Skip to main content

Advertisement

Log in

Modulation of monocyte–tumour cell interactions by Mycobacterium vaccae

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Immunotherapy with Mycobacterium vaccae as an adjuvant to chemotherapy has recently been applied to treatment of patients with cancer. One of the mechanisms of antitumour activity of Mycobacterium bovis bacillus Calmette-Guérin (BCG), the prototype immunomodulator, is associated with activation of monocytes/macrophages. These studies were undertaken to determine how M. vaccae affects monocyte–tumour cell interactions and, in particular, whether it can prevent or reverse deactivation of monocytes that occurrs following their contact with tumour cells during coculture in vitro. Deactivation is characterised by the impaired ability of monocytes to produce tumour necrosis factor α (TNF-α), interleukin 12 (IL-12), and enhanced IL-10 secretion following their restimulation with tumour cells. To see whether deactivation of monocytes can be either prevented or reversed, three different strains of M. vaccae—B 3805, MB 3683, and SN 920—and BCG were used to stimulate monocytes before or after exposure to tumour cells. Pretreatment of monocytes with M. vaccae MB 3683, SN 920 and BCG before coculture resulted in increased TNF-α and decreased IL-10 production. All strains of M. vaccae and BCG used for treatment of deactivated monocytes enhanced depressed TNF-α secretion. Strain SN 920 and BCG increased IL-12 release but only BCG treatment inhibited an enhanced IL-10 production by deactivated monocytes. Thus, although some strains of M. vaccae may either prevent or reverse tumour-induced monocyte deactivation, none of them appears to be more effective than BCG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Assersohn L, Souberbielle BE, O’Brien ME, Archer CD, Mendes R, Bass R, Bromelow KV, Palmer RD, Bouilloux E, Kennard DA, Smith IE (2002) A randomized pilot study of SRL 172 (Mycobacterium vaccae) in patients with small cell lung cancer (SCLC) treated with chemotherapy. Clin Oncol 14:23

    Article  CAS  Google Scholar 

  2. Benkhart EM, Siedlar M, Wedel A, Werner T, Ziegler-Heitbrock HWL (2000) Role of Stat3 in lipopolysaccharide-induced IL-10 gene expression. J Immunol 165:1612

    CAS  PubMed  Google Scholar 

  3. Clerici B, Enrico E, Shearer G (1996) Tumour enhancement phenomenon: reinterpretation from a Th1/Th2 perspective. J Natl Cancer Inst 88:461

    CAS  PubMed  Google Scholar 

  4. Elgert KD, Alleva DG, Mullins DW (1998) Tumor-induced immune dysfunction: the macrophage connection. J Leukoc Biol 64:275

    CAS  PubMed  Google Scholar 

  5. Hrouda D, Baban B, Dunsmuir W, Kirby R, Dalgleish AG (1998) Immunotherapy of advanced prostate cancer: a phase I/II trial using Mycobacterium vaccae (SRL172). Br J Urol 82:568

    Article  CAS  PubMed  Google Scholar 

  6. Jones BW, Means TK, Heldwein KA, Keen MA, Hill PJ, Belisle JT, Fenton MJ (2001) Different Toll-like receptor agonists induce distinct macrophage responses. J Leukoc Biol 69:1036

    CAS  PubMed  Google Scholar 

  7. Kremer L, Estaquier J, Brandt E, Ameisen JC, Locht C (1997) Mycobacterium bovis Bacillus Calmette–Guerin infection preapoptosis of resting human monocytes. Eur J Immunol 27:2450

    CAS  PubMed  Google Scholar 

  8. Kurisu H, Matsuyama H, Ohmoto Y, Shimabukuro T, Naito K (1994) Cytokine-mediated antitumor effect of bacillus Calmette–Guerin on tumor cells in vitro. Cancer Immunol Immunother 39:249

    Article  CAS  PubMed  Google Scholar 

  9. Lamm DL (1992) Optimal BCG treatment of superficial bladder cancer as defined by American trails. Eur Urol 21[Suppl 2]:12

    PubMed  Google Scholar 

  10. Li Q, Verma IM (2002) NF-κB regulation in the immune system. Nat Rev Immunol 2:725

    Article  CAS  PubMed  Google Scholar 

  11. Mantovani A, Sozzani S, Massimo L, Allavena P, Sica A (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23:549

    Article  CAS  PubMed  Google Scholar 

  12. Maraveyas A, Baban B, Kennard D, Rook GA, Westby M, Grange JM, Lydyard P, Stanford JL, Jones M, Selby P, Dalgleish AG (1999) Possible improved survival of patients with stage IV AJCC melanoma receiving SRL 172 immunotherapy: correlation with induction of increased levels of intracellular interleukin-2 in peripheral blood lymphocytes. Ann Oncol 10:817

    Article  CAS  PubMed  Google Scholar 

  13. Matsumoto M, Seya T, Kikkawa S, Tsuji S, Shida K, Nomura M, Kurita-Taniguchi M, Ohigashi H, Yokouchi H, Takami K, Hayashi A, Azuma I, Masaoka T, Kodama K, Toyoshima K, Higashiyama M (2001) Interferon gamma-producing ability in blood lymphocytes of patients with lung cancer through activation of the innate immune system by BCG cell wall skeleton. Int Immunopharmacol 8:1559

    Article  Google Scholar 

  14. Mendes R, O’Brien MER, Mitra A, Norton A, Gregory RK, Padhani AR, Bromelow KV, Winkley AR, Ashley S, Smith IE, Souberbielle BE (2002) Clinical and immunological assessment of Mycobacterium vaccae (SRL 172) with chemotherapy in patients with malignant mesothelioma. Br J Cancer 86:336

    Article  CAS  PubMed  Google Scholar 

  15. Morales A, Eidinger D, Bruce AW (1976) Intracavitary bacillus Calmette–Guerin in the treatment of superficial bladder tumours. J Urol 116:180

    CAS  PubMed  Google Scholar 

  16. Mytar B, Siedlar M, Wołoszyn M, Ruggiero I, Pryjma J, Zembala M (1999) Induction of reactive oxygen intermediates in human monocytes by tumour cells and their role in spontaneous monocyte cytotoxicity. Br J Cancer 79:737

    Article  CAS  PubMed  Google Scholar 

  17. Mytar B, Siedlar M, Wołoszyn M, Colizzi V, Zembala M (2001) Cross-talk between human monocytes and cancer cells during reactive oxygen intermediates generation: the essential role of hyaluronan. Int J Cancer 94:727

    Article  CAS  PubMed  Google Scholar 

  18. Mytar B, Wołoszyn M, Szatanek R, Baj-Krzyworzeka M, Siedlar M, Ruggiero I, Więckiewicz J, Zembala M (2003) Tumor cell-induced deactivation of human monocytes. J Leukoc Biol 74:1094

    Article  CAS  PubMed  Google Scholar 

  19. Nicholson S, Guile K, John J, Clarke IA, Diffley J, Donnellan P, Michael A, Szlosarek P, Dalgleish AG (2003) A randomized phase II trial of SRL 172 (Mycobacterium vaccae)±low-dose interleukin-2 in the treatment of metastatic malignant melanoma. Melanoma Res 13:389

    Article  CAS  PubMed  Google Scholar 

  20. O’Brien ME, Saini A, Smith IE, Webb A, Gregory K, Mendes R, Ryan C, Priest K, Bromelow KV, Palmer RD, Tuckwell N, Kennard DA, Souberbielle BE (2000) A randomized phase II study of SRL172 (Mycobacterium vaccae) combined with chemotherapy in patients with advanced inoperable non-small-cell lung cancer and mesothelioma. Brit J Cancer 83:853

    Article  CAS  PubMed  Google Scholar 

  21. Popiela T, Zembala M, Oszacki J, Jędrychowski W (1982) A follow-up study on chemoimmunotherapy (5-fluorouracil and BCG) in advanced gastric cancer. Cancer Immunol Immunother 13:182

    CAS  PubMed  Google Scholar 

  22. Portelance V, Boulanger RP, Duranleau-Dragon D (1976) Comparative virulence and antitumor activity of BCG substrains. In: Lamoureux G, Turcotte R, Portelance V (eds) BCG in cancer immunotherapy. Grune and Stratton, New York, pp 5–13

  23. Pryor K, Goddard J, Goldstein D, Stricker P, Russell P, Golovsky D, Penny R (1995) Bacillus Calmette-Guerin (BCG) enhances monocyte- and lymphocyte-mediated bladder tumour cell killing. Br J Cancer 71:801

    CAS  PubMed  Google Scholar 

  24. Sedlaczek L, Lisowska K, Korycka M, Rumijowska A, Ziółkowski A, Długoński J (1999) The effect of cell wall components on glycine-enhanced sterol side chain degradation to androstene derivatives by mycobacteria. Appl Microbiol Biotechnol 52:563

    Article  CAS  PubMed  Google Scholar 

  25. Sica A, Saccani A, Botazzi B, Polentaruti N, Vecchi A, van Damme J, Mantovani A (2000) Autocrine production of IL-10 mediates defective IL-12 production and NF-kappa B activation in tumor-associated macrophages. J Immunol 164:762

    CAS  PubMed  Google Scholar 

  26. Skinner M, Yuan S, Prestidge R, Chuk D, Watson J, Tan P (1997) Immunization with heat-killed Mycobacterium vaccae stimulates CD8+ cytotoxic T cells specific for macrophages infected with Mycobacterium tuberculosis. Infect Immun 65:4525

    CAS  PubMed  Google Scholar 

  27. Stanford JL, Rook GA, Bahr GM, Dowlati Y, Ganapati R, Ghazi Sai K, Lucas S, Ramu G, Torres P, Minh Ly H et al (1990) Mycobacterium vaccae in immuniprophylaxis and immunotherapy of leprosy and tuberculosis. Vaccine 8:525

    Article  CAS  PubMed  Google Scholar 

  28. Tian X, Groves M (1999) Formulation and biological activity of antineoplastic proteoglycans derived from Mycobacterium vaccae in chitosan nanoparticles. J Pharm Pharmacol 51:151

    Article  CAS  PubMed  Google Scholar 

  29. Uehori J, Matsumoto M, Tsuji S, Akazawa T, Takeuchi O, Akira S, Kawata T, Azuma I, Toyoshima K, Seya T (2003) Simultaneous blocking of human Toll-like receptors 2 and 4 suppresses myeloid dendritic cell activation induced by Mycobacterium bovis bacillus Calmette–Guerin peptidoglycan. Infect Immun 71:4238

    Article  CAS  PubMed  Google Scholar 

  30. Wang C, Rook G (1998) Inhibition of an established allergic response to ovalbumin in BALB/c mice by killed Mycobacterium vaccae. Immunology 93:307

    Article  CAS  PubMed  Google Scholar 

  31. Zembala M, Czupryna A, Wieckiewicz J, Jasinski M, Pryjma J, Ruggiero I, Siedlar M, Popiela T (1993) Tumour-cell-induced production of tumour necrosis factor by monocytes of gastric cancer patients receiving BCG immunotherapy. Cancer Immunol Immunother 36:127

    CAS  PubMed  Google Scholar 

  32. Zembala M, Siedlar M, Ruggiero I, Wieckiewicz J, Mytar B, Mattei M, Colizzi V (1994) The MHC class-II and CD44 molecules are involved in the induction of tumour necrosis factor (TNF) gene expression by human monocytes stimulated with tumour cells. Int J Cancer 56:269

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Committee for Scientific Research (grant No. 6 PO5A 096 20). We wish to thank Prof. Leon Sedlaczek (Centre for Microbiology and Virology, Polish Academy of Sciences, Łódź, Poland) for kind donation of M. vaccae strains. We also thank Ms Barbara Hajto and Mariola Ożóg for skillful technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Zembala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baran, J., Baj-Krzyworzeka, M., Węglarczyk, K. et al. Modulation of monocyte–tumour cell interactions by Mycobacterium vaccae . Cancer Immunol Immunother 53, 1127–1134 (2004). https://doi.org/10.1007/s00262-004-0552-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-004-0552-6

Keywords

Navigation