Skip to main content

Advertisement

Log in

Enzyme-based formulations for decontamination: current state and perspectives

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Development of noncorrosive, cost-effective, environmentally benign, and broad-spectrum antimicrobial formulations is necessary for clinical, industrial, and domestic purposes. Many current decontaminating formulations are effective, but they require the use of strong oxidizing agents or organic solvents that have deleterious effects on human health and the surrounding environment. The emergence of antibiotic-resistant pathogens has motivated researchers to develop enzyme-based self-decontaminating formulations as alternatives to such chemical decontamination approaches. Hydrolytic and oxidative enzymes can be used to deactivate pathogens, including bacteria, spores, viruses, and fungi. Laccases, haloperoxidases, and perhydrolases catalyze the generation of biocidal oxidants, such as iodine, bromine, hypohalous acid (e.g., HOCl or HOBr), and peracetic acid. These oxidants have broad-spectrum antimicrobial activity. Due to the multi-pathway action of these oxidants, it has proven extremely difficult for microbes to gain resistance. Thus far, few examples have been reported on enzyme-based antimicrobial formulations. For these reasons, various enzyme-containing antimicrobial formulations are highlighted in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Scheme 2
Scheme 3

Similar content being viewed by others

References

  • Alexandre G, Zhulin IB (2000) Laccases are widespread in bacteria. Trends Biotechnol 18:41–42

    Article  CAS  Google Scholar 

  • Amin NS, Boston MG, Bott RR, Cervin MA, Concar EM, Gustwiller ME, Jones BE, Liebeton K, Miracle GS, Oh H, Poulose AJ, Ramer SW, Scheibel JJ, Weyler W, Whited GM (2006) Perhydrolase. US Patent WO2005056782 (A2), C12n 9/00 ed. (EdWIPO), Genencor International, Inc. The Procter & Gamble Company

  • Amitai G, Andersen J, Wargo S, Asche G, Chir J, Koepsel R, Russell AJ (2009) Polyurethane-based leukocyte-inspired biocidal materials. Biomaterials 30:6522–6529

    Article  CAS  Google Scholar 

  • Amitai G, Murata H, Andersen JD, Koepsel RR, Russell AJ (2010) Decontamination of chemical and biological warfare agents with a single multi-functional material. Biomaterials 31:4417–4425

    Article  CAS  Google Scholar 

  • Ansari SA, Husain Q (2012) Potential applications of enzymes immobilized on/in nano materials: a review. Biotech Advances 30:512–523

    Article  CAS  Google Scholar 

  • Asuri P, Karajanagi SS, Sellitto E, Kim DY, Kane RS, Dordick JS (2006) Water-soluble carbon nanotube-enzyme conjugates as functional biocatalytic formulations. Biotechnol Bioeng 95:804–811

    Article  CAS  Google Scholar 

  • Asuri P, Karajanagi SS, Vertegel AA, Dordick JS, Kane RS (2007) Enhanced stability of enzymes adsorbed onto nanoparticles. J Nanosci Nanotechnol 7:1675–1678

    Article  CAS  Google Scholar 

  • Ayliffe G (2000) Decontamination of minimally invasive surgical endoscopes and accessories J Hospital Infection 45:263–277

    CAS  Google Scholar 

  • Ballard HS (1997) The hematological complications of alcoholism. Alcohol Health & Research World 21:42–52

    CAS  Google Scholar 

  • Barnett P, Hondmann DH, Simons LH, Ter Steeg PF, Wever R (1995) Enzymatic antimicrobial compositions. International Patent Application (PCT) WO 95/27046

  • Bayramoglu G, Altintas B, Yilmaz M, Arica MY (2011) Immobilization of chloroperoxidase onto highly hydrophilic polyethylene chains via bio-conjugation: catalytic properties and stabilities. Bioresource Technol 102:475–482

    Article  CAS  Google Scholar 

  • Bernhardt P, Hult K, Kazlauskas RJ (2005) Molecular basis of perhydrolase activity in serine hydrolases. Angew Chem Int Ed 44:2742–2746

    Article  CAS  Google Scholar 

  • Borkar IV, Dinu CZ, Zhu G, Kane RS, Dordick JS (2010) Bionanoconjugate-based composites for decontamination of nerve agents. Biotechnol Prog 26:1622–1628

    Google Scholar 

  • Cabana H, Ahamed A, Leduc R (2011) Conjugation of laccase from the white rot fungus Trametes versicolor to chitosan and its utilization for the elimination of triclosan. Bioresource Technol 102:1656–1662

    Article  CAS  Google Scholar 

  • Corby MP (1995) Sporicidal disinfectant compositions, production and use thereof. US Patent 5,443,849A

  • Dinu CZ, Borkar IV, Bale SS, Zhu G, Sanford K, Whited G, Kane RS, Dordick JS (2010a) Enzyme-nanotube-based composites used for chemical and biological decontamination. In: Cheng H, Gross R (eds) Green polymer chemistry: biocatalysis and biomaterials. ACS Symposium Series 1043:103-107

  • Dinu CZ, Zhu G, Bale SS, Reeder PJ, Sanford K, Whited G, Kane RS, Dordick JS (2010b) Enzyme-based nanoscale composites for use as active decontamination surfaces. Adv Funct Mater 20:392–398

    Article  CAS  Google Scholar 

  • Dinu CZ, Dordick JS, Kane RS, Sanford K, Whited GM, Zhu G (2012a) Enzyme-based nanoscale decontaminating composites. US Patent PCT/US10/00104

  • Dinu CZ, Borkar IV, Bale SS, Campbell AS, Kane RS, Dordick JS (2012b) Perhydrolase-nanotube-paint sporicidal composites stabilized by intramolecular crosslinking. J Mol Cat B 75:20–26

    Article  CAS  Google Scholar 

  • Dittmer NT, Suderman RJ, Jiang H, Zhu YC, Gorman MJ, Kramer KJ, Kanost MR (2004) Characterization of cDNAs encoding putative laccase-like multicopper oxidases and developmental expression in the tobacco hornworm, Manduca sexta, and the malaria mosquito, Anopheles gambiae. Insect Biochem Mol Biol 34:29–41

    Article  CAS  Google Scholar 

  • Fatemi P, Frank JF (1999) Inactivation of Listeria monocytogenes/Pseudomonas biofilms by peracid sanitizers. J Food Prot 62:761–765

    CAS  Google Scholar 

  • Fulmer PA, Wynne JH (2011) Development of broad-spectrum antimicrobial latex paint surfaces employing active amphiphilic compounds. ACS Appl Mater Interfaces 3:2878–2884

    Article  CAS  Google Scholar 

  • Furtmüller PG, Burner U, Obinger C (1998) Reaction of myeloperoxidase compound I with chloride, bromide, iodide, and thiocyanate. Biochemistry 37:17923–17930

    Article  Google Scholar 

  • Gagner JE, Lopez M, Dordick JS, Siegel JW (2011) Effect of gold nanoparticle morphology on adsorbed protein structure and function. Biomaterials 32:7241–7252

    Article  CAS  Google Scholar 

  • Gianfreda L, Xu F, Bollag J-M (1999) Laccases: a useful group of oxidoreductive enzymes. Bioremediation J 3:1–25

    Article  CAS  Google Scholar 

  • Grover N, Borkar IV, Dinu CZ, Kane RS, Dordick JS (2012a) Laccase- and chloroperoxidase-nanotube paint composites with bactericidal and sporicidal activity. Enz Microb Technol 50:271–279

    Article  CAS  Google Scholar 

  • Grover N, Douaisi MP, Borkar IV, Lee L, Dinu CZ, Kane RS, Dordick JS (2012b) Perhydrolase-nanotube paint composites with sporicidal and antiviral activity. Appl Microbiol Biotechnol. doi:10.1007/s00253-012-4573-3

  • Hansen EH, Albertsen L, Schafer T, Johansen C, Frisvad JC, Molin S, Gram L (2003) Curvularia haloperoxidase: antimicrobial activity and potential application as a surface disinfectant. Appl Environ Microbiol 69:4611–4617

    Article  CAS  Google Scholar 

  • Hasan Z, Renirie R, Kerkman R, Ruijssenaars HJ, Hartog AF, Wever R (2006) Laboratory-evolved vanadium chloroperoxidase exhibits 100-fold higher halogenating activity at alkaline pH. Catalytic effects from first and second coordination sphere mutations. J Biol Chem 281:9738–9744

    Article  CAS  Google Scholar 

  • Huang Q, Dawson RA, Pegg DE, Kearney JN, Macneil S (2004) Use of peracetic acid to sterilize human donor skin for production of acellular dermal matrices for clinical use. Wound Rep Reg 12:276–287

    Article  Google Scholar 

  • Huang J, Liu C, Xiao H, Wang J, Jiang D, Erdan GU (2007) Zinc tetraaminophthalocyanine-Fe3O4 nanoparticle composite for laccase immobilization. Int J Nanomed 2:775–784

    CAS  Google Scholar 

  • Ibrahim NA, Gouda M, El-shafei AM, Abdel-Fatah OM (2007) Antimicrobial activity of cotton fabrics containing immobilized enzymes. J Appl Polym Sci 104:1754–1761

    Article  CAS  Google Scholar 

  • Jacks TJ, De Lucca AJ, Morris NM (1999) Effects of chloroperoxidase and hydrogen peroxide on the viabilities of Aspergillus flavus conidiospores. Mol Cell Biochem 195:169–172

    Article  CAS  Google Scholar 

  • Jacks TJ, De Lucca AJ, Rajasekaran K, Stromberg K, van Pèe K-H (2000) Antifungal and peroxidative activities of nonheme chloroperoxidase in relation to transgenic plant protection. J Agric Food Chem 48:4561–4564

    Article  CAS  Google Scholar 

  • Kanofsky JR (1984) Singlet oxygen production by chloroperoxidase-hydrogen peroxide-halide systems. J Biol Chem 259:5596–5600

    CAS  Google Scholar 

  • Kitis M (2004) Disinfection of wastewater with peracetic acid: a review. Environ Int 30:47–55

    Article  CAS  Google Scholar 

  • Klebanoff SJ (1967) Iodination of bacteria. A bactericidal mechanism. J Exp Medv 126:1063–1078

    Article  CAS  Google Scholar 

  • Klebanoff SJ (1968) Myeloperoxidase-halide-hydrogen peroxide antibacterial system. J Bacteriol 95:2131–2138

    CAS  Google Scholar 

  • Klein E, Smith DL, Laxminarayan R (2007) Hospitalizations and deaths caused by methicillin-resistant Staphylococcus aureus, United States, 1999–2005. Emerg Infect Dis 13:1840–1846

    Article  Google Scholar 

  • Kulys J, Bratkovskaja I, Vidziunaite R (2005) Laccase-catalyzed iodide oxidation in presence of methyl syringate. Biotechnol Bioeng 92:124–128

    Article  CAS  Google Scholar 

  • Li K, Xu F, Eriksson K-EL (1999) Comparison of fungal laccases and redox mediators in oxidation of a nonphenolic lignin model compound. Appl Environ Microbiol 65:2654–2660

    CAS  Google Scholar 

  • Littlechild J (1999) Haloperoxidases and their role in biotransformation reactions. Curr Opinion Chem Biol 3:28–34

    Article  CAS  Google Scholar 

  • Mathews I, Soltis M, Saldajeno M, Ganshaw G, Sala R, Weyler W, Cervin MA, Whited G, Bott R (2007) Structure of a novel enzyme that catalyzes acyl transfer to alcohols in aqueous conditions. Biochemistry 46:8969–8979

    Article  CAS  Google Scholar 

  • Mayer AM, Staples RC (2002) Laccase: new functions for an old enzyme. Phytochemistry 60:551–565

    Article  CAS  Google Scholar 

  • McDaniel SC, McDaniel J, Wales ME, Wild JR (2006) Enzyme-based additives for paints and coatings. Prog Org Coatings 55:182–188

    Article  CAS  Google Scholar 

  • Messerschmidt A, Huber R (1990) The blue oxidases, ascorbate oxidase, laccase and ceruloplasmin, modeling and structural relationships. Eur J Biochem 187:341–352

    Article  CAS  Google Scholar 

  • Mikolasch A, Schauer F (2009) Fungal laccases as tools for the synthesis of new hybrid molecules and biomaterials. Appl Microbiol Biotechnol 82:605–624

    Article  CAS  Google Scholar 

  • Minussi RC, Pastore GM, Durán N (2002) Potential applications of laccase in the food industry. Trend Food Sci Technol 13:205–216

    Article  CAS  Google Scholar 

  • Oestergaard HL, Christensen BE, Danielsen S (2008) Methods and compositions for killing spores. US Patent 0,286,256 A1

  • Pangule RC, Brooks SJ, Dinu CZ, Bale SS, Salmon SL, Zhu G, Metzger GW, Kane RS, Dordick JS (2010) Antistaphylococcal nanocomposite films based on enzyme-nanotube conjugates. ACS Nano 4:3993–4000

    Article  CAS  Google Scholar 

  • Persoon IF, Hoogenkamp MA, Bury A, Wesselink PR, Hartog AF, Wever R, Crielaard W (2012) Effect of vanadium chloroperoxidase on Enterococcus faecalis biofilm. J Endod 38:72–74

    Article  Google Scholar 

  • Piontek K, Antorini M, Choinowski T (2002) Crystal structure of a laccase from the fungus Trametes versicolor at 1.90-Å resolution containing a full complement of coppers. J Biol Chem 277:37663–37669

    Article  CAS  Google Scholar 

  • Renirie R, Dewilde A, Pierlot C, Wever R, Hober D, Aubry JM (2008) Bactericidal and virucidal activity of the alkalophilic P395D/L241 V/T343A mutant of vanadium chloroperoxidase. J Appl Microbiol 105:264–270

    Article  CAS  Google Scholar 

  • Sagripanti JL, Bonifacino A (1996) Comparative sporicidal effects of liquid chemical agents. Appl Environ Microbiol 62:545–551

    CAS  Google Scholar 

  • Sakurai T (1992) Anaerobic reactions of Rhus vernicifera laccase and its type-2 copper-depleted derivatives with hexacyanoferrate(II). Biochem J 284:681–685

    CAS  Google Scholar 

  • Shrivastava S, Nuffer JH, Siegel RW, Dordick JS (2012) Position-specific chemical modification and quantitative proteomics disclose protein orientation adsorbed on silica nanoparticles. Nano Lett 12:1583–1587

    Article  CAS  Google Scholar 

  • Tennen R, Setlow B, Davis KL, Loshon CA, Setlow P (2000) Mechanisms of killing of spores of Bacillus subtilis by iodine, glutaraldehyde and nitrous acid. J Appl Microbiol 89:330–338

    Article  CAS  Google Scholar 

  • Tiller JC, Lee SB, Lewis K, Klibanov AM (2002) Polymer surfaces derivatized with poly(vinyl-N-hexyl pyridinium) kill airborne and water borne bacteria. Biotechnol Bioeng 79:465–471

    Article  CAS  Google Scholar 

  • Wever R, Dekker HL, Van Schijndel JWPM, Vollenbroek EGM (1995) Enzymatic antimicrobial compositions. Patent WO 95/27009

  • Wood JP, Choi YW, Rogers JV, Kelly TJ, Riggs KB, Willenberg ZJ (2011) Efficacy of liquid spray decontaminants for inactivation of Bacillus anthracis spores on building and outdoor materials. J Appl Microbiol 110:1262–1273

    Article  CAS  Google Scholar 

  • Xu F (1996) Oxidation of phenols, anilines, and benzenethiols by fungal laccases: correlation between activity and redox potentials as well as halide inhibition. Biochem 35:7608–7614

    Article  CAS  Google Scholar 

  • Xu F, Shin W, Brown S, Wahleithner JA, Sundaram UM, Solomon EI (1996) A study of a series of recombinant fungal laccases and bilirubin oxidase that exhibit significant differences in redox potential, substrate specificity, and stability. Biochim Biophys Acta 1292:303–311

    Article  Google Scholar 

  • Xu F, Kulys JJ, Duke K, Li K, Krikstopaitis K, Deussen H-JW, Abbate E, Galinyte V, Schneider P (2000) Redox chemistry in laccase-catalyzed oxidation of N-hydroxy compounds. Appl Environ Microbiol 66:2052–2056

    Article  CAS  Google Scholar 

  • Yin, DeLu (Tyler), Kazlauskas RJ (2012) Revised molecular basis of the promiscuous carboxylic acid perhydrolase activity in serine hydrolases. Chem Eur J 18:8130-8139

    Google Scholar 

Download references

Acknowledgments

This work was supported by the U.S. Army Corps of Engineers under contracts W913T-10-2-0006 and W913T-11-R-0033.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan S. Dordick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grover, N., Dinu, C.Z., Kane, R.S. et al. Enzyme-based formulations for decontamination: current state and perspectives. Appl Microbiol Biotechnol 97, 3293–3300 (2013). https://doi.org/10.1007/s00253-013-4797-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-4797-x

Keywords

Navigation