Skip to main content

Advertisement

Log in

Dose reduction methods for CT colonography

  • Published:
Abdominal Imaging Aims and scope Submit manuscript

Abstract

Patients, referring physicians, the media, and government agencies have all expressed concern over the risks of medical radiation, particularly as it relates to CT. This concern is particularly paramount when associated with a screening examination such as CT colonography. These theoretical risks must be weighed realistically against the substantial benefits of colon cancer screening as well as against the risks inherent in the major alternative screening option, optical colonoscopy. When put into perspective, the risk–benefit ratio is highly in favor of the performance of CT colonography. Nevertheless, in following the ALARA principle, there is an ever increasing armamentarium of options that can be employed in the pursuit of CT radiation dose reduction, all of which can be used in many synergistic combinations allowing for dose reduction while simultaneously preserving image quality and minimizing image noise. After a brief tutorial on estimating radiation dose, various strategies will be discussed including reductions in tube current and tube voltage as well as the use of automatic dose modulation and iterative reconstruction. Other practical considerations will also be reviewed including proper patient isocentering, optimization of colonic insufflation to minimize additional decubitus scans, proper choice of scan volumes to avoid overranging, and variation of slice thickness and window width to minimize perceived image noise. Finally, a strategy for how to incrementally introduce these methods as well as a way to compare dose reduction efforts across institutions throughout the country will be offered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Brenner DJ, Georgsson MA (2005) Mass screening with CT colonography: should the radiation exposure be of concern? Gastroenterology 129(1):328–337

    Article  PubMed  Google Scholar 

  2. Berrington de Gonzalez A, Kim KP, Knudsen AB, et al. (2011) Radiation-related cancer risks from CT colonography screening: a risk-benefit analysis. AJR Am J Roentgenol 196(4):816–823. doi:10.2214/AJR.10.4907

    Article  PubMed  Google Scholar 

  3. SEER Cancer Statistics Review (1975–2008) Available via National Cancer Institute. http://seer.cancer.gov/csr/1975_2008/results_merged/topic_lifetime_risk_diagnosis.pdf. Accessed February 4, 2012

  4. Burk RJ (Revised 2010) Radiation risk in perspective: position statement of the Health Physics Society. http://hpsorg/documents/risk_ps010-2pdf

  5. Anderson ML, Pasha TM, Leighton JA (2000) Endoscopic perforation of the colon: lessons from a 10-year study. Am J Gastroenterol 95(12):3418–3422. doi:10.1111/j.1572-0241.2000.03356.x

    Article  PubMed  CAS  Google Scholar 

  6. Farley DR, Bannon MP, Zietlow SP, et al. (1997) Management of colonoscopic perforations. Mayo Clin Proc 72(8):729–733. doi:10.1016/S0025-6196(11)63592-1

    Article  PubMed  CAS  Google Scholar 

  7. Gatto NM, Frucht H, Sundararajan V, et al. (2003) Risk of perforation after colonoscopy and sigmoidoscopy: a population-based study. J Natl Cancer Inst 95(3):230–236

    Article  PubMed  Google Scholar 

  8. Ogden K, Huda W, Scalzetti EM, Roskopf ML (2004) Patient size and x-ray transmission in body CT. Health Phys 86(4):397–405

    Article  PubMed  CAS  Google Scholar 

  9. Huda W, He W (2011) Estimating cancer risks to adults undergoing body Ct examinations. Radiat Prot Dosimetry. doi:10.1093/rpd/ncr376

  10. Israel GM, Cicchiello L, Brink J, Huda W (2010) Patient size and radiation exposure in thoracic, pelvic, and abdominal CT examinations performed with automatic exposure control. AJR Am J Roentgenol 195(6):1342–1346. doi:10.2214/AJR.09.3331

    Article  PubMed  Google Scholar 

  11. Huda W, Randazzo W, Tipnis S, Frey GD, Mah E (2010) Embryo dose estimates in body CT. AJR Am J Roentgenol 194(4):874–880. doi:10.2214/AJR.09.4032

    Article  PubMed  Google Scholar 

  12. Liedenbaum MH, Venema HW, Stoker J (2008) Radiation dose in CT colonography-trends in time and differences between daily practice and screening protocols. Eur Radiol 18(10):2222–2230. doi:10.1007/s00330-008-0994-x

    Article  PubMed  CAS  Google Scholar 

  13. Dachman AH, Laghi A (2010) Atlas of virtual colonoscopy. New York: Springer, p 103

    Google Scholar 

  14. van Gelder RE, Venema HW, Serlie IW, et al. (2002) CT colonography at different radiation dose levels: feasibility of dose reduction. Radiology 224(1):25–33

    Article  PubMed  Google Scholar 

  15. Iannaccone R, Laghi A, Catalano C, et al. (2003) Detection of colorectal lesions: lower-dose multi-detector row helical CT colonography compared with conventional colonoscopy. Radiology 229(3):775–781. doi:10.1148/radiol.2293021399

    Article  PubMed  Google Scholar 

  16. Cohnen M, Vogt C, Beck A, et al. (2004) Feasibility of MDCT colonography in ultra-low-dose technique in the detection of colorectal lesions: comparison with high-resolution video colonoscopy. AJR Am J Roentgenol 183(5):1355–1359

    Article  PubMed  Google Scholar 

  17. Iannaccone R, Catalano C, Mangiapane F, et al. (2005) Colorectal polyps: detection with low-dose multi-detector row helical CT colonography versus two sequential colonoscopies. Radiology 237(3):927–937. doi:10.1148/radiol.2373041747

    Article  PubMed  Google Scholar 

  18. Haaga JR, Miraldi F, MacIntyre W, et al. (1981) The effect of mAs variation upon computed tomography image quality as evaluated by in vivo and in vitro studies. Radiology 138(2):449–454

    PubMed  CAS  Google Scholar 

  19. Kalender WA, Wolf H, Suess C (1999) Dose reduction in CT by anatomically adapted tube current modulation. II. Phantom measurements. Med Phys 26(11):2248–2253

    Article  PubMed  CAS  Google Scholar 

  20. Lim HK, Lee KH, Kim SY, et al. (2011) Does the amount of tagged stool and fluid significantly affect the radiation exposure in low-dose CT colonography performed with an automatic exposure control? Eur Radiol 21(2):345–352. doi:10.1007/s00330-010-1922-4

    Article  PubMed  Google Scholar 

  21. Duan X, Wang J, Christner JA, et al. (2011) Dose reduction to anterior surfaces with organ-based tube-current modulation: evaluation of performance in a phantom study. AJR Am J Roentgenol 197(3):689–695. doi:10.2214/AJR.10.6061

    Article  PubMed  Google Scholar 

  22. Hopper KD, King SH, Lobell ME, TenHave TR, Weaver JS (1997) The breast: in-plane x-ray protection during diagnostic thoracic CT–shielding with bismuth radioprotective garments. Radiology 205(3):853–858

    PubMed  CAS  Google Scholar 

  23. Hohl C, Wildberger JE, Suss C, et al. (2006) Radiation dose reduction to breast and thyroid during MDCT: effectiveness of an in-plane bismuth shield. Acta Radiol 47(6):562–567

    Article  PubMed  CAS  Google Scholar 

  24. Lightspeed VCT Technical Reference Manual (2007) Rev 9th edn. General Electric Company, chap 12, p 25

  25. Elojeimy S, Tipnis S, Huda W (2010) Relationship between radiographic techniques (kilovolt and milliampere-second) and CTDI(VOL). Radiat Prot Dosimetry 141(1):43–49. doi:10.1093/rpd/ncq138

    Article  PubMed  Google Scholar 

  26. Brooks (1977) A quantitative theory of the hounsfield unit and its application to dual energy scanning. Journal of computer assisted tomography 1(4):487–493

    Article  PubMed  CAS  Google Scholar 

  27. Chang KJ, Caovan DB, Grand DJ, Huda W, Mayo-Smith WW (2013) Reducing radiation dose at CT colonography: decreasing kVp to 100 kilovolts. Radiology (in press)

  28. Guimaraes LS, Fletcher JG, Harmsen WS, et al. (2010) Appropriate patient selection at abdominal dual-energy CT using 80 kV: relationship between patient size, image noise, and image quality. Radiology 257(3):732–742. doi:10.1148/radiol.10092016

    Article  PubMed  Google Scholar 

  29. McCollough CH (2012) Automatic kVp selection. In: MGH radiation safety in CT symposium, Boston, MA, January 31, 2012.

  30. Thibault JB, Sauer KD, Bouman CA, Hsieh J (2007) A three-dimensional statistical approach to improved image quality for multislice helical CT. Med Phys 34(11):4526–4544

    Article  PubMed  Google Scholar 

  31. Flicek KT, Hara AK, Silva AC, et al. (2010) Reducing the radiation dose for CT colonography using adaptive statistical iterative reconstruction: A pilot study. AJR Am J Roentgenol 195(1):126–131. doi:10.2214/AJR.09.3855

    Article  PubMed  Google Scholar 

  32. Li J, Udayasankar UK, Toth TL, et al. (2007) Automatic patient centering for MDCT: effect on radiation dose. AJR Am J Roentgenol 188(2):547–552. doi:10.2214/AJR.06.0370

    Article  PubMed  Google Scholar 

  33. Christner JA, Zavaletta VA, Eusemann CD, Walz-Flannigan AI, McCollough CH (2010) Dose reduction in helical CT: dynamically adjustable z-axis X-ray beam collimation. AJR Am J Roentgenol 194(1):W49–W55. doi:10.2214/AJR.09.2878

    Article  PubMed  Google Scholar 

  34. Nakaura T, Awai K, Oda S, et al. (2011) Low-kilovoltage, high-tube-current MDCT of liver in thin adults: pilot study evaluating radiation dose, image quality, and display settings. AJR Am J Roentgenol 196(6):1332–1338. doi:10.2214/AJR.10.5698

    Article  PubMed  Google Scholar 

Download references

Funding

No relevant funding information.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin J. Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, K.J., Yee, J. Dose reduction methods for CT colonography. Abdom Imaging 38, 224–232 (2013). https://doi.org/10.1007/s00261-012-9968-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-012-9968-1

Keywords

Navigation