Skip to main content
Log in

Force–velocity relationship for multiple kinesin motors pulling a magnetic bead

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Although the velocity of single kinesin motors against an opposing force F of 0–10 pN is well known, the behavior of multiple kinesin motors working to overcome a larger load is still poorly understood. We have carried out gliding assays in which 3–7 Drosophila kinesin-1 motors moved a microtubule at 200–700 μm/s against a 0–31 pN load at saturating [ATP]. The load F was generated by applying a spatially uniform magnetic field gradient to a superparamagnetic bead attached to the (+) end of the microtubule. When F was scaled by the average number of motors 〈n〉, the force–velocity relationship for multiple motors was similar to the force–velocity relationship for a single motor, supporting a minimal load-sharing model. The velocity distribution at low load has a single mode consistent with rapid fluctuations of n. However, against a load of 2.5–4.7 pN/motor, additional modes appeared at lower velocity. These observations support the Klumpp–Lipowsky model of multimotor transport [Proc Natl Acad Sci USA 102. 17284–17289 (2005)].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

SEM:

Standard error of the mean

BRB80:

Brinkley reconstitution buffer

References

  • Beeg J, Klumpp S, Dimova R, Garcia RS, Unger E (2008) Transport of beads by several kinesin motors. Biophys J 94:532–541

    Article  PubMed  CAS  Google Scholar 

  • Bevington PR (1969) Data reduction and error analysis for the physical sciences. McGraw-Hill, New York

    Google Scholar 

  • Bieling P, Telley IA, Piehler J, Surrey T (2008) Processive kinesins require loose mechanical coupling for efficient collective motility. EMBO Reports 1–7

  • Block SM, Goldstein LSB, Schnapp BJ (1990) Bead movement by single kinesin molecules studied with optical tweezers. Nature 348:348–352

    Article  PubMed  CAS  Google Scholar 

  • Chisena EN, Wall RA, Macosko JC, Holzwarth GM (2007) Speckled microtubules improve tracking in motor-protein gliding assays. Phys Biol 7:10–15

    Article  Google Scholar 

  • Coppin CM, Pierce DW, Hsu L, Vale RD (1997) The load dependence of kinesin’s mechanical cycle. Proc Natl Acad Sci USA 94:8539–8544

    Article  PubMed  CAS  Google Scholar 

  • Coy DL, Wagenbach M, Howard J (1999) Kinesin takes one 8-nm step for each ATP that it hydrolyzes. J Biol Chem 274:3667–3671

    Article  PubMed  CAS  Google Scholar 

  • Fallesen TL (2010) Kinesin-microtubule interactions during gliding assays under magnetic force physics. Wake Forest University, Winston-Salem, pp 193, http://hdl.handle.net/10339/30429

  • Fallesen TL, Hill DB, Steen M, Macosko JC, Bonin KGH (2010) Magnet polepiece design for uniform magnetic force on superparamagnetic beads. Rev Sci Inst 81:074303

    Article  Google Scholar 

  • Fallesen TL, Macosko JC, Holzwarth G (2011) Measuring the number and spacing of molecular motors propelling a gliding microtubule. Phys Rev E 83:011918, http://link.aps.org/doi/10.1103/PhysRevE.83.011918

  • Forstner W (1994) Image matching. In: Haralick RM, Shapiro LG (eds) Computer and robot vision, vol 2. Addison-Wesley, Reading, MA, pp 289–378

    Google Scholar 

  • Gagliano J, Walb M, Blaker B, Macosko JC, Holzwarth G (2010) Kinesin velocity increases with the number of motors pulling against viscoelastic drag. Eur Biophys J 39:801–813

    Article  PubMed  Google Scholar 

  • Gibbons F, Chauwin J-F, Desposito M, Jose JV (2001) A dynamic model of kinesin-microtublue motility assays. Biophys J 80:2515–2526

    Article  PubMed  CAS  Google Scholar 

  • Hill DB, Plaza MJ, Bonin KD, Holzwarth G (2004) Fast Vesicle Transport in PC12 Neurites: velocities and forces. Eur Biophys J 33:623–632

    Article  PubMed  CAS  Google Scholar 

  • Hirokawa N, Noda Y, Tanaka Y, Niwa S (2009) Kinesin superfamily motor proteins and intracellullar transport. Nat Rev Mol Cell Biol 10:662–696

    Google Scholar 

  • Howard J (2001) Mechanics of motor proteins and the cytoskeleton. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Howard J, Hudspeth AJ, Vale RD (1989) Movement of microtubules by single kinesin molecules. Nature 342:154–158

    Article  PubMed  CAS  Google Scholar 

  • Hunt AJ, Gittes F, Howard J (1994) The force exerted by a single kinesin molecule against a viscous load. Biophys J 67:766–781

    Article  PubMed  CAS  Google Scholar 

  • Jamison DK, Driver JW, Rogers AR, Constantinou PE, Diehl MR (2010) Two kinesins transport cargo primarily via the action of one motor: implications for intracellular transport. Biophys J 99:2967–2977

    Article  PubMed  CAS  Google Scholar 

  • Katira P, Agarwal A, Fischer T, Chen H-Y, Jiang X, Lahann J, Hess H (2007) Quantifying the performance of protein-resisting surfaces at ultra-low protein coverages using kinesin motor proteins as probes. Adv Mater 19:3171–3176

    Article  CAS  Google Scholar 

  • Klumpp S, Lipowsky R (2005) Cooperative cargo transport by several molecular motors. Proc Natl Acad Sci USA 102:17284–17289

    Article  PubMed  CAS  Google Scholar 

  • Kojima H, Muto E, Higuchi H, Yanagida T (1997) Mechanics of single kinesin molecules measured by optical trapping nanometry. Biophys J 73:2012–2022

    Article  PubMed  CAS  Google Scholar 

  • Korn CB, Klumpp S, Lipowsky R, Schwarz US (2009) Stochastic simulations of cargo transport by processive molecular motors. J Chem Phys 131:245107

    Article  PubMed  Google Scholar 

  • Kunwar A, Mogilner A (2010) Robust transport by multiple motors with nonlinear force-velocity relations and stochastic load sharing. Phys Biol 7:016012

    Article  Google Scholar 

  • Leduc C, Campas O, Zeldovich KB, Roux A, Jolimaitre P, Borel-Bonnet L, Goud B, Joanny J-F, Prost J (2004) Cooperative extraction of membrane nanotubes by molecular motors. Proc Natl Acad Sci USA 101:17096–17101

    Article  PubMed  CAS  Google Scholar 

  • Leduc C, Ruhnow F, Howard J, Diez S (2007) Detection of fractional steps in cargo movement by the collective operation of kinesin-1 motors. Proc Natl Acad Sci USA 104:10847–10852

    Article  PubMed  CAS  Google Scholar 

  • Meyhöfer E, Howard J (1995) The force generated by a single kinesin molecule against an elastic load. Proc Natl Acad Sci USA 92:574–578

    Article  PubMed  Google Scholar 

  • Nan X, Sims PA, Xie XS (2008) Organelle tracking in a living cell with microsecond time resolution and nanometer spatial precision. ChemPhysChem 2008:707–712

    Article  Google Scholar 

  • Pincet F, Husson J (2005) The solution to the streptavidin-biotin paradox: the influence of history on the strength of single molecular bonds. Biophys J 89:4374–4381

    Article  PubMed  CAS  Google Scholar 

  • Shtridelman Y, Holzwarth GM, Bauer CT, Gassman NR, DeWitt DA, Macosko JC (2009) In vivo multimotor force-velocity curves by tracking and sizing sub-diffraction limited vesicles. Cel Mol Bioeng 2:190–199

    Article  Google Scholar 

  • Shubeita GT, Tran SL, Xu J, Vershinin M, Cermelli S, Cotton SL, Welte MA, Gross SP (2008) Consequences of motor copy number on the intracellular transport of kinesin-1-driven lipid droplets. Cell 135:1098–1107

    Article  PubMed  CAS  Google Scholar 

  • Silverman BW (1986) Density estimation for statistics and data analysis, 1st edn. Chapman and Hall, London

    Google Scholar 

  • Vale RD, Malik F, Brown D (1992) Directional instability of microtubule transport in the presence of kinesin and dynein, two opposite polarity motor proteins. J Cell Biol 119:1589–1596

    Article  PubMed  CAS  Google Scholar 

  • Vershinin M, Carter BC, Razafsky DS, King SJ, Gross SP (2007) Multiple-motor based transport and its regulation by Tau. Proc Natl Acad Sci USA 104:87–92

    Article  PubMed  CAS  Google Scholar 

  • Visscher K, Schnitzer MJ, Block SM (1999) Single kinesin molecules studied with a molecular force clamp. Nature 400:184–189

    Article  PubMed  CAS  Google Scholar 

  • Watanabe TM, Higuchi H (2007) Stepwise movements in vesicle transport of HER2 by motor proteins in living cells. Biophys J 92:4109–4120

    Article  PubMed  CAS  Google Scholar 

  • Welte MA, Gross S, Postner M, Block S, Wieschaus E (1998) Developmental regulation of vesicle transport in Drosophila embryos: forces and kinetics. Cell 92:547–557

    Article  PubMed  CAS  Google Scholar 

  • Yildiz A, Tomishige M, Vale RD, Selvin PR (2004) Kinesin walks hand-over-hand. Science 303:676–678

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank J. Howard for providing plasmid pPK113 for kinesin-1, Jason Gagliano for assistance in the preparation of kinesin, and Matt Steen for assistance with Odyssey software. We are grateful for helpful suggestions from the reviewers. Support from NIH grant R15 NS053493 (G.H.) and Wake Forest University funds (J.C.M.) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Holzwarth.

Appendix

Appendix

Conversion of {x,y,t} tracks to {x″,y″,t} data for which x″ is parallel to the path of the microtubule and y″ is perpendicular to that path.

Consider a microtubule traveling at constant velocity in a straight path, x = x 0 + v x t, y = y 0 + v y t, with v x and v y independent of t.

Step 1. Translocate the (x,y,t) frame to a new coordinate frame (x′,y′,t) in which the microtubule starts at (0,0,0) with equations x′ = x − x0, y′ = y − y0. In the xy′ plane, y′ = (v y /v x )x′, a straight line through the origin.

Step 2. Rotate the (x′,y′) coordinate system by angle θ = tan−1(v y /v x ) to new coordinates (x″,y″):\( \left[ {\begin{array}{*{20}c} {x^{\prime \prime} } \\ {y^{\prime \prime} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {\cos (\theta )} & {\sin (\theta )} \\ { - \sin (\theta )} & {\cos (\theta )} \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {x^\prime } \\ {y^\prime } \\ \end{array} } \right]. \)

In the (x″,y″) coordinate system, \( x^{\prime\prime} = \left( {\sqrt {v_{x}^{2} + v_{y}^{2} } } \right)t = vt \) and y″ = 0. Thus, the slope \( \frac{{{\text{d}}x^{\prime \prime} }}{{{\text{d}}t}} \) equals the velocity of the particle.

For a microtubule traveling along a curved path, v x and v y are functions of t, so θ = tan−1(v y /v x ) is also a function of t. We determined θ(t) from the smoothed value of dy/dx. Steps 1 and 2 were then applied to data points 1 and 2. This done, steps 1 and 2 were applied to points 2 and 3, etc. (This is easy in MATLAB.) In that (x″,y″,t) coordinate system, y″(t) = 0 + noise, whereas x″(t) = vt + noise. We tested the algorithm carefully with synthetic data, i.e., data sets {x,y,t} constructed with known values of v x and v y, plus Gaussian noise.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fallesen, T.L., Macosko, J.C. & Holzwarth, G. Force–velocity relationship for multiple kinesin motors pulling a magnetic bead. Eur Biophys J 40, 1071–1079 (2011). https://doi.org/10.1007/s00249-011-0724-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-011-0724-1

Keywords

Navigation