Skip to main content
Log in

The Evolutionary Histories of Clinical and Environmental SHV β-Lactamases are Intertwined

  • Original Article
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The rise of antibiotic-resistant pathogens focuses our attention on the source of antibiotic resistance genes, on the existence of these genes in environments exposed to little or no antibiotics, and on the relationship between resistance genes found in the clinic and those encountered in non-clinical settings. Here, we address the evolutionary history of a class of resistance genes, the SHV β-lactamases. We focus on bla SHV genes isolated both from clinical and non-clinical sources and show that clinically important resistance determinants arise repeatedly from within a diverse pool of bla SHV genes present in the environment. While our results argue against the notion of a single common origin for all clinically derived bla SHV genes, we detect a characteristic selective signature shaping this protein in clinical environments. This clinical signature reveals the joint action of purifying and positive selection on specific residues, including those known to confer extended-spectrum activity. Surprisingly, antibiotic resistance genes isolated from non-clinical—and presumably antibiotic-free—settings also experience the joint action of purifying and positive selection. The picture that emerges undercuts the notion of a separate reservoir of antibiotic resistance genes confined only to clinical settings. Instead, we argue for the presence of a single extensive and variable pool of antibiotic resistance genes present in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allen HK, Donato J, Wang HH, Cloud-Hansen KA, Davies J, Handelsman J (2010) Call of the wild: antibiotic resistance genes in natural environments. Nat Rev Microbiol 8(4):251–259. doi:10.1038/nrmicro2312

    Article  CAS  PubMed  Google Scholar 

  • Blaser M (2011) Antibiotic overuse: stop the killing of beneficial bacteria. Nature 476:393–394

    Article  CAS  PubMed  Google Scholar 

  • Bradford PA (2001) Extended-spectrum beta-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev 14(4):933–951. doi:10.1128/CMR.14.4.933-951.2001

    Article  CAS  PubMed  Google Scholar 

  • Bush K, Jacoby GA (2010) Updated functional classification of beta-lactamases. Antimicrob Agents Chemother 54(3):969–976. doi:10.1128/AAC.01009-09

    Article  CAS  PubMed  Google Scholar 

  • Bush K, Courvalin P, Dantas G, Davies J, Eisenstein B, Huovinen P, Jacoby GA, Kishony R, Kreiswirth BN, Kutter E, Lerner SA, Levy S, Lewis K, Lomovskaya O, Miller JH, Mobashery S, Piddock LJ, Projan S, Thomas CM, Tomasz A, Tulkens PM, Walsh TR, Watson JD, Witkowski J, Witte W, Wright G, Yeh P, Zgurskaya HI (2011) Tackling antibiotic resistance. Nat Rev Microbiol 9(12):894–896. doi:10.1038/nrmicro2693

    Article  CAS  PubMed  Google Scholar 

  • Chikwendu CI, Ibe SN, Okpokwasili GC (2011) Detection of bla SHV and bla TEM beta-lactamase genes in multi-resistant pseudomonas isolates from environmental sources. Afri J Microbiol Res 5(15):2067–2074

    CAS  Google Scholar 

  • Costa D, Poeta P, Sa′enz Y, Vinue L, Rojo-Bezares B, Jouini A, Zarazaga M, Rodrigues J, Torres C (2006) Detection of Escherichia coli harbouring extended-spectrum β-lactamases of the CTX-M, TEM and SHV classes in faecal samples of wild animals in Portugal. J Antimicrob Chemother 58(6):1311–1312. doi:10.1093/jac/dkl414

    Article  CAS  PubMed  Google Scholar 

  • Costelloe C, Metcalfe C, Lovering A, Mant D, Hay AD (2010) Effect of antibiotic prescribing in primary care on antimicrobial resistance in individual patients: systematic review and meta-analysis. British Med J 340(c2096):1120. doi:10.1136/bmj.c2220;10.1136/bmj.c2553;10.1136/bmj.c2096

    Google Scholar 

  • Davies J, Davies D (2010) Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 74(3):417–433. doi:10.1128/MMBR.00016-10

    Article  CAS  PubMed  Google Scholar 

  • Drawz SM, Bonomo RA (2010) Three decades of beta-lactamase inhibitors. Clin Microbiol Rev 23(1):160–201. doi:10.1128/CMR.00037-09

    Article  CAS  PubMed  Google Scholar 

  • Girlich D, Poirel L, Nordmann P (2011) Diversity of clavulanic acid-inhibited extended-spectrum beta-lactamases in Aeromonas spp. from the Seine River, Paris, France. Antimicrob Agents Chemother 55(3):1256–1261. doi:10.1128/AAC.00921-10

    Article  CAS  PubMed  Google Scholar 

  • Gordon DM, FitzGibbon F (1999) The distribution of enteric bacteria from Australian mammals: host and geographical effects. Microbiology 145:2663–2671

    CAS  PubMed  Google Scholar 

  • Gordon DM, Stern SE, Collignon PJ (2005) Influence of the age and sex of human hosts on the distribution of Escherichia coli ECOR groups and virulence traits. Microbiology 151(Pt 1):15–23. doi:10.1099/mic.0.27425-0

    Article  CAS  PubMed  Google Scholar 

  • Grundmann H, Klugman KP, Walsh T, Ramon-Pardo P, Sigauque B, Khan W, Laxminarayan R, Heddini A, Stelling J (2011) A framework for global surveillance of antibiotic resistance. Drug Resist Updat 14(2):79–87. doi:10.1016/j.drup.2011.02.007

    Article  PubMed  Google Scholar 

  • Kuzin AP, Nukaga M, Nukaga Y, Hujer AM, Bonomo RA, Knox JR (1999) Structure of the SHV-1 beta-lactamase. Biochemistry 38(18):5720–5727. doi:10.1021/bi990136d

    Article  CAS  PubMed  Google Scholar 

  • Lee K, Hopkins JD, Syvanen M, O’Brien TF (1991) Gly-238-Ser substitution changes the substrate specificity of the SHV class A β-lactamases. Proteins 11(1):45–51

    Article  CAS  PubMed  Google Scholar 

  • Literak I, Dolejska M, Radimersky T, Klimes J, Friedman M, Aarestrup FM, Hasman H, Cizek A (2010) Antimicrobial-resistant faecal Escherichia coli in wild mammals in central Europe: multiresistant Escherichia coli producing extended-spectrum beta-lactamases in wild boars. J Appl Microbiol 108(5):1702–1711. doi:10.1111/j.1365-2672.2009.04572.x

    Article  CAS  PubMed  Google Scholar 

  • Medeiros AA (1997) Evolution and dissemination of beta-lactamases accelerated by generations of beta-lactam antibiotics. Clin Infect Dis 24(Suppl 1):S19–S45

    Article  CAS  PubMed  Google Scholar 

  • Mendonca N, Manageiro V, Robin F, Salgado MJ, Ferreira E, Canica M, Bonnet R (2008) The Lys234Arg substitution in the enzyme SHV-72 is a determinant for resistance to clavulanic acid inhibition. Antimicrob Agents Chemother 52(5):1806–1811. doi:10.1128/AAC.01381-07

    Article  CAS  PubMed  Google Scholar 

  • Nüesch-Inderbinen MT, Hächler H, Kayser FH (1995) New system based on site-directed mutagenesis for highly accurate comparison of resistance levels conferred by SHV beta-lactamases. Antimicrob Agents Chemother 39(8):1726–1730. doi:10.1128/aac.39.8.1726

    Article  PubMed  Google Scholar 

  • Nukaga M, Mayama K, Hujer AM, Bonomo RA, Knox JR (2003) Ultrahigh resolution structure of a Class A β-Lactamase: on the mechanism and specificity of the extended-spectrum SHV-2 enzyme. J Mol Biol 328(1):289–301. doi:10.1016/s0022-2836(03)00210-9

    Article  CAS  PubMed  Google Scholar 

  • Poirel L, Heritier C, Podglajen I, Sougakoff W, Gutmann L, Nordmann P (2003) Emergence in Klebsiella pneumoniae of a chromosome-encoded SHV beta-lactamase that compromises the efficacy of imipenem. Antimicrob Agents Chemother 47(2):755–758. doi:10.1128/aac.47.2.755-758.2003

    Article  CAS  PubMed  Google Scholar 

  • Randegger CC, Hächler H (2001) Amino acid substitutions causing inhibitor resistance in TEM β-lactamases compromise the extended-spectrum phenotype in SHV extended-spectrum β-lactamases. J Antimicrob Chemother 47:547–554

    Article  CAS  PubMed  Google Scholar 

  • Rice LB, Carias LL, Hujer AM, Bonafede M, Hutton R, Hoyen C, Bonomo RA (2000) High-level expression of chromosomally encoded SHV-1 beta -lactamase and an outer membrane protein change confer resistance to ceftazidime and piperacillin- tazobactam in a clinical isolate of Klebsiella pneumoniae. Antimicrob Agents Chemother 44(2):362–367. doi:10.1128/aac.44.2.362-367.2000

    Article  CAS  PubMed  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19(12):1572–1574. doi:10.1093/bioinformatics/btg180

    Article  CAS  PubMed  Google Scholar 

  • Stern A, Doron-Faigenboim A, Erez E, Martz E, Bacharach E, Pupko T (2007) Selecton 2007: advanced models for detecting positive and purifying selection using a Bayesian inference approach. Nucleic Acids Res 35(Web Server issue):W506–W511. doi:10.1093/nar/gkm382

    Article  PubMed  Google Scholar 

  • Stokes HW, Gillings MR (2011) Gene flow, mobile genetic elements and the recruitment of antibiotic resistance genes into gram-negative pathogens. Fems Microbiol Rev 35(5):790–819. doi:10.1111/j.1574-6976.2011.00273.x

    Article  CAS  PubMed  Google Scholar 

  • Wright GD (2010) Q&A: antibiotic resistance: where does it come from and what can we do about it? BMC Biology 8:123–128

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health 5R01GM068657-04 and National Institutes of Health American Reinvestment and Recovery Act of 2009 Supplement 3R01GM068657-04S1. We thank Dr. David Gordon for sharing his unpublished sequences and for his support during the collection phase of this project. We also thank Dr. Junhyong Kim for statistical advice.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret A. Riley.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Online Resource 1

bla SHV Sequences Included in Data Analysis

Online Resource 2

Primers Targeting the bla SHV Gene

Online Resource 3

Selection Analysis Likelihood Values

Online Resource 4

Sites of Positive Selection

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dorit, R.L., Roy, C.M., Robinson, S.M. et al. The Evolutionary Histories of Clinical and Environmental SHV β-Lactamases are Intertwined. J Mol Evol 76, 388–393 (2013). https://doi.org/10.1007/s00239-013-9574-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-013-9574-z

Keywords

Navigation