Iwasaki H, Gurish MF, Mizuno S, Shigematsu H, Ozawa H, Tenen DG, Austen KF, Akashi K (2005) Developmental checkpoints of the basophil/mast cell lineages in adult murine hematopoiesis. Proc Natl Acad Sci U S A 102(50):18105–18110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Qi X, Hong J, Chaves L, Zhuang Y, Chen Y, Wang D, Chabon J, Graham B, Ohmori K, Li Y, Huang H (2013) Antagonistic regulation by the transcription factors C/EBP alpha and MITF specifies basophil and mast cell fates. Immunity 39(1):97–110. doi:10.1016/j.immuni.2013.06.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ohnmacht C, Voehringer D (2009) Basophil effector function and homeostasis during helminth infection. Blood 113(12):2816–2825. doi:10.1182/blood-2008-05-154773

    Article  CAS  PubMed  Google Scholar 

  47. Metcalf D, Ng AP, Baldwin TM, Di Rago L, Mifsud S (2013) Concordant mast cell and basophil production by individual hematopoietic blast colony-forming cells. Proc Natl Acad Sci U S A 110(22):9031–9035. doi:10.1073/pnas.1307711110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sasaki H, Kurotaki D, Osato N, Sato H, Sasaki I, Koizumi S, Wang H, Kaneda C, Nishiyama A, Kaisho T, Aburatani H, Morse HC 3rd, Ozato K, Tamura T (2015) Transcription factor IRF8 plays a critical role in the development of murine basophils and mast cells. Blood 125(2):358–369. doi:10.1182/blood-2014-02-557983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Buhring HJ, Simmons PJ, Pudney M, Muller R, Jarrossay D, van Agthoven A, Willheim M, Brugger W, Valent P, Kanz L (1999) The monoclonal antibody 97A6 defines a novel surface antigen expressed on human basophils and their multipotent and unipotent progenitors. Blood 94(7):2343–2356

    CAS  PubMed  Google Scholar 

  50. Gorgens A, Radtke S, Mollmann M, Cross M, Durig J, Horn PA, Giebel B (2013) Revision of the human hematopoietic tree: granulocyte subtypes derive from distinct hematopoietic lineages. Cell Rep 3(5):1539–1552. doi:10.1016/j.celrep.2013.04.025

    Article  PubMed  Google Scholar 

  51. Leary AG, Ogawa M (1984) Identification of pure and mixed basophil colonies in culture of human peripheral blood and marrow cells. Blood 64(1):78–83

    CAS  PubMed  Google Scholar 

  52. Denburg JA, Telizyn S, Messner H, Lim B, Jamal N, Ackerman SJ, Gleich GJ, Bienenstock J (1985) Heterogeneity of human peripheral blood eosinophil-type colonies: evidence for a common basophil-eosinophil progenitor. Blood 66(2):312–318

    CAS  PubMed  Google Scholar 

  53. Poch T, Hermansky F, Lodrova V (1973) A contribution to the simultaneous appearance of basophilic and eosinophilic granules in chronic myelocytic leukemia. Neoplasma 20(4):413–417

    CAS  PubMed  Google Scholar 

  54. Weil SC, Hrisinko MA (1987) A hybrid eosinophilic-basophilic granulocyte in chronic granulocytic leukemia. Am J Clin Pathol 87(1):66–70

    Article  CAS  PubMed  Google Scholar 

  55. Boyce JA, Friend D, Matsumoto R, Austen KF, Owen WF (1995) Differentiation in vitro of hybrid eosinophil/basophil granulocytes: autocrine function of an eosinophil developmental intermediate. J Exp Med 182(1):49–57

    Article  CAS  PubMed  Google Scholar 

  56. Kocabas CN, Yavuz AS, Lipsky PE, Metcalfe DD, Akin C (2005) Analysis of the lineage relationship between mast cells and basophils using the c-kit D816V mutation as a biologic signature. J Allergy Clin Immunol 115(6):1155–1161. doi:10.1016/j.jaci.2005.02.030

    Article  CAS  PubMed  Google Scholar 

  57. Andoh K, Piao JH, Terashima K, Nakamura H, Sano K (1999) Genomic structure and promoter analysis of the ecto-phosphodiesterase I gene (PDNP3) expressed in glial cells. Biochim Biophys Acta 1446(3):213–224

    Article  CAS  PubMed  Google Scholar 

  58. Buhring HJ, Streble A, Valent P (2004) The basophil-specific ectoenzyme E-NPP3 (CD203c) as a marker for cell activation and allergy diagnosis. Int Arch Allergy Immunol 133(4):317–329. doi:10.1159/000077351

    Article  PubMed  Google Scholar 

  59. Ono E, Taniguchi M, Higashi N, Mita H, Kajiwara K, Yamaguchi H, Tatsuno S, Fukutomi Y, Tanimoto H, Sekiya K, Oshikata C, Tsuburai T, Tsurikisawa N, Otomo M, Maeda Y, Hasegawa M, Miyazaki E, Kumamoto T, Akiyama K (2010) CD203c expression on human basophils is associated with asthma exacerbation. J Allergy Clin Immunol 125(2):483–489. doi:10.1016/j.jaci.2009.10.074, e483

    Article  CAS  PubMed  Google Scholar 

  60. Buhring HJ, Seiffert M, Giesert C, Marxer A, Kanz L, Valent P, Sano K (2001) The basophil activation marker defined by antibody 97A6 is identical to the ectonucleotide pyrophosphatase/phosphodiesterase 3. Blood 97(10):3303–3305

    Article  CAS  PubMed  Google Scholar 

  61. Nei Y, Obata-Ninomiya K, Tsutsui H, Ishiwata K, Miyasaka M, Matsumoto K, Nakae S, Kanuka H, Inase N, Karasuyama H (2013) GATA-1 regulates the generation and function of basophils. Proc Natl Acad Sci U S A 110(46):18620–18625. doi:10.1073/pnas.1311668110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Iwasaki H, Mizuno S, Arinobu Y, Ozawa H, Mori Y, Shigematsu H, Takatsu K, Tenen DG, Akashi K (2006) The order of expression of transcription factors directs hierarchical specification of hematopoietic lineages. Genes Dev 20(21):3010–3021. doi:10.1101/gad.1493506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Shelburne CP, McCoy ME, Piekorz R, Sexl V, Roh KH, Jacobs-Helber SM, Gillespie SR, Bailey DP, Mirmonsef P, Mann MN, Kashyap M, Wright HV, Chong HJ, Bouton LA, Barnstein B, Ramirez CD, Bunting KD, Sawyer S, Lantz CS, Ryan JJ (2003) Stat5 expression is critical for mast cell development and survival. Blood 102(4):1290–1297. doi:10.1182/blood-2002-11-3490

    Article  CAS  PubMed  Google Scholar 

  64. Migliaccio AR, Rana RA, Sanchez M, Lorenzini R, Centurione L, Bianchi L, Vannucchi AM, Migliaccio G, Orkin SH (2003) GATA-1 as a regulator of mast cell differentiation revealed by the phenotype of the GATA-1low mouse mutant. J Exp Med 197(3):281–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ohneda K, Moriguchi T, Ohmori S, Ishijima Y, Satoh H, Philipsen S, Yamamoto M (2014) Transcription factor GATA1 is dispensable for mast cell differentiation in adult mice. Mol Cell Biol 34(10):1812–1826. doi:10.1128/MCB.01524-13

    Article  PubMed  PubMed Central  Google Scholar 

  66. Tsai FY, Orkin SH (1997) Transcription factor GATA-2 is required for proliferation/survival of early hematopoietic cells and mast cell formation, but not for erythroid and myeloid terminal differentiation. Blood 89(10):3636–3643

    CAS  PubMed  Google Scholar 

  67. Ohmori S, Takai J, Ishijima Y, Suzuki M, Moriguchi T, Philipsen S, Yamamoto M, Ohneda K (2012) Regulation of GATA factor expression is distinct between erythroid and mast cell lineages. Mol Cell Biol 32(23):4742–4755. doi:10.1128/MCB.00718-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sugiyama D, Tanaka M, Kitajima K, Zheng J, Yen H, Murotani T, Yamatodani A, Nakano T (2008) Differential context-dependent effects of friend of GATA-1 (FOG-1) on mast-cell development and differentiation. Blood 111(4):1924–1932. doi:10.1182/blood-2007-08-104489

    Article  CAS  PubMed  Google Scholar 

  69. Cantor AB, Iwasaki H, Arinobu Y, Moran TB, Shigematsu H, Sullivan MR, Akashi K, Orkin SH (2008) Antagonism of FOG-1 and GATA factors in fate choice for the mast cell lineage. J Exp Med 205(3):611–624. doi:10.1084/jem.20070544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kitamura Y, Morii E, Jippo T, Ito A (2002) Regulation of mast cell phenotype by MITF. Int Arch Allergy Immunol 127(2):106–109

    Article  CAS  PubMed  Google Scholar 

  71. Takemoto CM, Lee Y-N, Jegga AG, Zablocki D, Brandal S, Shahlaee A, Huang S, Ye Y, Gowrisankar S, Huynh J, McDevitt MA (2008) Mast cell transcriptional networks. Blood Cell Mol Dis 41(1):82–90

    Article  CAS  Google Scholar 

  72. Li Y, Qi X, Liu B, Huang H (2015) The STAT5-GATA2 pathway is critical in basophil and mast cell differentiation and maintenance. J Immunol. doi:10.4049/jimmunol.1500018

    Google Scholar 

  73. Ohmori S, Moriguchi T, Noguchi Y, Ikeda M, Kobayashi K, Tomaru N, Ishijima Y, Ohneda O, Yamamoto M, Ohneda K (2015) GATA2 is critical for the maintenance of cellular identity in differentiated mast cells derived from mouse bone marrow. Blood 125(21):3306–3315. doi:10.1182/blood-2014-11-612465

    Article  CAS  PubMed  Google Scholar 

  74. Hodgkinson CA, Moore KJ, Nakayama A, Steingrimsson E, Copeland NG, Jenkins NA, Arnheiter H (1993) Mutations at the mouse microphthalmia locus are associated with defects in a gene encoding a novel basic-helix-loop-helix-zipper protein. Cell 74(2):395–404

    Article  CAS  PubMed  Google Scholar 

  75. Steingrimsson E, Copeland NG, Jenkins NA (2004) Melanocytes and the microphthalmia transcription factor network. Annu Rev Genet 38:365–411. doi:10.1146/annurev.genet.38.072902.092717

    Article  CAS  PubMed  Google Scholar 

  76. Oboki K, Morii E, Kitamura Y (2004) Deficient eosinophil chemotaxis-promoting activity of genetically normal mast cells transplanted into subcutaneous tissue of Mitfmi-vga9/Mitfmi-vga9 mice: comparison of the activity and mast cell distribution pattern with KitW/KitW-v mice. Am J Pathol 165(4):1141–1150. doi:10.1016/S0002-9440(10)63375-5

    Article  PubMed  PubMed Central  Google Scholar 

  77. Shahlaee AH, Brandal S, Lee YN, Jie C, Takemoto CM (2007) Distinct and shared transcriptomes are regulated by microphthalmia-associated transcription factor isoforms in mast cells. J Immunol 178(1):378–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mullen AC, Hutchins AS, High FA, Lee HW, Sykes KJ, Chodosh LA, Reiner SL (2002) Hlx is induced by and genetically interacts with T-bet to promote heritable T(H)1 gene induction. Nat Immunol 3(7):652–658. doi:10.1038/ni807

    CAS  PubMed  Google Scholar 

  79. Djuretic IM, Levanon D, Negreanu V, Groner Y, Rao A, Ansel KM (2007) Transcription factors T-bet and Runx3 cooperate to activate Ifng and silence Il4 in T helper type 1 cells. Nat Immunol 8(2):145–153. doi:10.1038/ni1424

    Article  CAS  PubMed  Google Scholar 

  80. Laslo P, Spooner CJ, Warmflash A, Lancki DW, Lee HJ, Sciammas R, Gantner BN, Dinner AR, Singh H (2006) Multilineage transcriptional priming and determination of alternate hematopoietic cell fates. Cell 126(4):755–766. doi:10.1016/j.cell.2006.06.052

    Article  CAS  PubMed  Google Scholar 

  81. Dahl R, Walsh JC, Lancki D, Laslo P, Iyer SR, Singh H, Simon MC (2003) Regulation of macrophage and neutrophil cell fates by the PU.1:C/EBPalpha ratio and granulocyte colony-stimulating factor. Nat Immunol 4(10):1029–1036. doi:10.1038/ni973

    Article  CAS  PubMed  Google Scholar 

  82. Walsh JC, DeKoter RP, Lee HJ, Smith ED, Lancki DW, Gurish MF, Friend DS, Stevens RL, Anastasi J, Singh H (2002) Cooperative and antagonistic interplay between PU.1 and GATA-2 in the specification of myeloid cell fates. Immunity 17(5):665–676

    Article  CAS  PubMed  Google Scholar 

  83. Rao KN, Smuda C, Gregory GD, Min B, Brown MA (2013) Ikaros limits basophil development by suppressing C/EBP-alpha expression. Blood 122(15):2572–2581. doi:10.1182/blood-2013-04-494625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yamazaki S, Nakano N, Honjo A, Hara M, Maeda K, Nishiyama C, Kitaura J, Ohtsuka Y, Okumura K, Ogawa H, Shimizu T (2015) The transcription factor Ehf is involved in TGF-beta-induced suppression of FcepsilonRI and c-Kit expression and FcepsilonRI-mediated activation in mast cells. J Immunol 195(7):3427–3435. doi:10.4049/jimmunol.1402856

    Article  CAS  PubMed  Google Scholar 

  85. Gurzeler U, Rabachini T, Dahinden CA, Salmanidis M, Brumatti G, Ekert PG, Echeverry N, Bachmann D, Simon HU, Kaufmann T (2013) In vitro differentiation of near-unlimited numbers of functional mouse basophils using conditional Hoxb8. Allergy 68(5):604–613. doi:10.1111/all.12140

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by grant from the National Institutes of Health (5R01AI107022-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Huang.

Ethics declarations

We have complied with Ethics Guidelines.

Conflict of interest

We have no conflict of interest.

Human and animal rights and informed consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is a contribution to the special issue on Basophils and Mast Cells in Immunity and Inflammation - Guest Editor: Hajime Karasuyama

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Li, Y. & Liu, B. Transcriptional regulation of mast cell and basophil lineage commitment. Semin Immunopathol 38, 539–548 (2016). https://doi.org/10.1007/s00281-016-0562-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-016-0562-4

Keywords

Navigation