Skip to main content
Log in

The intracellular galactoglycome in Trichoderma reesei during growth on lactose

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Lactose (1,4-0-β-d-galactopyranosyl-d-glucose) is used as a soluble carbon source for the production of cellulases and hemicellulases for—among other purposes—use in biofuel and biorefinery industries. The mechanism how lactose induces cellulase formation in T. reesei is enigmatic, however. Previous results from our laboratory raised the hypothesis that intermediates from the two galactose catabolic pathway may give rise to the accumulation of intracellular oligogalactosides that could act as inducer. Here we have therefore used high-performance anion-exchange chromatography–mass spectrometry to study the intracellular galactoglycome of T. reesei during growth on lactose, in T. reesei mutants impaired in galactose catabolism, and in strains with different cellulase productivities. Lactose, allo-lactose, and lactulose were detected in the highest amounts in all strains, and two trisaccharides (Gal-β-1,6-Gal-β-1,4-Glc/Fru and Gal-β-1,4-Gal-β-1,4-Glc/Fru) also accumulated to significant levels. Glucose and galactose, as well as four further oligosaccharides (Gal-β-1,3/1,4/1,6-Gal; Gal-β-1,2-Glc) were only detected in minor amounts. In addition, one unknown disaccharide (Hex-β-1,1-Hex) and four trisaccharides were also detected. The accumulation of the unknown hexose disaccharide was shown to correlate with cellulase formation in the improved mutant strains as well as the galactose pathway mutants, and Gal-β-1,4-Gal-β-1,4-Glc/Fru and two other unknown hexose trisaccharides correlated with cellulase production only in the pathway mutants, suggesting that these compounds could be involved in cellulase induction by lactose. The nature of these oligosaccharides, however, suggests their formation by transglycosylation rather than by glycosyltransferases. Based on our results, the obligate nature of both galactose catabolic pathways for this induction must have another biochemical basis than providing substrates for inducer formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bruggink C, Maurer R, Herrmann H, Cavalli S, Hoefler FJ (2005) Analysis of carbohydrates by anion exchange chromatography and mass spectrometry. J Chromatography A 1085:104–109

    Article  CAS  Google Scholar 

  • Bucior I, Burger MM (2004) Carbohydrate–carbohydrate interaction as a major force initiating cell–cell recognition. Glycoconj J 21:111–123

    Article  CAS  Google Scholar 

  • Coulier L, Timmermans J, Richard B, Van Den Dool R, Haaksman I, Klarenbeek B, Slaghek T, Van Dongen WJ (2009) In-depth characterization of prebiotic galacto-oligosaccharides by a combination of analytical techniques. J Agr Food Chem 57:8488–8495

    Article  CAS  Google Scholar 

  • Eveleigh DE, Montenecourt BS (1979) Increasing yields of extracellular enzymes. Adv Appl Microbiol 25:57–74

    Article  CAS  Google Scholar 

  • Fekete E, Seiboth B, Kubicek CP, Szentirmai A, Karaffa L (2008) Lack of aldose 1-epimerase in Hypocrea jecorina (anamorph Trichoderma reesei): a key to cellulase gene expression on lactose. Proc Natl Acad Sci USA 105:7141–7146

    Article  CAS  Google Scholar 

  • Hartl L, Kubicek CP, Seiboth B (2007) Induction of the gal pathway and cellulase genes involves no transcriptional inducer function of the galactokinase in Hypocrea jecorina. J Biol Chem 282:18654–18659

    Article  CAS  Google Scholar 

  • Jörgensen RG, Mäder P, Fließbach A (2010) Long-term effects of organic farming on fungal and bacterial residues in relation to microbial energy metabolism. Biol Fert Soils 46:303–307

    Article  Google Scholar 

  • Karaffa L, Fekete E, Gamauf C, Szentirmai A, Kubicek CP, Seiboth B (2006) D-Galactose induces cellulase gene expression in Hypocrea jecorina at low growth rates. Microbiology 152:1507–1514

    Article  CAS  Google Scholar 

  • Lairson LL, Henrissat B, Davies GJ, Withers SG (2008) Glycosyltransferases: structures, functions, and mechanisms. Annu Rev Biochem 77:521–55

    Article  CAS  Google Scholar 

  • Lamsal BP (2012) Production, health aspects and potential food uses of dairy prebiotic galactooligosaccharides. J Sci Food Agr 92:2020–2028

    Article  CAS  Google Scholar 

  • Le Crom S, Schackwitz W, Penacchio L, Magnuson J, Culley D, Collet J, Martin J, Druzhinina IS, Mathis H, Monot F, Seiboth B, Cherry B, Rey M, Berka R, Kubicek CP, Baker SE, Margeot A (2009) Tracking the roots of cellulase hyperproduction by the fungus Trichoderma reesei using massively parallel DNA sequencing. Proc Natl Acad Sci USA 106:16151–16156

    Article  Google Scholar 

  • Lu L, Xu S, Jin L, Zhang D, Li Y, Xiao M (2012) Synthesis of galactosyl sucralose by β-galactosidase from Lactobacillus bulgaricus L3. Food Chem 134:269–275

    Article  CAS  Google Scholar 

  • Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, Chapman J, Chertkov O, Coutinho PM, Cullen D, Danchin EG, Grigoriev IV, Harris P, Jackson M, Kubicek CP, Han CS, Ho I, Larrondo LF, de Leon AL, Magnuson JK, Merino S, Misra M, Nelson B, Putnam N, Robbertse B, Salamov AA, Schmoll M, Terry A, Thayer N, Westerholm-Parvinen A, Schoch CL, Yao J, Barabote R, Nelson MA, Detter C, Bruce D, Kuske CR, Xie G, Richardson P, Rokhsar DS, Lucas SM, Rubin EM, Dunn-Coleman N, Ward M, Brettin TS (2008) Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol 26:553–560

    Article  CAS  Google Scholar 

  • Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Prog Energy Comb Sci 38:522–550

    Article  CAS  Google Scholar 

  • Nagai A, Yamamoto T, Wariishi H (2012) Identification of fructo- and malto-oligosaccharides in cured tobacco leaves (Nicotiana tabacum). J Agri Food Chem 60:6606–6612

    Article  CAS  Google Scholar 

  • Okatch H, Torto N, Armateifio J (2003) Characterisation of legumes by enzymatic hydrolysis, microdialysis sampling, and micro-high-performance anion-exchange chromatography with electrospray ionization mass spectrometry. J Chromatography A 992:67–74

    Article  CAS  Google Scholar 

  • Prasad S, Roy I (2010) Effect of disaccharides on the stabilization of bovine trypsin against detergent and autolysis. Biotechnol Prog 26:627–635

    Article  CAS  Google Scholar 

  • Richardson S, Cohen A, Gorton L (2001) High-performance chromatography-electrospray mass spectrometry for investigation of the substituent distribution in hydroxypropylated potato amylopectin starch. J Chromatography A 917:111–121

    Article  CAS  Google Scholar 

  • Rodriguez-Fernandez M, Cardelle-Cobas A, Villamiel M, Banga JR (2011) Detailed kinetic model describing new oligosaccharides synthesis using different β-galactosidases. J Biotechnol 153:116–124

    Article  CAS  Google Scholar 

  • Roelfsema WA, Kuster BFM, Heslinga MC, Pluim H, Verhage M (2010) Lactose and derivatives. Ullmann’s encyclopedia of industrial chemistry, 7th edn. Wiley, New York

    Google Scholar 

  • Rodgers JL, Nicewander WA (1988) Thirteen ways to look at the correlation coefficient. American Stat 42:59–66

    Article  Google Scholar 

  • Röhr M, Zehentgruber O, Kubicek CP (1981) Kinetics of biomass formation and citric acid production by Aspergillus niger on a pilot plant scale. Biotechnol Bioeng 23:2433–2445

    Article  Google Scholar 

  • Ruijter GJG, Visser J (1996) Determination of intermediary metabolites in Aspergillus niger. J Microbiol Methods 25:295–302

    Article  CAS  Google Scholar 

  • Rumbold K, Okatch H, Torto N, Siika-Aho M, Gubitz G, Robra K-H, Prior B (2002) Monitoring on-line desalted lignocellulosic hydrolysates by microdialysis sampling micro-high performance anion exchange chromatography with integrated pulsed electrochemical detection/mass spectrometry. Biotechnol Bioeng 78:822–828

    Article  Google Scholar 

  • Sangwan V, Tomar SK, Singh RRB, Singh AK, Ali B (2011) Galactooligosaccharides: novel components of designer foods. J Food Sci 76:R103–R111

    Article  CAS  Google Scholar 

  • Seiboth B, Hartl L, Pail M, Fekete E, Karaffa L, Kubicek CP (2004) The galactokinase of Hypocrea jecorina is essential for cellulase induction by lactose but dispensable for growth on D-galactose. Mol Microbiol 51:1015–1025

    Article  CAS  Google Scholar 

  • Seiboth B, Gamauf C, Pail M, Hartl L, Kubicek CP (2007) The D-xylose reductase of Hypocrea jecorina is the major aldose reductase in pentose and D-galactose catabolism and necessary for β-galactosidase and cellulase induction by lactose. Mol Microbiol 66:890–900

    Article  CAS  Google Scholar 

  • Soper DS (2012) p-value calculator for correlation coefficients (online software). http://www.danielsoper.com/statcalc3

Download references

Acknowledgments

This work was supported by grants from the Austrian Science Foundation (FWF P-19143 and FWF P24219) to CPK and BS, respectively. Research at the University of Debrecen has been supported by the OTKA (Hungarian Scientific Research Fund; grants K67667 and K1006600) and by the TÁMOP-4.2.2/B-10/-1-2010-0024 Project. EF is a recipient of a Bólyai János Research Scholarship (BO/00519/09/8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Levente Karaffa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karaffa, L., Coulier, L., Fekete, E. et al. The intracellular galactoglycome in Trichoderma reesei during growth on lactose. Appl Microbiol Biotechnol 97, 5447–5456 (2013). https://doi.org/10.1007/s00253-012-4667-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4667-y

Keywords

Navigation