Skip to main content

Advertisement

Log in

Phosphorylation of Ser-204 and Tyr-405 in human malonyl-CoA decarboxylase expressed in silkworm Bombyx mori regulates catalytic decarboxylase activity

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Decarboxylation of malonyl-CoA to acetyl-CoA by malonyl-CoA decarboxylase (MCD; EC 4.1.1.9) is a vital catalytic reaction of lipid metabolism. While it is established that phosphorylation of MCD modulates the enzymatic activity, the specific phosphorylation sites associated with the catalytic function have not been documented due to lack of sufficient production of MCD with proper post-translational modifications. Here, we used the silkworm-based Bombyx mori nucleopolyhedrovirus (BmNPV) bacmid system to express human MCD (hMCD) and mapped phosphorylation effects on enzymatic function. Purified MCD from silkworm displayed post-translational phosphorylation and demonstrated coherent enzymatic activity with high yield (−200 μg/silkworm). Point mutations in putative phosphorylation sites, Ser-204 or Tyr-405 of hMCD, identified by bioinformatics and proteomics analyses reduced the catalytic activity, underscoring the functional significance of phosphorylation in modulating decarboxylase-based catalysis. Identified phosphorylated residues are distinct from the decarboxylation catalytic site, implicating a phosphorylation-induced global conformational change of MCD as responsible in altering catalytic function. We conclude that phosphorylation of Ser-204 and Tyr-405 regulates the decarboxylase function of hMCD leveraging the silkworm-based BmNPV bacmid expression system that offers a fail-safe eukaryotic production platform implementing proper post-translational modification such as phosphorylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • An J, Muoio DM, Shiota M, Fujimoto Y, Cline GW, Shulman GI, Koves TR, Stevens R, Millington D, Newgard CB (2004) Hepatic expression of malonyl-CoA decarboxylase reverses muscle, liver and whole-animal insulin resistance. Nat Med 10:268–74. doi:10.1038/nm995

    Article  CAS  PubMed  Google Scholar 

  • Aparicio D, Pérez-Luque R, Carpena X, Díaz M, Ferrer JC, Loewen PC, Fita I (2013) Structural asymmetry and disulfide bridges among subunits modulate the activity of human malonyl-CoA decarboxylase. J Biol Chem 288:11907–19. doi:10.1074/jbc.M112.443846

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blom N, Gammeltoft S, Brunak S (1999) Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol 294:1351–62. doi:10.1006/jmbi.1999.3310

    Article  CAS  PubMed  Google Scholar 

  • Bouzakri K, Austin R, Rune A, Lassman ME, Garcia-Roves PM, Berger JP, Krook A, Chibalin AV, Zhang BB, Zierath JR (2008) Malonyl coenzyme A decarboxylase regulates lipid and glucose metabolism in human skeletal muscle. Diabetes 57:1508–16. doi:10.2337/db07-0583

    Article  CAS  PubMed  Google Scholar 

  • Brown GK, Scholem RD, Bankier A, Danks DM (1984) Malonyl coenzyme A decarboxylase deficiency. J Inherit Metab Dis 7:21–6

    Article  CAS  PubMed  Google Scholar 

  • Buckner JS, Kolattukudy PE, Poulose AJ (1976) Purification and properties of malonyl-coenzyme A decarboxylase, a regulatory enzyme from the uropygial gland of goose. Arch Biochem Biophys 177:539–51

    Article  CAS  PubMed  Google Scholar 

  • Dojima T, Nishina T, Kato T, Uno T, Yagi H, Kato K, Park EY (2009) Comparison of the N-linked glycosylation of human beta1,3-N-acetylglucosaminyltransferase 2 expressed in insect cells and silkworm larvae. J Biotechnol 143:27–33. doi:10.1016/j.jbiotec.2009.06.013

    Article  CAS  PubMed  Google Scholar 

  • Du D, Kato T, Suzuki F, Park EY (2009) Expression of protein complex comprising the human prorenin and (pro)renin receptor in silkworm larvae using Bombyx mori nucleopolyhedrovirus (BmNPV) bacmids for improving biological function. Mol Biotechnol 43:154–61. doi:10.1007/s12033-009-9183-7

    Article  CAS  PubMed  Google Scholar 

  • Dyck JR, Barr AJ, Barr RL, Kolattukudy PE, Lopaschuk GD (1998) Characterization of cardiac malonyl-CoA decarboxylase and its putative role in regulating fatty acid oxidation. Am J Physiol 275:H2122–9

    CAS  PubMed  Google Scholar 

  • Dyck JR, Berthiaume LG, Thomas PD, Kantor PF, Barr AJ, Barr R, Singh D, Hopkins TA, Voilley N, Prentki M, Lopaschuk GD (2000) Characterization of rat liver malonyl-CoA decarboxylase and the study of its role in regulating fatty acid metabolism. Biochem J 350(Pt 2):599–608

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dyck JRB, Hopkins TA, Bonnet S, Michelakis ED, Young ME, Watanabe M, Kawase Y, Jishage K, Lopaschuk GD (2006) Absence of malonyl coenzyme A decarboxylase in mice increases cardiac glucose oxidation and protects the heart from ischemic injury. Circulation 114:1721–8. doi:10.1161/CIRCULATIONAHA.106.642009

    Article  CAS  PubMed  Google Scholar 

  • Folmes CDL, Park S, Terzic A (2013) Lipid metabolism greases the stem cell engine. Cell Metab 17:153–5. doi:10.1016/j.cmet.2013.01.010

    Article  CAS  PubMed  Google Scholar 

  • Froese DS, Forouhar F, Tran TH, Vollmar M, Kim YS, Lew S, Neely H, Seetharaman J, Shen Y, Xiao R, Acton TB, Everett JK, Cannone G, Puranik S, Savitsky P, Krojer T, Pilka ES, Kiyani W, Lee WH, Marsden BD, von Delft F, Allerston CK, Spagnolo L, Gileadi O, Montelione GT, Oppermann U, Yue WW, Tong L (2013) Crystal structures of malonyl-coenzyme A decarboxylase provide insights into its catalytic mechanism and disease-causing mutations. Structure 21:1182–92. doi:10.1016/j.str.2013.05.001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Haan EA, Scholem RD, Croll HB, Brown GK (1986) Malonyl coenzyme A decarboxylase deficiency. Clinical and biochemical findings in a second child with a more severe enzyme defect. Eur J Pediatr 144:567–70

    Article  CAS  PubMed  Google Scholar 

  • Hwang I-W, Makishima Y, Kato T, Park S, Terzic A, Park EY (2014) Human acetyl-CoA carboxylase 2 expressed in silkworm Bombyx mori exhibits posttranslational biotinylation and phosphorylation. Appl Microbiol Biotechnol 98:8201–9. doi:10.1007/s00253-014-5715-6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ishikiriyama M, Nishina T, Kato T, Ueda H, Park EY (2009) Human single-chain antibody expression in the hemolymph and fat body of silkworm larvae and pupae using BmNPV bacmids. J Biosci Bioeng 107:67–72. doi:10.1016/j.jbiosc.2008.11.001

    Article  CAS  PubMed  Google Scholar 

  • Kamionka M (2011) Engineering of therapeutic proteins production in Escherichia coli. Curr Pharm Biotechnol 12:268–74

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Karger AB, Park S, Reyes S, Bienengraeber M, Dyer RB, Terzic A, Alekseev AE (2008) Role for SUR2A ED domain in allosteric coupling within the K(ATP) channel complex. J Gen Physiol 131:185–96. doi:10.1085/jgp.200709852

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kato T, Kajikawa M, Maenaka K, Park EY (2010) Silkworm expression system as a platform technology in life science. Appl Microbiol Biotechnol 85:459–70. doi:10.1007/s00253-009-2267-2

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim YS, Kolattukudy PE (1978) Purification and properties of malonyl-CoA decarboxylase from rat liver mitochondria and its immunological comparison with the enzymes from rat brain, heart, and mammary gland. Arch Biochem Biophys 190:234–46

    Article  CAS  PubMed  Google Scholar 

  • Kim YS, Kolattukudy PE, Boos A (1979) Malonyl-CoA decarboxylase in rat brain mitochondria. Int J Biochem 10:551–5

    Article  CAS  PubMed  Google Scholar 

  • Kim KH, López-Casillas F, Bai DH, Luo X, Pape ME (1989) Role of reversible phosphorylation of acetyl-CoA carboxylase in long-chain fatty acid synthesis. FASEB J 3:2250–6

    CAS  PubMed  Google Scholar 

  • Krawinkel MB, Oldigs HD, Santer R, Lehnert W, Wendel U, Schaub J (1994) Association of malonyl-CoA decarboxylase deficiency and heterozygote state for haemoglobin C disease. J Inherit Metab Dis 17:636–7

    Article  CAS  PubMed  Google Scholar 

  • Laurent G, German NJ, Saha AK, de Boer VCJ, Davies M, Koves TR, Dephoure N, Fischer F, Boanca G, Vaitheesvaran B, Lovitch SB, Sharpe AH, Kurland IJ, Steegborn C, Gygi SP, Muoio DM, Ruderman NB, Haigis MC (2013) SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase. Mol Cell 50:686–98. doi:10.1016/j.molcel.2013.05.012

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • MacPhee GB, Logan RW, Mitchell JS, Howells DW, Tsotsis E, Thorburn DR (1993) Malonyl coenzyme a decarboxylase deficiency. Arch Dis Child 69:433–6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Matalon R, Michaels K, Kaul R, Whitman V, Rodriguez-Novo J, Goodman S, Thorburn D (1993) Malonic aciduria and cardiomyopathy. J Inherit Metab Dis 16:571–3

    Article  CAS  PubMed  Google Scholar 

  • Motohashi T, Shimojima T, Fukagawa T, Maenaka K, Park EY (2005) Efficient large-scale protein production of larvae and pupae of silkworm by Bombyx mori nuclear polyhedrosis virus bacmid system. Biochem Biophys Res Commun 326:564–9. doi:10.1016/j.bbrc.2004.11.060

    Article  CAS  PubMed  Google Scholar 

  • Nam HW, Lee GY, Kim YS (2006) Mass spectrometric identification of K210 essential for rat malonyl-CoA decarboxylase catalysis. J Proteome Res 5:1398–406. doi:10.1021/pr050487g

    Article  CAS  PubMed  Google Scholar 

  • Ogata M, Nakajima M, Kato T, Obara T, Yagi H, Kato K, Usui T, Park EY (2009) Synthesis of sialoglycopolypeptide for potentially blocking influenza virus infection using a rat alpha2,6-sialyltransferase expressed in BmNPV bacmid-injected silkworm larvae. BMC Biotechnol 9:54. doi:10.1186/1472-6750-9-54

    Article  PubMed Central  PubMed  Google Scholar 

  • Otsuki T, Dong J, Kato T, Park EY (2013) Expression, purification and antigenicity of Neospora caninum-antigens using silkworm larvae targeting for subunit vaccines. Vet Parasitol 192:284–7. doi:10.1016/j.vetpar.2012.09.038

    Article  CAS  PubMed  Google Scholar 

  • Park H, Kaushik VK, Constant S, Prentki M, Przybytkowski E, Ruderman NB, Saha AK (2002) Coordinate regulation of malonyl-CoA decarboxylase, sn-glycerol-3-phosphate acyltransferase, and acetyl-CoA carboxylase by AMP-activated protein kinase in rat tissues in response to exercise. J Biol Chem 277:32571–7. doi:10.1074/jbc.M201692200

    Article  CAS  PubMed  Google Scholar 

  • Park EY, Kageshima A, Kwon M-S, Kato T (2007) Enhanced production of secretory beta1,3-N-acetylglucosaminyltransferase 2 fusion protein into hemolymph of Bombyx mori larvae using recombinant BmNPV bacmid integrated signal sequence. J Biotechnol 129:681–8. doi:10.1016/j.jbiotec.2007.01.028

    Article  CAS  PubMed  Google Scholar 

  • Park EY, Abe T, Kato T (2008a) Improved expression of fusion protein using a cysteine- protease- and chitinase-deficient Bombyx mori (silkworm) multiple nucleopolyhedrovirus bacmid in silkworm larvae. Biotechnol Appl Biochem 49:135–140. doi:10.1042/BA20070098

    Article  CAS  PubMed  Google Scholar 

  • Park S, Lim BBC, Perez-Terzic C, Mer G, Terzic A (2008b) Interaction of asymmetric ABCC9-encoded nucleotide binding domains determines KATP channel SUR2A catalytic activity. J Proteome Res 7:1721–8. doi:10.1021/pr7007847

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Park S, Hwang I-W, Makishima Y, Perales-Clemente E, Kato T, Niederländer NJ, Park EY, Terzic A (2013) Spot14/Mig12 heterocomplex sequesters polymerization and restrains catalytic function of human acetyl-CoA carboxylase 2. J Mol Recognit 26:679–88. doi:10.1002/jmr.2313

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pender C, Trentadue AR, Pories WJ, Dohm GL, Houmard JA, Youngren JF (2006) Expression of genes regulating malonyl-CoA in human skeletal muscle. J Cell Biochem 99:860–867. doi:10.1002/jcb.20944

    Article  CAS  PubMed  Google Scholar 

  • Saggerson D (2008) Malonyl-CoA, a key signaling molecule in mammalian cells. Annu Rev Nutr 28:253–72. doi:10.1146/annurev.nutr.28.061807.155434

    Article  CAS  PubMed  Google Scholar 

  • Saha AK, Schwarsin AJ, Roduit R, Masse F, Kaushik V, Tornheim K, Prentki M, Ruderman NB (2000) Activation of malonyl-CoA decarboxylase in rat skeletal muscle by contraction and the AMP-activated protein kinase activator 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside. J Biol Chem 275:24279–83. doi:10.1074/jbc.C000291200

    Article  CAS  PubMed  Google Scholar 

  • Sambandam N, Steinmetz M, Chu A, Altarejos JY, Dyck JRB, Lopaschuk GD (2004) Malonyl-CoA decarboxylase (MCD) is differentially regulated in subcellular compartments by 5′AMP-activated protein kinase (AMPK). Studies using H9c2 cells overexpressing MCD and AMPK by adenoviral gene transfer technique. Eur J Biochem 271:2831–40. doi:10.1111/j.1432-1033.2004.04218.x

    Article  CAS  PubMed  Google Scholar 

  • Scholte HR (1969) The intracellular and intramitochondrial distribution of malonyl-CoA decarboxylase and propionyl-CoA carboxylase in rat liver. Biochim Biophys Acta 178:137–44

    Article  CAS  PubMed  Google Scholar 

  • Voilley N, Roduit R, Vicaretti R, Bonny C, Waeber G, Dyck JR, Lopaschuk GD, Prentki M (1999) Cloning and expression of rat pancreatic beta-cell malonyl-CoA decarboxylase. Biochem J 340(Pt 1):213–7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xue J, Peng J, Zhou M, Zhong L, Yin F, Liang D, Wu L (2012) Novel compound heterozygous mutation of MLYCD in a Chinese patient with malonic aciduria. Mol Genet Metab 105:79–83. doi:10.1016/j.ymgme.2011.09.007

    Article  CAS  PubMed  Google Scholar 

  • Yano S, Sweetman L, Thorburn DR, Mofidi S, Williams JC (1997) A new case of malonyl coenzyme A decarboxylase deficiency presenting with cardiomyopathy. Eur J Pediatr 156:382–3

    Article  CAS  PubMed  Google Scholar 

  • Zhou D, Yuen P, Chu D, Thon V, McConnell S, Brown S, Tsang A, Pena M, Russell A, Cheng JF, Nadzan AM, Barbosa MS, Dyck JRB, Lopaschuk GD, Yang G (2004) Expression, purification, and characterization of human malonyl-CoA decarboxylase. Protein Expr Purif 34:261–9. doi:10.1016/j.pep.2003.11.023

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported partly by the Strategic Young Researcher Overseas Visits Program for Accelerating Brain Circulation from Japan Society for the Promotion of Science (JSPS), Japan, National Institute of Health, and Marriott Heart Disease Research Program at the Mayo Clinic. A.T. holds the Marriott Family Professorship in Cardiovascular Diseases Research.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enoch Y. Park.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 592 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, IW., Makishima, Y., Suzuki, T. et al. Phosphorylation of Ser-204 and Tyr-405 in human malonyl-CoA decarboxylase expressed in silkworm Bombyx mori regulates catalytic decarboxylase activity. Appl Microbiol Biotechnol 99, 8977–8986 (2015). https://doi.org/10.1007/s00253-015-6687-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6687-x

Keywords

Navigation