Skip to main content

Advertisement

Log in

Cysteine-rich matricellular protein improves callus regenerate in a rabbit trauma model

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

Open fractures with severe soft-tissue trauma are predisposed to poor bone healing. The vital coupling between osteo- and angiogenesis is disturbed. Cysteine-rich protein 61 (CYR61) is an angiogenic inducer promoting vascularisation. However, little is known about the effect of CYR61 on the callus regenerate after acute musculoskeletal trauma. Therefore, our aim was to determine whether local administration of CYR61: (1) has an influence on callus formation and remodelling, (2) increases bone volume and (3) partially restores callus stability.

Methods

A musculoskeletal trauma was created in 20 rabbits. To simulate fracture-site debridement, the limb was shortened. In the test group, a CYR61-coated collagen matrix was locally applied around the osteotomy. After ten days, gradual distraction was commenced (0.5 mm/12 h) to restore the original length. New bone formation was evaluated histomorphometrically, radiographically and biomechanically.

Results

Osseus consolidation occured in all animals. Average maximum callus diameter was higher in the test group [1.39 mm; standard deviation (SD) = 0.078 vs 1.26 mm (SD = 0.14); p = 0.096]. In addition, bone volume was higher (p = 0.11) in the test group, with a mean value of 49.73 % (SD = 13.68) compared with 37.6 % (SD = 5.91). Torsional strength was significantly higher (p = 0.005) in the test group [105.43 % (SD = 31.68 %) vs. 52.57 % (SD = 24.39)]. Instead, stiffness of the newly reconstructed callus decreased (64.21 % (SD = 11.52) vs. 71.30 % (SD = 32.25) (p = 0.81)).

Conclusions

CYR61 positively influences callus regenerate after acute trauma, not only histologically and radiographically but also biomechanically, most probably by a CYR61-associated pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Meffert RH, Tis JE, Inoue N, McCarthy EF, Brug E, Chao EY (2000) Primary resective shortening followed by distraction osteogenesis for limb reconstruction: a comparison with simple lengthening. J Orthop Res 18(4):629–636. doi:10.1002/jor.1100180416

    Article  PubMed  CAS  Google Scholar 

  2. Mollenhoff G, Josten C, Muhr G (1997) Callotaxis--osteogenesis by stretching--a conservative possibility for restoring leg length after post-traumatic primary tibial shortening? Zentralbl Chir 122(11):970–973

    PubMed  CAS  Google Scholar 

  3. Betz AM, Hierner R, Baumgart R, Stock W, Sebisch E, Kettler M, Schweiberer L (1998) Primary shortening–secondary lengthening. A new treatment concept for reconstruction of extensive soft tissue and bone injuries after 3rd degree open fracture and amputation of the lower leg. Handchir Mikrochir Plast Chir 30(1):30–39

    PubMed  CAS  Google Scholar 

  4. Borovecki F, Pecina-Slaus N, Vukicevic S (2007) Biological mechanisms of bone and cartilage remodelling--genomic perspective. Int Orthop 31(6):799–805. doi:10.1007/s00264-007-0408-8

    Article  PubMed  CAS  Google Scholar 

  5. Ivkovic A, Marijanovic I, Hudetz D, Porter RM, Pecina M, Evans CH (2011) Regenerative medicine and tissue engineering in orthopaedic surgery. Front Biosci (Elite Ed) 3:923–944

    Google Scholar 

  6. Schmid J, Wallkamm B, Hammerle CH, Gogolewski S, Lang NP (1997) The significance of angiogenesis in guided bone regeneration. A case report of a rabbit experiment. Clin Oral Implants Res 8(3):244–248

    Article  PubMed  CAS  Google Scholar 

  7. Kolar P, Gaber T, Perka C, Duda GN, Buttgereit F (2011) Human early fracture hematoma is characterized by inflammation and hypoxia. Clin Orthop Relat Res 469(11):3118–3126. doi:10.1007/s11999-011-1865-3

    Article  PubMed  Google Scholar 

  8. Groothuis A, Duda GN, Wilson CJ, Thompson MS, Hunter MR, Simon P, Bail HJ, van Scherpenzeel KM, Kasper G (2010) Mechanical stimulation of the pro-angiogenic capacity of human fracture haematoma: involvement of VEGF mechano-regulation. Bone 47(2):438–444. doi:10.1016/j.bone.2010.05.026

    Article  PubMed  CAS  Google Scholar 

  9. Meffert RH, Jansen H, Frey SP, Raschke MJ, Langer M (2007) The influence of soft tissue trauma on bone regeneration after acute limb shortening. Clin Orthop Relat Res 460:202–209. doi:10.1097/BLO.0b013e31804a5e12

    PubMed  Google Scholar 

  10. Lienau J, Schell H, Epari DR, Schutze N, Jakob F, Duda GN, Bail HJ (2006) CYR61 (CCN1) protein expression during fracture healing in an ovine tibial model and its relation to the mechanical fixation stability. J Orthop Res 24(2):254–262. doi:10.1002/jor.20035

    Article  PubMed  CAS  Google Scholar 

  11. Kireeva ML, Mo FE, Yang GP, Lau LF (1996) Cyr61, a product of a growth factor-inducible immediate-early gene, promotes cell proliferation, migration, and adhesion. Mol Cell Biol 16(4):1326–1334

    PubMed  CAS  Google Scholar 

  12. Schutze N, Kunzi-Rapp K, Wagemanns R, Noth U, Jatzke S, Jakob F (2005) Expression, purification, and functional testing of recombinant CYR61/CCN1. Protein Expr Purif 42(1):219–225. doi:10.1016/j.pep. 2005.03.031

    Article  PubMed  Google Scholar 

  13. Fataccioli V, Abergel V, Wingertsmann L, Neuville P, Spitz E, Adnot S, Calenda V, Teiger E (2002) Stimulation of angiogenesis by Cyr61 gene: a new therapeutic candidate. Hum Gene Ther 13(12):1461–1470. doi:10.1089/10430340260185094

    Article  PubMed  CAS  Google Scholar 

  14. Chen CC, Lau LF (2009) Functions and mechanisms of action of CCN matricellular proteins. Int J Biochem Cell Biol 41(4):771–783. doi:10.1016/j.biocel.2008.07.025

    Article  PubMed  CAS  Google Scholar 

  15. Babic AM, Kireeva ML, Kolesnikova TV, Lau LF (1998) CYR61, a product of a growth factor-inducible immediate early gene, promotes angiogenesis and tumor growth. Proc Natl Acad Sci USA 95(11):6355–6360

    Article  PubMed  CAS  Google Scholar 

  16. Ohashi S, Ohnishi I, Kageyama T, Fukuda S, Tsuchiya A, Imai K, Matsuyama J, Nakamura K (2005) Effect of vascularity on canine distracted tibial callus consolidation. Clin Orthop Relat Res 438:253–259

    Article  PubMed  Google Scholar 

  17. Grote K, Salguero G, Ballmaier M, Dangers M, Drexler H, Schieffer B (2007) The angiogenic factor CCN1 promotes adhesion and migration of circulating CD34+ progenitor cells: potential role in angiogenesis and endothelial regeneration. Blood 110(3):877–885. doi:10.1182/blood-2006-07-036202

    Article  PubMed  CAS  Google Scholar 

  18. Leu SJ, Lam SC, Lau LF (2002) Pro-angiogenic activities of CYR61 (CCN1) mediated through integrins alphavbeta3 and alpha6beta1 in human umbilical vein endothelial cells. J Biol Chem 277(48):46248–46255. doi:10.1074/jbc.M209288200

    Article  PubMed  CAS  Google Scholar 

  19. Chen N, Leu SJ, Todorovic V, Lam SC, Lau LF (2004) Identification of a novel integrin alphavbeta3 binding site in CCN1 (CYR61) critical for pro-angiogenic activities in vascular endothelial cells. J Biol Chem 279(42):44166–44176. doi:10.1074/jbc.M406813200

    Article  PubMed  CAS  Google Scholar 

  20. Chen CC, Chen N, Lau LF (2001) The angiogenic factors Cyr61 and connective tissue growth factor induce adhesive signaling in primary human skin fibroblasts. J Biol Chem 276(13):10443–10452. doi:10.1074/jbc.M008087200

    Article  PubMed  CAS  Google Scholar 

  21. Ivkovic S, Yoon BS, Popoff SN, Safadi FF, Libuda DE, Stephenson RC, Daluiski A, Lyons KM (2003) Connective tissue growth factor coordinates chondrogenesis and angiogenesis during skeletal development. Development 130(12):2779–2791

    Article  PubMed  CAS  Google Scholar 

  22. Hashimoto G, Inoki I, Fujii Y, Aoki T, Ikeda E, Okada Y (2002) Matrix metalloproteinases cleave connective tissue growth factor and reactivate angiogenic activity of vascular endothelial growth factor 165. J Biol Chem 277(39):36288–36295. doi:10.1074/jbc.M201674200

    Article  PubMed  CAS  Google Scholar 

  23. Dean RA, Butler GS, Hamma-Kourbali Y, Delbe J, Brigstock DR, Courty J, Overall CM (2007) Identification of candidate angiogenic inhibitors processed by matrix metalloproteinase 2 (MMP-2) in cell-based proteomic screens: disruption of vascular endothelial growth factor (VEGF)/heparin affin regulatory peptide (pleiotrophin) and VEGF/Connective tissue growth factor angiogenic inhibitory complexes by MMP-2 proteolysis. Mol Cell Biol 27(24):8454–8465. doi:10.1128/MCB.00821-07

    Article  PubMed  CAS  Google Scholar 

  24. Mori S, Akagi M, Kikuyama A, Yasuda Y, Hamanishi C (2006) Axial shortening during distraction osteogenesis leads to enhanced bone formation in a rabbit model through the HIF-1alpha/vascular endothelial growth factor system. J Orthop Res 24(4):653–663. doi:10.1002/jor.20076

    Article  PubMed  CAS  Google Scholar 

  25. Wolf N, Yang W, Dunk CE, Gashaw I, Lye SJ, Ring T, Schmidt M, Winterhager E, Gellhaus A (2010) Regulation of the matricellular proteins CYR61 (CCN1) and NOV (CCN3) by hypoxia-inducible factor-1{alpha} and transforming-growth factor-{beta}3 in the human trophoblast. Endocrinology 151(6):2835–2845. doi:10.1210/en.2009-1195

    Article  PubMed  CAS  Google Scholar 

  26. Athanasopoulos AN, Schneider D, Keiper T, Alt V, Pendurthi UR, Liegibel UM, Sommer U, Nawroth PP, Kasperk C, Chavakis T (2007) Vascular endothelial growth factor (VEGF)-induced up-regulation of CCN1 in osteoblasts mediates proangiogenic activities in endothelial cells and promotes fracture healing. J Biol Chem 282(37):26746–26753. doi:10.1074/jbc.M705200200

    Article  PubMed  CAS  Google Scholar 

  27. Chaqour B, Goppelt-Struebe M (2006) Mechanical regulation of the Cyr61/CCN1 and CTGF/CCN2 proteins. FEBS J273(16):3639–3649. doi:10.1111/j.1742-4658.2006.05360.x

    Google Scholar 

  28. Crockett JC, Schutze N, Tosh D, Jatzke S, Duthie A, Jakob F, Rogers MJ (2007) The matricellular protein CYR61 inhibits osteoclastogenesis by a mechanism independent of alphavbeta3 and alphavbeta5. Endocrinology 148(12):5761–5768. doi:10.1210/en.2007-0473

    Article  PubMed  CAS  Google Scholar 

  29. Habermann B, Kafchitsas K, Olender G, Augat P, Kurth A (2010) Strontium ranelate enhances callus strength more than PTH 1–34 in an osteoporotic rat model of fracture healing. Calcif Tissue Int 86(1):82–89. doi:10.1007/s00223-009-9317-8

    Article  PubMed  CAS  Google Scholar 

  30. Claes L, Blakytny R, Gockelmann M, Schoen M, Ignatius A, Willie B (2009) Early dynamization by reduced fixation stiffness does not improve fracture healing in a rat femoral osteotomy model. J Orthop Res 27(1):22–27. doi:10.1002/jor.20712

    Article  PubMed  Google Scholar 

  31. Histing T, Marciniak K, Scheuer C, Garcia P, Holstein JH, Klein M, Matthys R, Pohlemann T, Menger MD (2011) Sildenafil accelerates fracture healing in mice. J Orthop Res 29(6):867–873. doi:10.1002/jor.21324

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Torsten Blunk (PhD) for his support discussing the results, James Ridgley (MD) for critically reviewing the manuscript as a native speaker, and Daniela Keller (Dipl. Math. - statistics) for her excellent support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soenke Percy Frey.

Additional information

One of the authors (SPF) has received financial funding by the IZKF of the University of Wuerzburg.

Each author certifies that his or her institution approved the animal protocol for this investigation and that all investigations were conducted in conformity with ethical principles of research.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frey, S.P., Doht, S., Eden, L. et al. Cysteine-rich matricellular protein improves callus regenerate in a rabbit trauma model. International Orthopaedics (SICOT) 36, 2387–2393 (2012). https://doi.org/10.1007/s00264-012-1659-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-012-1659-6

Keywords

Navigation