
Acta Informatica (2017) 54:243–269
DOI 10.1007/s00236-016-0285-y

ORIGINAL ARTICLE

Multiparty session types as coherence proofs

Marco Carbone1 · Fabrizio Montesi2 ·
Carsten Schürmann1 · Nobuko Yoshida3

Received: 30 November 2015 / Accepted: 4 November 2016 / Published online: 16 November 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract We propose a Curry–Howard correspondence between a language for program-
ming multiparty sessions and a generalisation of Classical Linear Logic (CLL). In this
framework, propositions correspond to the local behaviour of a participant in a multiparty
session type, proofs to processes, and proof normalisation to executing communications. Our
key contribution is generalising duality, from CLL, to a new notion of n-ary compatibility,
called coherence. Building on coherence as a principle of compositionality, we generalise the
cut rule of CLL to a new rule for composing many processes communicating in a multiparty
session. We prove the soundness of our model by showing the admissibility of our new rule,
which entails deadlock-freedom via our correspondence.

1 Introduction

Session types are protocols for communications in concurrent systems [16,26]. A recent
line of work investigates Curry–Howard correspondences between the type theory of session
types and linear logic, where proofs correspond to processes, propositions to types, and proof
normalisation to communications [6,28].An important consequence of such correspondences
is that several notions that usually require complex additional definitions and proofs, e.g.,

B Fabrizio Montesi
fmontesi@imada.sdu.dk

Marco Carbone
carbonem@itu.dk

Carsten Schürmann
carsten@itu.dk

Nobuko Yoshida
n.yoshida@imperial.ac.uk

1 IT University of Copenhagen, Rued Langgaards Vej 7, 2700 Copenhagen, Denmark

2 University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark

3 Imperial College London, 180 Queen’s Gate, London SW7 2AZ, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00236-016-0285-y&domain=pdf
http://orcid.org/0000-0003-4666-901X

244 M. Carbone et al.

dependency relations for deadlock-freedom [12,23], follow for free from the theory of linear
logic, yielding a succinct formulation of the formal foundations of sessions.

The aforementioned correspondences cover only session types with exactly two partici-
pants, called binary session types. In practice, however, protocols often describe the behaviour
of multiple participants [25]. Multiparty Session Types (MPSTs) have been proposed to cap-
ture such protocols, by matching the communications enacted by many participants with a
global scenario [17]. Unfortunately, MPSTs are more involved than binary session types,
since they include complex analyses on the structure of protocols and a mapping from global
types, which describe multiparty protocols, to local types, which describe the local behaviour
of each single participant. So far, it has been unclear whether a succinct logical formulation
of MPSTs can be developed, as done for binary session types. Therefore, we ask:

Can we design a proof theory for reasoning about multiparty sessions?

A positive answer to our question would lead to a clearer understanding of the principles that
underpinmultiparty session programming. Themain challenge lies in the foundational notion
of duality found in linear logic, which, in a Curry–Howard interpretation of propositions as
types, checks whether the session types of two respective participants are compatible. It is an
open question how to generalise the notion of type duality to that of “multiparty compatibility”
found in MPSTs, which allows to compose an arbitrary number of participants [14,17,20].
Therefore, differently from previous work, we are in a situation where the existing logic does
not provide us with natural tools for dealing with the types we desire to capture.

The main contribution of this work is the development of Multiparty Classical Processes
(MCP), a proof theory for reasoning on synchronous multiparty communications. The key
aspect of MCP is that it generalises Classical Linear Logic (CLL) [15], by building on a
new notion of type compatibility, called coherence, that replaces duality. UsingMCP, we can
provide a concise reconstruction of the foundations of MPSTs. In the following, we outline
our investigation:

– Coherence We start by formalising a language for local types and global types (Sect. 3,
Types). As in MPSTs, a local type denotes the I/O actions of a single participant in a
session, whereas a global type denotes the desired interactions among all participants in
a session. We then present coherence, a proof system for determining whether a set of
local types follow the scenario denoted by a global type (Sect. 3, Coherence). We prove
the adequacy of coherence by showing that global types are proof terms for coherence
proofs (Sect. 3, Fig. 2); equivalences between coherence proofs correspond to the equiv-
alences between global types originally formulated with an auxiliary definition in [8]
(Sect. 3, Proposition 1); and, the coherence proof system yields projection and extrac-
tion procedures from global types to local types and vice versa (Sect. 3, Proposition 2
and Proposition 3). Finally, we show that coherence generalises the notion of duality in
CLL (Sect. 3, Proposition 4). Our extraction procedure is the first not requiring auxiliary
conditions (e.g., dependency relations as in [19]) and capturing nested protocols [13].

– Multiparty classical processesWepresentMultiparty Classical Processes (MCP), a proof
theory that is in a Curry–Howard correspondence with a language for synchronous multi-
party sessions (Sect. 4). The key aspect of MCP is using coherence as a new principle for
compositionality in order to generalise the standard cut rule of linear logic, by allowing
an arbitrary number of proofs to be composed (Sect. 4, Fig. 6). Such a generalisation
gives us a consavative extension of the binary cut rule of Classical Linear Logic (CLL)
(Sect. 7). From the proof theory ofMCP,we derive logically-founded notions of structural
equivalences and reductions for multiparty processes (Sect. 4, Figs. 7 and 8). Driven by
the correspondence between processes and proofs, we show that: communications among

123

Multiparty session types as coherence proofs 245

processes always follow their session types (Sect. 5, Theorem 4); and, communications
never get stuck (Sect. 5, Corollary 1), improving on previous techniques for analysing
progress in multiparty sessions (Sect. 8).

2 Preview

We give an informal introduction to MCP with the 2-buyer protocol [17], where two buyers
buy a book together from a seller. This can be described by the following global type:

1. B1 -> S : 〈str〉; S -> B1 : 〈int〉; S -> B2 : 〈int〉; B1 -> B2 : 〈int〉;
2. B2 -> S : �(B2 -> S : 〈addr〉; end, end)

(1)

Above, B1 (the first buyer), B2 (the second buyer) and S (the seller) are roles. In Line 1, B1
sends the book title to S, then S sends a quote to B1 and B2. At this point, B1 sends to B2
the fraction of the price it wishes to pay. In Line 2, B2 communicates to S whether (�) to
proceed with the purchase and, if so, also an address for the delivery.

In multiparty session types, each role in a global type is implemented by a different
process. For example, the following three programs implement the roles in (1):

Buyer1
def= x B1S(ti tle); xB1S(quote); x B1B2(contr)

Buyer2
def= xB2S(quote); xB2B1 (contr); (

xB2S.inl; x B2S(addr) + xB2S.inr
)

Seller
def= xSB1(t i tle); x SB1(quote); x SB2(quote); xSB2

�.case
(

xSB2(addr), 0
)

The three processes above are defined in the π -calculus with (synchronous) multi-
party sessions [12,18], and communicate using the session (or channel) x . In term
Buyer1, x B1S(ti tle) means “as role B1, send the book ti tle over channel x to the process
implementing role S”; xB1S(quote)means “as role B1, receive a quote over channel x from
the process implementing role S”; finally, x B1B2(contr) means “as role B1, send to the
process implementing role B2, over channel x , the amount the first buyer is willing to con-
tribute with”. Note that Buyer2 makes a choice after receiving the contribution from Buyer1,
i.e., it either accepts or rejects the purchase by respectively selecting the left or right branch
of the case construct in the code of Seller.

Following the approach in [28], we can type channel x using CLL propositions (differently
from [28], we use � to type outputs and ⊗ to type inputs, see Sect. 8):

usage of x in Buyer1 : str � int ⊗ int � end
usage of x in Buyer2 : int ⊗ int ⊗ (

(addr � end) ⊕ end
)

usage of x in Seller : str ⊗ int � int �
(
(addr ⊗ end) � end

) (2)

Above, each proposition states how x is used by each process. For instance, Buyer1 outputs
(�) a string, receives (⊗) an integer, sends another integer and finally terminates (end).

CLL cannot compose our three processes using the above specifications, since its compo-
sition rule Cut can only compose two processes, which communicate over the same channel
x with compatible binary session types A and A⊥:

P � Δ, x : A Q � Δ′, x : A⊥
(νx : A) (P | Q) � Δ, Δ′ Cut

Using the same channel among our three processes is essential for tracking the dependencies
expressed by the global type in (1): for example, we need to ensure that Seller sends a quote
to Buyer2 only after it has received a request for a book fromBuyer1. Such constraints cannot

123

246 M. Carbone et al.

be tracked by binary session types [17]. To overcome this issue, we annotate each connective
in propositions with roles. For example, the type of x for Buyer1 would become:

annotated usage of x in Buyer1 : str �
S int ⊗S int �

B2 end
annotated usage of x in Buyer2 : int ⊗S int ⊗B1 (

(addr �
S end) ⊕S end

)

annotated usage of x in Seller : str ⊗B1 int �
B1 int �

B2 (
(addr ⊗B2 end) �

B2 end
) (3)

Annotations identify the dual role of each action, e.g., the usage for Buyer1 now reads: send a
string toS (�S); receive an integer fromS (⊗S); send an integer toB2 (�B2); and, terminate
(end). We can then reformulate Cut as:

Pi � Γi , x pi : Ai G � {pi : Ai }i

(νx : G)
(∏

i Pi
) � {Γi }i

MCut

In our new multiparty cut ruleMCut, if some processes Pi use session x as role pi (denoted
x pi), each according to some respective types Ai , and such types coherently follow a global
type specification G (formalised by the judgement G � {pi : Ai }i), then we can compose
them in parallel within the scope of session x , written (νx : G) (P1 | . . . | Pn). In our
example, for i ranging from 1 to 3, {pi : Ai }i would correspond to the types in (3), where
p1, p2 and p3 would be, respectively, Buyer1, Buyer2 and Seller. In Sect. 6, we will show
that such types coherently follow the global type given in (1).

MCP goes beyond the original multiparty session types [17], capturing also multicasting
and nested protocols [12,13]. For example, we can enhance the 2-buyer protocol as:

1. B1 -> S : 〈str〉; S -> B1,B2 : 〈int〉; B1 -> B2 : 〈int〉;
2. B2->B1,S : �

(
B2->S : 〈addr〉; end,

B1->S : 〈Gsub〉;B1->S : 〈str〉;B2->S : 〈str〉; end
)

(4)

Above, S multicasts the price to both B1 and B2; and B2 multicasts its decision to B1 and
S. We have also updated the right branch of the choice using a nested protocol Gsub, which
is private to B1 and S, where B1 tells S whether it wants to purchase the product alone:

Gsub = B1->S : �
(
B1->S : 〈addr〉; end, B1->S : 〈str〉;end)

In MCP, nested protocols can proceed in parallel to their originating protocols. For example,
the last two communications, where B1 and B2 inform S of their respective reasons for
not completing the purchase, can be executed in parallel to Gsub. We will formalise this in
Sect. 5.

3 Coherence

We give a proof-theoretical reconstruction of coherence, from [17]. Our theory generalises
duality, from CLL, to checking the compatibility of multiple types. We define coherence
as a proof system for deriving sets of (compatible) local types, which describe the local
behaviours of participants in a multiparty session. Global types are proof terms for coherence
proofs, yielding a correspondence between sets of compatible local types and their global
descriptions.

Types The syntax of local and global types is given in Fig. 1, where p, q range over a set
of roles. Global types are highlighted, to distinguish them as proof terms. Highlighting is
also used in our syntax of local types, to show the difference with CLL. We will adopt the
same convention in Sect. 4 when we present more terms. A local type A describes the local

123

Multiparty session types as coherence proofs 247

A, B, . . . ::= 1 (unit for ⊗) | ⊥ (unit for)

| A p̃B (send A to p̃, then B) | A ⊗p B (receive A from p, then B)

| A ⊕p̃ B (select A or B in p̃) | A pB (offer A or B to p)
| !A (replication) | ?A (server)

G ::= p -> q̃ : G ;G | p -> q̃ : (G1, G2) | ?p -> !q̃ : G | endpq̃

Fig. 1 Local types (A, B, . . .) and global types (G)

behaviour of a role in a session. Types 1 and ⊥ denote session termination, respectively
representing the request and the acceptance for closing a session (which were informally
abstracted by end in our previous examples). A type A�

p̃ B denotes a multicast output of a
session with type A to roles p̃, with a continuation B. A type A ⊗p B represents an input of
a session with type A from role p, with continuation B. Types A ⊕ p̃ B and A�

p B denote,
respectively, the output of a choice between the continuations A and B to roles p̃ and the
input of a choice from role p. The replicated type !A offers behaviour A as many times as
requested. Finally, type ?A requests the execution of a replicated type and proceeds as A.

A global type G describes the behaviour of many participants. In the interaction p -> q̃ :
〈G ′〉; G, role p sends to roles q̃ a message to create a new session of type G ′, and then the
protocol proceeds as G. In p -> q̃ : �(G1, G2), role p communicates to roles q̃ its choice
of either branch G1 or G2. A type ?p -> !q̃ : 〈G〉 denotes that role p may ask roles q̃ to
execute G many times. Finally, in endpq̃ , role p asks roles q̃ to terminate the session (for
brevity, we often write end).

Judgements A role typing p : A states that role p behaves as specified by type A. Our
judgements for coherence have the form G � p1 : A1, . . . , pn : An which reads as “the
types A1, . . . , An of the respective roles p1, . . . , pn (assumed to be pairwise distinct) are
compatible and follow the global type G”. We use Θ to range over sets of role typings, and
make the standard assumption that we can write Θ, p : A only if a role typing for p does
not appear in Θ . Given some roles p̃, we use the notation {pi : Ai }i to denote the set of role
typings p1 : A1, . . . , pn : An , assuming p̃ = p1, . . . , pn and i ranging from 1 to n. Given
G, we say that G is valid if there exists Θ such that G � Θ . Conversely, given Θ , we say
that Θ is coherent if there exists G such that G � Θ . Intuitively, the validity and coherency
correspond to syntactic well-formedness or projectability in [17].

We report the rules for deriving coherence judgements in Fig. 2. Rule ⊗� matches the
output type from role p to roles q̃ with the input types of roles q̃ , whenever (i) the types for
the newly created session are coherent and (ii) the types of all continuations are also coherent.
Rule ⊕� checks that both possibilities in a choice are coherent, where all roles participating
in the communication are allowed to have different behaviour and the other roles are not (a

G Θ, p :B, {qi :Di}i G p :A, {qi :Ci}i
p -> q̃ : G ;G Θ, p :A q̃B, {qi :Ci ⊗p Di}i

⊗
endpq̃ p :⊥, q1 :1, . . . , qn :1

1⊥

G1 Θ, p :A, {qi :Ci}i G2 Θ, p :B, {qi :Di}i
p -> q̃ : (G1, G2) Θ, p :A ⊕q̃ B, {qi :Ci

pDi}i
⊕ G p :A, {qi :Bi}i

?p -> !q̃ : G p :?A, {qi :!Bi}i !?

Fig. 2 Coherence

123

248 M. Carbone et al.

multicast generalisation of [17]). In rule !?, we check that a client requests the creation of a
coherent session only from replicated services. Finally, rule 1⊥ checks that all participants
agree on the termination of a protocol. As in CLL, we interpret type 1 as a terminated process
and ⊥ as a process that has terminated its behaviour in a session and proceeds with other
sessions. Therefore, we read rule 1⊥ as “a protocol terminates when one participant waits
(type ⊥) for the termination of all the others (type 1), which execute in parallel”. This design
choice simplifies our development; we discuss a generalisation in Sect. 8.

For example, p -> q̃ : �(endr q̃ ,endps̃) is not valid since end does not have correct
participant annotation. p -> q̃ : �(p -> r̃ : 〈endr q̃〉,endpq̃) is not valid either since a
global type in the right branch does not contain the participants p and qi (hence it does not
match with rule ⊕�).

Example 1 (2-Buyer Protocol) We can revisit the local types for the 2-buyer protocol in
Sect. 2 (1), where now data types are abstracted by 1’s and ⊥’s.

A
def= ⊥�

S1 ⊗S⊥�
B2⊥

B
def= 1 ⊗S1 ⊗B1(

(⊥�
S1) ⊕S 1

)

C
def= 1 ⊗B1⊥�

B1⊥�
B2

(
(1 ⊗B2 ⊥) �

B2 1
)

Let G be the global type in (1) with end instead of data types; then, G � B1 : A,B2 : B,

S : C .

3.1 Properties of coherence

Swapping Immediately fromour correspondence between global types and coherence proofs,
we can reconstruct the standard notion of swapping 	g for global types from [8]. Intuitively,
two communications involving different roles can always be swapped, capturing the fact
that separate roles execute concurrently. For example, the following coherence proof (for
p, q, r, s different):

G � Θ, p : A′, q : B′, r : C ′, s : D′ G′′ � Θ̃, r : C, s : D

r -> s : 〈G′′〉; G � Θ, p : A′, q : B′, r : C�s C ′, s : D ⊗r D′ ⊗�
G′ � p : A, q : B

p -> q : 〈G′〉; r -> s : 〈G′′〉; G � Θ, p : A�q A′, q : B ⊗p B′, r : C�s C ′, s : D�r D′,
⊗�

is equivalent to (g)

G � Θ, p : A′, q : B′, r : C ′, s : D′ G′ � Θ̃, p : A, q : B

p -> q : 〈G′〉; G � Θ, p : A�q A′, q : B ⊗p B′, r : C ′, s : D′ ⊗�
G′′ � r : C, s : D

r -> s : 〈G′′〉; p -> q : 〈G′〉; G � Θ, p : A�q A′, q : B ⊗p B′, r : C�s C ′, s : D�r D′ ⊗�

Such equivalence proves that a global type of the form p -> q : 〈G ′〉; r -> s : 〈G ′′〉; G is
equivalent to r -> s : 〈G ′′〉; p -> q : 〈G ′〉; G. Formally:

Definition 1 (Swapping congruence 	g) The swapping congruence 	g is the smallest con-
gruence satisfying the rules in Fig. 3.

In general, two global types are proof terms for the same set of local typings if and only
if they are equivalent. To prove this, we first need to introduce two auxiliary lemmas.

Lemma 1 Let G � Θ . Then:

– Θ = Θ ′, p : A�
q̃ B, {qi : Ci ⊗p Di }i implies that the proof for deriving G contains an

application of rule ⊗� that introduces p : A�
q̃ B, {qi : Ci ⊗p Di }i ;

123

Multiparty session types as coherence proofs 249

{p, q̃} ∩ {r, s̃} = ∅
p -> q̃ : G ; r -> s̃ : G ;G g r -> s̃ : G ; p -> q̃ : G ;G

(→→)

{p, q̃} ∩ {r, s̃} = ∅
p -> q̃ : (r -> s̃ : G ;G1, r -> s̃ : G ;G2) g r -> s̃ : G ; p -> q̃ : (G1, G2)

(→⊕)

{p, q̃} ∩ {r, s̃} = ∅
p -> q̃ : (r -> s̃ : (G1, G2), r -> s̃ : (G3, G4))

g

r -> s̃ : (p -> q̃ : (G1, G3), p -> q̃ : (G2, G4))

(⊕⊕)

Fig. 3 Swapping relation 	g for global types

– Θ = Θ ′, p : A ⊕q̃ B, {qi : Ci�
p Di }i implies that the proof for deriving G contains an

application of rule ⊕� that introduces p : A ⊕q̃ B, {qi : Ci �
p Di }i ;

– Θ = Θ ′, p :?A, {qi :!Bi }i implies that the proof for deriving G contains an application
of rule !? that introduces p :?A, {qi :!Bi }i .

Proof The thesis follows immediately from the definition of the rules for coherence, since
there are no elimination rules and, e.g., rule ⊗� is the only one that can introduce the
propositions that we are interested in. The same argument holds for the other cases.
�

In the following Lemma, we consider a weightmetric that will be useful later for reasoning
inductively on coherence proofs. The reason for introducing this metric is that the swapping
rule (→⊕) from Fig. 3 does not preserve the size of the proof that it transforms: if we apply
it from left to right, the communications at the beginning of both branches of the choice
gets conflated to a single one; if we apply it from right to left, the communication before the
choice gets duplicated in the branches of the choice. Even the height of the derivation tree
for the proof changes when we apply this rule. However, we can define a weight metric that
allows us to see that having a (swappable) communication before a choice is equivalent to
having two instances of it in the two branches of the same choice. Formally, the weightw(G)

of a global type G is a natural number; the function w is inductively defined as:

w(endpq̃) = 2 w(?p -> !q̃ : 〈G〉) = w(G) + 1
w(p -> q̃ : �(G1, G2)) = w(G1) + w(G2)

w(p -> q̃ : 〈G ′〉; G) = w(G ′) · w(G)

A type ?p -> !q̃ : 〈G〉 has the weight of G plus 1. A choice weighs as the sum of its
two branches. A communication p -> q̃ : 〈G ′〉; G weighs as the product of the respective
weights of G ′ and G. In other words, looking at the correspondence with coherence proofs,
⊗ corresponds to product (of weights) and ⊕ to sum (of weights). In the base case, the term
endpq̃ weighs 2, since wemust ensure that the function is strictly monotonic on the inductive
definition of a term G.

Lemma 2 Let G1 be a valid global type. Then:

– G1 � Θ, p : A�
q̃ B, {qi : Ci ⊗p Di }i implies that there exists G2 = p -> q̃ : 〈G ′′

2〉; G ′
2

such that G1 	g G2, w(G1) = w(G2), and G2 � Θ, p : A�
q̃ B, {qi : Ci ⊗p Di }i ;

– G1 � Θ, p : A⊕q̃ B, {qi : Ci�
p Di }i implies that there exists G2 = p -> q̃ : �(G ′

2, G ′′
2)

such that G1 	g G2, w(G1) = w(G2), and G2 � Θ, p : A ⊕q̃ B, {qi : Ci�
p Di }i ;

– G1 � Θ, p :?A, {qi :!Bi }i implies that there exists G2 =?p -> !q̃ : 〈G ′
2〉 such that

G1 	g G2, w(G1) = w(G2), and G2 � Θ, p :?A, {qi :!Bi }i .

123

250 M. Carbone et al.

Proof The proof is by induction on the derivation of G1. We focus on the first implication;
the others follow by similar reasoning. By Lemma 1, we know that the proof for deriving G1

must contain an application of rule ⊗� that introduces p : A�
q̃ B, {qi : Ci ⊗p Di }i .

We proceed by cases on the last applied rule in the derivation:

– Case 1⊥ (Base case) This case is not applicable since there must be an application of
⊗� (by Lemma 1).

– Case ⊗� introducing p : A�
q̃ B, {qi : Ci ⊗p Di }i :

G ′
1 � Θ, p : B, {qi : Di }i G ′′

1 � p : A, {qi : Ci }i

p -> q̃ : 〈G ′′
1〉; G ′

1 � Θ, p : A�
q̃ B, {qi : Ci ⊗p Di }i

⊗�

The thesis follows trivially since G1 = G2.
– Case ⊗� not introducing p : A�

q̃ B, {qi : Ci ⊗p Di }i :

G ′
1 � Θ ′, r : F, {s j : I j } j , p : A�

q̃ B,

{qi : Ci ⊗p Di }i
G ′′

1 � r : E, {si : Hi }i

r -> s̃ : 〈G ′′
1〉; G ′

1 � Θ ′, r : E�
s̃ F, {s j : Hj ⊗r I j } j ,

p : A�
q̃ B, {qi : Ci ⊗p Di }i

⊗�

By induction hypothesis, we know that we can rewrite this proof as:

F G ′′
1 � r : E, {si : Hi }i

r -> s̃ : 〈G ′′
1〉; p -> q̃ : 〈G ′′

2〉; G ′
2 � Θ ′, r : E�

s̃ F, {s j : Hj ⊗r I j } j ,

p : A�
q̃ B, {qi : Ci ⊗p Di }i

⊗�

where

F =
G ′

2 � Θ ′, r : F, {s j : I j } j , p : B, {qi : Di }i G ′′
2 � p : A, {qi : Ci }i

p -> q̃ : 〈G ′′
2〉; G ′

2 � Θ ′, r : F, {s j : I j } j ,

p : A�
q̃ B, {qi : Ci ⊗p Di }i

⊗�

such that G ′
1 	g p -> q̃ : 〈G ′′

2〉; G ′
2 and w(G ′

1) = w(p -> q̃ : 〈G ′′
2〉; G ′

2). Hence, by
the fact that the swapping relation 	g is a congruence, we have r -> s̃ : 〈G ′′

1〉; G ′
1 	g

r -> s̃ : 〈G ′′
1〉; p -> q̃ : 〈G ′′

2〉; G ′
2. Moreover, applying rule (→→) from the definition

of 	g, we obtain:

F ′ G ′′
2 � p : A, {qi : Ci }i

p -> q̃ : 〈G ′′
2〉; r -> s̃ : 〈G ′′

1〉; G ′
2 � Θ ′, r : E�

s̃ F, {s j : Hj ⊗r I j } j ,

p : A�
q̃ B, {qi : Ci ⊗p Di }i

⊗�

where

F ′ = G ′
2 � Θ ′, r : F, {s j : I j } j , p : B, {qi : Di }i G ′′

1 � r : E, {si : Hi }i

r -> s̃ : 〈G ′′
1〉; G ′

2 � Θ ′, r : F, {s j : I j } j , p : A�
q̃ B, {qi : Ci ⊗p Di }i

⊗�

such that r -> s̃ : 〈G ′′
1〉; G ′

1 	g p -> q̃ : 〈G ′′
2〉; r -> s̃ : 〈G ′′

1〉; G ′
2 and w(r -> s̃ :

〈G ′′
1〉; G ′

1) = w(p -> q̃ : 〈G ′′
2〉; r -> s̃ : 〈G ′′

1〉; G ′
2) .

– The cases for ⊕� and !? are similar to the previous one. For case ⊕�, we may have to
apply the transformation (→⊕). As anticipated, although this transformation changes the
size of a proof, it does not change its weight (which is what we need to prove here). This

123

Multiparty session types as coherence proofs 251

follows from simple distribution of multiplication over addition. Rule (→⊕) states (we
report it verbatim, since our argument holds independently from this particular proof):

p -> q̃ : �(r -> s̃ : 〈G〉; G1, r -> s̃ : 〈G〉; G2) 	g r -> s̃ : 〈G〉; p -> q̃ : �(G1, G2)

We can easily verify that weight remains unaffected:

w(p -> q̃ : �(r -> s̃ : 〈G〉; G1, r -> s̃ : 〈G〉; G2)) = (by definition of w)
w(r -> s̃ : 〈G〉; G1) + w(r -> s̃ : 〈G〉; G2) = (by definition of w)(
w(G) · w(G1)

) + (
w(G) · w(G2)

) = (by distribution)
w(G) · (

w(G1) + w(G2)
) = (by definition of w)

w(r -> s̃ : 〈G〉; p -> q̃ : �(G1, G2))

�
Proposition 1 (Swapping) Let G1 � Θ . Then, G1 	g G2 if and only if G2 � Θ .

Proof (only if direction) For each rule defining G1 	g G2, we can expand G1 to its corre-
sponding coherence proofs and commute its last applied rule to obtain a proof for G2 with
the same Θ . In each case, the two proofs prove the same Θ . We report the representative
case of (→⊕). We have that:

G1 = p -> q̃ : �(r -> s̃ : 〈G ′′
1〉; G ′

1, r -> s̃ : 〈G ′′
1〉; G ′

2)

G2 = r -> s̃ : 〈G ′′
1〉; p -> q̃ : �(G ′

1, G ′
2)

{p, q̃} ∩ {r, s̃} = ∅
p -> q̃ : �(r -> s̃ : 〈G ′′

1〉; G ′
1, r -> s̃ : 〈G ′′

1〉; G ′
2)	g r -> s̃ : 〈G ′′

1〉; p -> q̃ : �(G ′
1, G ′

2)

(→⊕)

The proof for G1 is:

D E
p -> q̃ : �(r -> s̃ : 〈G ′′

1〉; G ′
1, r -> s̃ : 〈G ′′

1〉; G ′
2) � Θ ′, r : E ⊗s̃ F, {s j : Hj �

r I j } j ,

p : A ⊕q̃ B, {qi : Ci �
p Di }i

⊕�

where

D = G ′
1 � Θ ′, r : F, {s j : I j } j , p : A, {qi : Ci }i G ′′

1 � r : E, {s j : Hj } j

r -> s̃ : 〈G ′′
1〉; G ′

1 � Θ ′, r : E ⊗s̃ F, {s j : Hj �
r I j } j , p : A, {qi : Ci }i

⊗�

and

E = G ′
2 � Θ ′, r : F, {s j : I j } j , p : B, {qi : Di }i G ′′

1 � r : E, {s j : Hj } j

r -> s̃ : 〈G ′′
1〉; G ′

2 � Θ ′, r : E ⊗s̃ F, {s j : Hj �
r I j } j , p : B, {qi : Di }i

⊗�

We can rewrite the proof above to obtain one for G2, proving the thesis:

F G ′′
1 � r : E, {s j : Hj } j

r -> s̃ : 〈G ′′
1〉; p -> q̃ : �(G ′

1, G ′
2) � Θ ′, r : E ⊗s̃ F, {s j : Hj �

r I j } j ,

p : A ⊕q̃ B, {qi : Ci�
p Di }i

⊗�

where

F = G ′
1 � Θ ′, r : F,

{s j : I j } j , p : A, {qi : Ci }i
G ′

2 � Θ ′, r : F,

{s j : I j } j , p : B, {qi : Di }i

p -> q̃ : �(G ′
1, G ′

2) � Θ ′, r : F, {s j : I j } j , p : A ⊕q̃ B, {qi : Ci�
p Di }i

⊕�

�

123

252 M. Carbone et al.

Proof (if direction) We prove that G1 � Θ and G2 � Θ imply G1 	g G2. We proceed by
mutual induction on the weights of the proof derivations of G1 and G2. For the base case
where G1 is derived by rule 1⊥, then G2 must be derived in the same way, hence the two
proofs are the same and the thesis follows. We now move to the inductive cases, looking first
at the last applied rule used to derive G1.

– Case ⊗�. Here we have that G1 = p -> q̃ : 〈G ′
1〉; G ′′

1 such that:

G ′
1 � Θ ′, p : B, {qi : Di }i G ′′

1 � p : A, {qi : Ci }i

p -> q̃ : 〈G ′′
1〉; G ′

1 � Θ ′, p : A�
q̃ B, {qi : Ci ⊗p Di }i

⊗�

IfG2 endswith an application of⊗� that introduces the same principal formulas,we have
that G2 = p -> q̃ : 〈G ′′

2〉; G ′
2. Since G2 has the same typing of G1, from rule ⊗� we

know that also G ′′
2 and G ′

2 have the same typings of G ′′
1 and G ′

1 respectively, because the
rule directs precisely the distribution of roles and types by looking at the role annotations.
The thesis now follows directly by induction hypothesis (since the proofs for the premises
are smaller). Otherwise, by Lemma 1we know that we can apply Lemma 2 to obtain a G3

such that: G2 	g G3; G3 � Θ ′, p : A�
q̃ B, {qi : Ci ⊗p Di }i ; G3 = p -> q̃ : 〈G ′′

3〉; G ′
3;

and, the weight of the derivation of G3 is the same as that of the derivation of G2. By the
correspondence between global types and coherence proofs, we know that:

G ′
3 � Θ ′, p : B, {qi : Di }i G ′′

3 � p : A, {qi : Ci }i

p -> q̃ : 〈G ′′
3〉; G ′

3 � Θ ′, p : A�
q̃ B, {qi : Ci ⊗p Di }i

⊗�

The thesis now follows by induction hypothesis on G ′′
3 and G ′

3.
– Case ⊕�. This case is similar to that for ⊗�.
– Case !?. Here we have that G1 =?p -> !q̃ : 〈G ′

1〉 such that:

G ′
1 � p : A, {qi : Bi }i

?p -> !q̃ : 〈G ′
1〉 � p :?A, {qi :!Bi }i

!?

By hypothesis, we know that G2 � p :?A, {qi :!Bi }i . That means that G2 has !? as last
applied rule:

G ′
2 � p : A, {qi : Bi }i

?p -> !q̃ : 〈G ′
2〉 � p :?A, {qi :!Bi }i

!?

The thesis now follows by induction hypothesis.
�
Projection and extraction Thehallmark of the theory ofmultiparty session types is projection:
developers can write protocols as global types, and then automatically project a global type
onto a set of local types that can be used tomodularly verify the behaviour of each participant.
As there is only one possible rule application for each production in the syntax of global types,
we can construct an algorithm that traverses the structure of G:

Proposition 2 (Projection) Given G, we can compute in linear time Θ (if it exists) such that
G � Θ .

We can also use coherence for the inverse procedure, i.e., the extraction of a global type
from a set of local typingsΘ . IfΘ is coherent, we can just apply the first applicable coherence
rule, noting that the sizes of the local types in the premises always get smaller:

123

Multiparty session types as coherence proofs 253

Proposition 3 (Extraction) Given Θ , we can compute G (if it exists) such that G � Θ .

Example 2 In the 2-buyer protocol, G � B1 : A,B2 : B,S : C implies: (i) we can infer
A, B and C from G (proposition 2) and (ii) we can extract G from B1 : A,B2 : B,S :
C (proposition 3). This observation follows directly from the proof coherence, which we
describe now. Three applications of the axiom 1⊥ rule yield:

end � B1 : ⊥,S : 1 (5)

end � B2 : 1,S : 1 (6)

end � B1 : ⊥,B2 : 1,S : 1 (7)

We omit the annotations to end for better readability. Next, we combine (5) and (6) using
⊗�.

B2 -> S : 〈end〉;end � B2 : ⊥�
S1,S : 1 ⊗B2 ⊥ (8)

Next, we combine (7) and (8) using ⊕� to obtain

� B1 : ⊥,B2 : (
(⊥�

S1) ⊕S 1
)
,S : ((1 ⊗B2 ⊥)�B21)

The corresponding global type is

S -> B2 : �(B2 -> S : 〈end〉;end,end).

Another application of ⊗� with an axiom application in the right premiss

end � B1 : ⊥,S : 1
yields

� B1 : ⊥�
B2⊥,B2 : 1 ⊗B1(

(⊥�
S1) ⊕S 1

)
,S : ((1 ⊗B2 ⊥)�B21) (9)

with global type

B2 -> B1 : 〈end〉;S -> B2 : �(B2 -> S : 〈end〉;end,end).

We repeat this operation threemore times using rule⊗� on (9) with the appropriate instances
of the axiom rule as right premisses and obtain the coherence proof of

� B1 : A,B2 : B,S : C

with the appropriate global type:

B1 -> S : 〈end〉;
B1 -> S : 〈end〉;
B2 -> S : 〈end〉;
B2 -> B1 : 〈end〉;
S -> B2 : �(B2 -> S : 〈end〉;end,end).

Global reductions We define reductions for global types, denoted G̃ � G̃ ′, where G̃ is a
multiset {G1, . . . , Gn}. Global type reductions are just a convention (recalling [8]), which
we use in Sect. 5 to concisely formalise how processes follow their protocols. Formally, �
is the smallest relation satisfying the rules in Fig. 4. Rule g⊗� models a communication
that creates a new session of type G ′, which will then proceed in parallel to the continuation
G. Rule g1⊥ models session termination. Rules g⊕�1 and g⊕�2 model the execution of a
choice. In rules g!?,g!C and g!W , a replicated protocol can be respectively executed exactly

123

254 M. Carbone et al.

(g⊗) { p -> q̃ : G ;G } { G, G }
(g⊕ 1) { p -> q̃ : (G1, G2) } { G1 }
(g⊕ 2) { p -> q̃ : (G1, G2) } { G2 }

(g!?) { ?p -> !q̃ : G } { G }
(g!C) { ?p -> !q̃ : G } { ?p -> !q̃ : G , ?p -> !q̃ : G }
(g!W) { ?p -> !q̃ : G } ∅
(g1⊥) { endpq̃ } ∅
(gctx) G̃1 G̃2 ⇒ G̃, G̃1 G̃, G̃2

(geq) G̃0
g G̃1 G̃1 G̃2 G̃2

g G̃3 ⇒ G̃0 G̃3

Fig. 4 Global types, reduction semantics

once, multiple, or zero times. Rule gctx lifts the behaviour of a protocol to a multiset of
protocols executing concurrently. We abuse the notation G̃, G̃ ′ to indicate the union of the
two multisets G̃ and G̃ ′. Finally, rule geq allows for swappings in a global type. In this rule,
G̃ 	g G̃ ′ is the point-wise extension of the swapping relation 	g to multisets. Formally,
G̃ 	g G̃ ′ if and only if G̃ = {G1, . . . , Gn}, G̃ ′ = {G ′

1, . . . , G ′
n}, and Gi 	g G ′

i for all
i ∈ [1, n]. Our semantics preserves validity. Below we write that G̃ is valid if all the Gi in
G̃ are valid.

Theorem 1 (Coherence preservation) If G̃ is valid and G̃ � G̃ ′, then G̃ ′ is valid.

Remark 1 Rule g!? can be derived from rules g!C and g!W . Including it simplifies our presen-
tation, since each global type reduction corresponds to a communication in MCP (Sect. 5).

Coherence as generalised duality Coherence is a generalisation of duality (from CLL [15]):
in the degenerate case of a session with two participants, the two notions coincide. We recall
the definition of duality X⊥, defined inductively on the syntax of linear logic propositions:

(X ⊗ Y)⊥ = X⊥
�Y ⊥ (X�Y)⊥ = X⊥ ⊗ Y ⊥

1⊥ = ⊥ ⊥⊥ = 1
(X ⊕ Y)⊥ = X⊥

�Y ⊥ (X�Y)⊥ = X⊥ ⊕ Y ⊥
(!X)⊥ = ?X⊥ (?X)⊥ = !X⊥

We define a partial encoding [[·]] from local types into linear logic propositions:

[[1]] = 1 [[⊥]] = ⊥ [[!A]] =![[A]] [[?A]] =?[[A]] [[A ⊗p B]] = [[A]] ⊗ [[B]]
[[A�

q B]] = [[A]]�[[B]] [[A ⊕p B]] = [[A]] ⊕ [[B]] [[A�
p B]] = [[A]]�[[B]]

The encoding [[·]] is defined only when � and ⊕ are annotated with a single role. We get:

Proposition 4 (Coherence as duality) Let A, B be propositions where all subterms of the
form C�

p̃ D or C ⊕ p̃ D are such that p̃ = q for some q. Then, [[A]] = [[B]]⊥ if and only if
there exists G such that G � p : A, q : B.

Observe that, in Proposition 4, the G corresponding to the coherence proof for the validity
of p : A, q : B is necessarily unique, since coherence is deterministic in the case of two
propositions – the structures of the propositions force the order in which the rules must be
applied.

123

Multiparty session types as coherence proofs 255

P, Q, R ::= xpq̃(y);P (send) | xpq(y); (P | Q) (recv)

| xpq̃.inl;P (left sel) | xpq̃ .inr;P (right sel)

| xpq.case(P, Q) (case) | (νx :G) i Pi (res)
| close xp (close) | wait xp;P (wait)
| !xp(y);P (service) | ?xp(y);P (client)
| P + Q (choice)

Fig. 5 MCP, syntax of processes

4 Multiparty classical processes

In this section, we present Multiparty Classical Processes (MCP). MCP captures dependen-
cies among actions performed by different participants in a multiparty session, whereas, in
previous work, actions among different pairs of participants must be independent [6,28]. We
use the synchronous semantics from [18] for a simplicity of the presentation.

Environments Let Γ,Δ range over typing environments:

Γ,Δ : := · | Γ, x p : A

Intuitively, x p : A means that role p in session x follows behaviour A. We write ?Δwhenever
Δ contains only types of the form ?A, and write Δ, x p : A only when x p does not appear
in Δ.

Processes We report the syntax of processes in Fig. 5. In MCP, both input and output names
are bound, as in [28]. Term (send) creates a new session y and sends it, as role p, to the
processes respectively playing roles q̃ in session x ; then, the process proceeds as P . The dual
operation (recv) receives, as role p in session x , a fresh session y from the process playing
role q; the process then proceeds as the parallel composition of P (dedicated to session y) and
Q (dedicated to continuing session x). Similarly, terms (left sel) and (right sel) multicast a
selection of a left or right branch respectively to the processes playing roles q̃ in session x , as
role p. A selection is received by term (case), which offers the two selectable branches. Terms
(close) and (wait) terminate a session. Term (choice) is the standard non-deterministic choice.
In a restriction (res), x is bound in the processes Pi ; we use the standard type annotation (as
in [28]) to show the relation between the semantics of processes and global types in Sect. 5.
In term x p q(y); (P | Q), y is bound in P but not in Q. In terms x p q̃(y); P , !x p(y); P ,
and ?x p(y); P , y is bound in P .

Judgements Judgements in MCP have the form P � x p1
1 : A1, . . . , x pn

n : An , meaning that
process P implements roles pi in the respective session xi with behaviour Ai .

Rules We report the rules of MCP in Fig. 6. Intuitively, a process is typed with local types;
then, we use coherence to check that the local types of composed processes (rule MCut)
coherently implement a global type. All rules are defined up to context exchange.

Rule MCut is central: it extends the Cut of CLL to composing in parallel an arbitrary
number of Pi that communicate using session x . The rule checks that the composition of the
respective local behaviours of the composed processes is coherent (G � {pi : Ai }i). In the
conclusion, {Γi }i is the disjoint union of all Γi in the premise.

123

256 M. Carbone et al.

P Γ, yp :A Q Δ, xp :B
xpq(y); (P | Q) Γ, Δ, xp :A ⊗q B

⊗ P Γ, yp :A, xp :B

xpq̃(y);P Γ, xp :A q̃B

P Γ Q Γ

P + Q Γ
+

P Γ, xp :A Q Γ, xp :B
xpq.case(P, Q) Γ, xp :A qB

{Pi Γi, x
pi :Ai}i G {pi :Ai}i

(νx :G) i Pi Γi}i
MCut

P Γ, xp :A

xpq̃.inl;P Γ, xp :A ⊕q̃ B
⊕1

P Γ, xp :B

xpq̃.inr;P Γ, xp :A ⊕q̃ B
⊕2

close xp xp :1
1

P Γ
waitxp;P Γ, xp :⊥ ⊥

P ?Γ, yp :A
!xp(y);P ?Γ, xp : !A

!
P Γ, yp :A

?xp(y);P Γ, xp : ?A
?

P Γ
P Γ, xp : ?A Weaken

P Γ, yp : ?A, zp : ?A
P [x/y][x/z] Γ, xp : ?A

Contract

Fig. 6 MCP, typing rules

Rule ⊗ types an input x pq(y); (P | Q), where the subprocess P plays role p with
behaviour A in the received multiparty session y; session x then proceeds by following
behaviour B for role p in Q. Observe that the ⊗ is annotated with the role q that p
wishes to receive from. The multicast output x pq̃(y); P in rule � creates a new session
y and sends it, as role p in session x , to roles q̃. The new session y is used by P as role
p with type A, assuming that the other processes receiving it implement the other roles
(this assumption is checked by coherence in MCut, when processes are composed). We
discuss in Sect. 8 how to relax the constraint that the role p played in session y is the
same.

Rules ⊕1 and ⊕2 type, respectively, the multicast of a left and right selection, by check-
ing that the process continuation follows the expected local type. Similarly, rule � types
a branching by checking that the continuations implement the respective expected local
types.

Rule + types the nondeterministic process P + Q, by checking that both P and Q
implement the same local behaviours. Observe that P and Q may still be substantially
different, since they may (i) perform different selections on some sessions (as rules ⊕1 and
⊕2 can yield the same typing), and (ii) have different inner compositions of processes whose
types have been hidden by ruleMCut.

Rules 1 and ⊥ type, respectively, the request and the acceptance for closing a multiparty
session. Rules ! and ? type, respectively, the replicated offering of a service and its repeated
usage (a client). Since a service typed by ! may be used multiple times, we require that its
continuation does not use any linear behaviour (?Δ). Rules Weaken and Contract type,
respectively, the absence of clients or the presence of multiple clients. In rule Contract,
sessions y and z are contracted into a single session x with a standard name substitution,
provided that they have the same type ?A.

123

Multiparty session types as coherence proofs 257

5 Semantics

In this section, we demonstrate the consistency of MCP, by establishing a cut-elimination
result that yields an operational semantics and important properties, e.g., deadlock-freedom.

5.1 Structural equivalences as commuting conversions

MCP supports commuting conversions, permutations of applications ofMCut that maintain
the validity of judgements. As an example, consider the following proof equivalence (≡):

P � Δ, y p : A, x p : B, zr : C

x pq̃ (y); P � Δ, x p : A�q̃ B, zr : C
�

Qi � Γi , zsi : Di G � r : C, {si : Di }i

(νz : G)
(
x pq̃ (y); P |∏i Qi

)�{Γi }i , Δ, x p : A�q̃ B
MCut

≡

P � Δ, y p : A, x p : B, zr : C Qi � Γi , zsi : Di G � r : C, {si : Di }i

(νz : G)
(
P |∏i Qi

)�{Γi }i , Δ, y p : A, x p : B
MCut

x pq̃ (y); (νz : G)
(
P |∏i Qi

)�{Γi }i , Δ, x p : A�q̃ B
�

Above, an output is moved out of a restriction of a different session (or in it, reading in the
other direction), as in [28]. In this example, the output process is the first in the parallel
under the restriction; in general, this is not always the case since the process may be any
of those in the parallel composition. In order to represent equivalences independently of the
position of processes in a parallel, we use process contexts [24]. A context, denoted by C, is
a parallel composition with a hole: C[·] : := · | C[·] | P | P | C[·]. All equivalences are
reported in Fig. 7. The equivalence κpar permutes processes in a parallel, since the premises
of rule MCut can be in any order. In κcut, we can swap two restrictions, which corresponds
to swapping two applications of rule MCut. The equivalence κ� shows that a restriction
can always be swapped with an output on a different session. Similarly, the equivalence κ⊗
swaps a restriction with an input, requiring that the restricted name (z in this case) occurs
free in P . In the case of ⊕, we have two equivalences, corresponding to the right and left
selection respectively. For κ&, we can move a restriction to each branch of a case construct,
also duplicating the context C. Equivalences κ! and κ? allow to swap a restriction with a
service and a client respectively. Finally, κ⊥ is the case for wait x p . There is no equivalence
for the process close x p since it is only typable with the axiom 1.

(κpar) (νz :G) i∈k̃ Pi ≡ (νz :G)
j∈k̃

Pj (k̃ permutation of k̃)

(κcut) (νx :G) C (νy :G) C [P] ≡ (νy :G) C (νx :G) C[P] (x, y ∈ fn(P),
x, y not free in C[·])

(κ) (νz :G) C xpq̃(y);P ≡ xpq̃(y); (νz :G) C[P]

(κ⊗) (νz :G) C xpq(y); (P | Q) ≡ xpq(y); (P | (νz :G) (C[Q])) (z fn(P))

(κ⊕1) (νz :G) C[xpq.inl; P] ≡ xpq.inl; (νz :G) C[P]

(κ⊕2) (νz :G) C[xpq.inr; P] ≡ xpq.inr; (νz :G) C[P]

(κ) (νz :G) C[xpq.case(P, Q)] ≡ xpq.case((νz :G) C[P], (νz :G) C[Q])

(κ!) (νz :G) C[!xp(y);P] ≡ !xp(y); (νz :G) C[P]

(κ?) (νz :G) C[?xp(y);P] ≡ ?xp(y); (νz :G) C[P]

(κ⊥) (νz :G) C[waitxp; P] ≡ wait xp; (νz :G) C[P]

Fig. 7 MCP, structural equivalences

123

258 M. Carbone et al.

(β⊗) (νx :p-> q̃ : G ;G) i xqi p(y); (Pi | Qi) | xpq̃(y);R | j Pj

→ (νy :G) i Pi | (νx :G) (i Qi | R | j Pj)

(β⊕ 1) (νx:p-> q̃ : (G1, G2)) xpq̃.inl;P | ix
qip.case(Qi, Ri) | j Pj

→ (νx :G1) P | i Qi | j Pj

(β⊕ 2) (νx:p-> q̃ : (G1, G2)) xpq̃.inr; P | ix
qip.case(Qi, Ri) | j Pj

→ (νx :G2) P | i Ri | j Pj

(β!?) (νx :?p -> !q̃ : G) ?xp(y);P | i!x
qi (y);Qi → (νy :G) P | i Qi

(β!W) (νx :?p -> !q̃ : G) i!x
qi (y);Qi | P → P if x fn(P)

(β!C) (νx :?p -> !q̃ : G) i!x
qi (w);Qi | P [x/y][x/z]

→ (νy :?p -> !q̃ : G) i!y
qi (w);Qi |

(νz :?p -> !q̃ : G) i!z
qi (w);Qi | P

(β1⊥) (νx :endpq̃) wait xp;P | i closexqi → P

(β+) (νx :G) (P1 + P2) | i Qi → (νx :G) Pj | i Qi j ∈ {1, 2}

Fig. 8 MCP, cut reductions

5.2 Process reductions as MCut reductions

As for equivalences,we use our proof theory to derive reductions for processes, given in Fig. 8.
The full proof derivations of such reductions are given in the Appendix. In the reduction β⊗�,
the output from role p to roles q̃ on session x is matchedwith the inputs at such roles, creating
a new session y, following the global type of x . Reductions β⊕�1 and β⊕�2 capture the left
and right multicast selection of a branching, respectively. In β!?, a set of services with a single
client is reduced to the composition of the bodies of such services with that of the client; the
type ?p -> !q̃ : 〈G〉 of x is correspondingly reduced to G. Reduction β!W garbage collects
a set of unused services. In β!C , instead, a set of services is replicated to handle multiple
clients. Finally, reduction β1⊥ terminates a session x .

5.3 Properties

In the remainder, we abuse the notation P → P ′ to refer to process reductions closed up to
our structural equivalence ≡, as in standard process calculi. We restrict P → P ′ to be a top-
level reduction, i.e., we do not allow reductions of sub-terms in P . This does not introduce
any loss of generality, as in [28].

Processes and types Since both equivalences and reductions are derived from judgement-
preserving proof transformations, we immediately obtain the following two properties:

123

Multiparty session types as coherence proofs 259

Theorem 2 (Subject congruence) P � Δ and P ≡ Q imply that Q � Δ.

Theorem 3 (Subject reduction) P � Δ and P → Q imply that Q � Δ.

In Fig. 8, global type annotations should not be mistaken for a requirement of our reduc-
tions; they are rather a guarantee given by our proof theory: if a process is reducible, then its
sessions are surely typed with the respective global types reported in the rule. We use this
property to reconstruct the result of session fidelity from multiparty session types [17]. In
the following, gt(P) denotes the multiset of global types used in the restrictions inside P .

Theorem 4 (Session fidelity) P � Δ and P → P ′ imply that either gt(P) � gt(P ′) or
gt(P) 	g gt(P ′).

Proof (Sketch) First, we observe that we can disregard structural equivalences (≡) without
any loss of generality, because ≡ does not change the global types in P . We now proceed by
cases on the reduction applied to P , from Fig. 8. For all such cases, we observe that the global
types involved in the reduction are transformed according to the rules for the semantics of
global types.
�

Deadlock freedom Processes inMCP are guaranteed to be deadlock free.We use the standard
methodology from [6,28]. First, we prove that the MCut rule in MCP is admissible:

Theorem 5 (MCut Admissibility) Pi � Γi , x pi : Ai , for i ∈ [1, n], and G � {pi : Ai }i imply
that there exists Q such that Q � {Γi }i .

Proof By induction on the sizes of the proofs for Pi � Δi , x pi : Ai and the formulae Ai . If a
reduction from Fig. 8 is applicable, then we apply it. For all such reductions, we can observe
that the size of the proof and/or the formulae decrease in the right-hand side, and therefore
the thesis follows by induction hypothesis. Otherwise, we can apply one of the commuting
conversions from Fig. 7. In this case, the proof gets smaller while the formulae stay the same.

Our case coverage is complete, because when a commuting conversion cannot be applied
we can always apply a reduction. In fact, commuting conversions cannot be applied only if
all proofs for Pi end with an application of a rule with principal variable x . But if that is the
case, then by coherence we have that there must be at least two proofs for Pk and Pj that
have compatible types and can be reduced.
�

The admissibility of MCut gives us a methodology for removing cuts from a proof, cor-
responding to executing communications in a process until all restrictions are eliminated.
However, the indiscriminate application of cut reductions inside of proofs allows for execut-
ing communications under input prefixes. This is not in line with the standard operational
formulation of process calculi, where this kind of reductions are usually not allowed. There-
fore, it is also useful to prove that all restrictions that appear at the top-level can be eliminated
without reducing prefixed sub-terms. Below, we say that P is a restriction if it is of the form
(νx : G) (

∏
i Pi), and we write →+ for one or more applications of →.

Corollary 1 (Deadlock freedom) P �Δ and P is a restriction imply P →+ Q for some Q
that is not a restriction.

Proof The proof follows the same structure as that presented in [28] for the calculus CP, only
generalised from the Cut rule in Classical Linear Logic to rule MCut in MCP.

Since P is a restriction, the last applied rule in the proof of P is MCut. We now proceed
by cases on the last applied rules of the premises of such MCut. If one of the premises is

123

260 M. Carbone et al.

itself an MCut, we recursively eliminate it. Otherwise, either: all premises are logical rules
that act on the restriction variable, thus we can apply a reduction from Fig. 8; or, at least one
premise is a logical rule that acts on a variable other than the restriction variable, thus we can
apply a commuting conversion from Fig. 7.
�

6 The 2-buyer protocol example

We now formalise the 2-buyer protocol from Sect. 2 and expand it further.

Processes and types Roles B1, B2 and S are implemented as the processes:

x B1S(ti tle); wait ti tleB1; xB1S(quote);
(
close quoteB1 |
x B1B2(contrib);wait contribB1;wait xB1; close zZ

)

xB2S(quote);
(
close quoteB2 | xB2B1(contrib); (

close contribB2 | PB2
))

xSB1(ti tle); (
close ti tleS | x SB1(quote); wait quoteS; x SB2(quote); wait quoteS; PS)

)

The first process is the first buyer Buyer1. In the second process, the second buyer Buyer2,
subterm PB2 implements the choice of whether to accept or reject the purchase:

(
xB2S.inl; x B2S(addr); wait addrS; close xB2

) +
(

xB2S.inr; close xB2
)

Finally, in the third process, the implementation of the seller, PS is the process:

xSB2.case
(

xSB2(addr); (
close addrS | close xS

)
, close xS

)

At the level of types, the local types in Example 1 from Sect. 3 can be used to type the three
processes above: Buyer1 � xB1 : A, zZ : 1, Buyer2 � xB2 : B and Seller � xS : C . If we
apply our new cut rule, we obtain (νx : G)

(
Buyer1 | Buyer2 | Seller

) � zZ : 1 where
the global type G, corresponding to equation (1) in Sect. 2, is such that G � B1 : A,B2 : B,

S : C .

Nested multiparty sessions We can extend the example above by implementing the global
type (4) in Sect. 2, where the first buyer creates a sub-session with the seller if the second
buyer decides not to contribute to the purchase. Below, we give an excerpt of the new seller:

...x SB1,B2(quote);wait quoteS;
xSB2.case

(
..., xSB1(y);

(
Psub |
xSB1(why);(closewhyS | xSB2(why); ...

)
))

where Psub = ySB1.case
(

ySB1(addr); (close addrS | close yS),

ySB1(why); (closewhyS | close yS)

)
. Hence, the type of chan-

nel x , from the seller’s viewpoint, becomes:1

1 ⊗B1 ⊥ �
B1,B2

(
(1 ⊗B2 1) �

B2
((

(1 ⊗B1 1) �
B1 (1 ⊗B1 1)

) ⊗B1 1 ⊗B1 1 ⊗B2 1
))

We can then use coherence to infer the global type (4) in Sect. 2.

1 1 ⊗ B21 or 1 ⊗ B2⊥?

123

Multiparty session types as coherence proofs 261

Γ, A Δ, B

Γ, Δ, A ⊗ B
⊗ Γ, A, B

Γ, A B

Γ, A Δ, A⊥

Γ, Δ
Cut

Γ, A

Γ, A ⊕ B
⊕1

Γ, B

Γ, A ⊕ B
⊕2

Γ, A Γ, B

Γ, A B

1
1

Γ
Γ, ⊥ ⊥ Γ

Γ, ?A Weaken

?Γ, A

?Γ, !A !
Γ, A

Γ, ?A ?
Γ, ?A, ?A

Γ, ?A Contract

Fig. 9 Classical Linear Logic (CLL)

Services We extend the example to support multiple clients on a replicated session a:

(νa :?B1 -> !B2,S : 〈G〉) (Buyers | !aB2(x);Buyer2 | !aS(x); Seller)

where Buyers is the process: (νz : end) (?aB1(x);Buyer1 | ?aB1(x);Buyer1′). Process
Buyer1′ initially behaves as Buyer1, but we replaced the term close zZ with the term
wait zZ; closewW. By applyingβ!C once,β!? twice, and commuting conversions, the process
above can be reduced to the parallel composition of two sessions that follow the 2-buyer pro-
tocol:

(νx : G)
(
Buyer2 | Seller | (νz : end)

(
Buyer1 | (νx : G) (Buyer2 | Seller | Buyer1’)

))

7 Relation to linear logic

In this section, we elaborate on the relationship between MCP and Classical Linear Logic
(CLL). For the reader’s convenience, the rules defining CLL are reported in Fig. 9. With a
slight abuse of notation, we consider CLL without the axiom for initial sequents � A, A⊥
and the rule for the additive unit �. We did not consider these rules in the development of
MCP, since they do not contribute to our main aim of capturing multiparty session types
but rather are interesting orthogonal extensions that we leave for future work. For example,
adding the axiom has been shown to be useful in capturing polymorphism [28]. In the rest
of this section, we also do not consider rule + in MCP since it does not add any expressivity
to the underlying proof theory.

The rules of MCP and CLL look very similar. Thus, it is natural to ask whether there is
any difference in the judgements that can be derived in the two systems. Interestingly, we
find out that the sets of derivable judgements in the two systems are identical. Recall the
encoding [[·]] from Sect. 3, which removes annotations from types in MCP. We extend it to
environments Γ in MCP by adding the straightforward rules:

[[·]] = · [[Γ, x p : A]] = [[Γ]], [[A]]
Let us write � Γ in MCP whenever P � Γ in MCP for some P . Then, we can prove the
following result.

123

262 M. Carbone et al.

Theorem 6 (Derivable Judgements in MCP and CLL) � Γ in MCP if and only if � [[Γ]] in
CLL.

Proof Observe that removing proof terms in MCP yields a pure logic that differs from CLL
only for two aspects. Firstly, ruleMCut in MCP is different from ruleCut in CLL. Secondly,
propositions in MCP are annotated with roles and the channels they type. However, we
know that rule MCut is admissible in MCP (Theorem 5), just like rule Cut is admissible in
CLL [15]. Therefore, when evaluating the expressivity of the two systems wrt the derivability
of judgements, we can limit our comparison to the cut-free fragments of MCP and CLL
without loss of generality. The only difference between these two fragments is that MCP
propositions are annotated with channels and roles. But such annotations are used only by
rule MCut and can be freely chosen in all other rules. As a consequence, cut-free MCP is
completely equivalent to the system with the same rules but without annotations; CLL is that
system.
�

Our proof of Theorem 6 relies on the fact that rule MCut in MCP and rule Cut in CLL
do not add any new provable judgements to their respective systems. We now move from
judgements to proofs.What is the difference between the sets of proofs that can be respectively
constructed in MCP and CLL? Since coherence coincides with duality (Proposition 4) in the
case of sessions with two participants, it is straightforward to show that an application ofCut
in CLL corresponds to an application ofMCut in MCP. Formally, let us write P �2 Γ for a
judgement derived in MCP with proof P by using only “binary” applications of MCut, i.e.,
where the number of processes composed at each application of MCut is exactly two. We
write [[P]] for the encoding of P in MCP into a proof in CLL, defined as an homomorphism
where the only relevant change is that each application of a binaryMCut is replaced with an
equivalent application of rule Cut, as follows (we omit the proof terms):

[[Q � Γ1, x p1 : A1 R � Γ2, x p2 : A2 � p1 : A1, p2 : A2

� Γ1, Γ2
MCut

]]

=
[[Q]] � [[Γ1, x p1 : A1]] [[R]] � [[Γ2, x p2 : A2]]

� [[Γ1, Γ2]] Cut

We can now prove:

Theorem 7 (Binary MCP and CLL) P �2 Γ in MCP if and only if [[P]] � [[Γ]] in CLL.

Proof By induction on the construction of [[P]]. The interesting case is that of MCut. The
thesis follows from Proposition 4.
�

Theorem 7 cannot be generalised to all ofMCP, since CLL cannot compose more than two
proofs at the same time as done in our ruleMCut. Hence,MCutmust be somehow simulated
using a different proof structure. An interesting line of work in this direction is the notion of
“medium processes” studied in [4]. Given some processes that have compatible local types
for a multiparty session, as composed in our rule MCut, a medium process corresponds to
a proof in (intuitionistic) linear logic that can be composed with such processes using the
standardCut rule. Thismedium process is synthesised by the original global type used to type
the processes and acts as a middleware: all communications over the session are centralised
on the medium, which distributes messages to the processes by following the original global

123

Multiparty session types as coherence proofs 263

type. This approach adds a layer of indirection (processes do not communicate directly, but
through the medium) that is not present in the original theory of multiparty session types,
and is also not necessary in MCP. However, it points to an interesting relationship between
global types and the class of proofs in linear logic that correspond to medium processes (P.
Wadler, personal communication, 2015).

8 Related work and discussion

Curry–Howard correspondences for session types. The works closest to ours are the Curry–
Howard correspondences between binary session types and linear logic [6,28]. We extended
this line of work considerably by introducing multiparty sessions, which required general-
ising the notion of type compatibility in linear logic to address multiple types (coherence).
Coherence reconstructs the standard relationship between the global and local views found
in multiparty session types. We then used coherence to develop a new proof theory that con-
servatively extends linear logic to capture multiparty interactions (all derivable judgements
in linear logic are derivable also in our framework, and vice versa). Furthermore, our work
provides, for the first time, a notion of session fidelity in the context of a Curry–Howard
correspondence between linear logic and session types (Sect. 5, Theorem 4). In this work
we have not treated polymorphism and existential/universal quantification, which we believe
can be naturally added to MCP following the lines presented in [5,28] for binary sessions.

Our work inverts the interpretation of ⊗ as output and � as input given in [3]. This makes
our process terms in line with previous developments of multiparty session types, where
communications go from one sender tomany receivers [12]. Using the standard interpretation
would yield a join mechanism where multiple senders synchronise with a single receiver.
Formally, in the standard interpretation of ⊗ as output and � as input, the rules for ⊗ and �

in MCP and ⊗� in coherence would be as follows:

P � Γ, y p : A Q � Δ, x p : B

x pq(y); (P | Q) � Γ,Δ, x p : A ⊗q B
⊗ P � Γ, y p : A, x p : B

x pq̃(y); P � Γ, x p : A�
q̃ B

�

G � Θ, p : B, {qi : Di }i G ′ � p : A, {qi : Ci }i

q̃ -> p : 〈G ′〉; G � Θ, p : A�
q̃ B, {qi : Ci ⊗p Di }i

⊗�

Note that there would be no need to re-prove our results, since the proof theory would not
change.

The standard cut rule in CLL forces the graph of connections among processes to be a
tree [1], a known sufficient condition for deadlock-freedom in session types [7]. A multi-cut
rule is proposed in [1] to allow two processes to share multiple channels. This enables rea-
soning on networks with cyclic inter-connections, but breaks the deadlock-freedom property
guaranteed by linear logic, since duality is no longer a sufficient condition when multiple
resources are involved (also noted in [28]). For the first time, MCP processes can have cyclic
inter-connections (e.g., our example in Sect. 2), but they are still guaranteed to be deadlock-
free. The key twist is to use coherence as a principle to check that the inter-connections are
safely resolved by communications. This suggests that coherence may be useful also in other
settings related to linear logic, for reasoning about the sharing of resources among multiple
entities (in our case, sessions). We leave this investigation as interesting future work.

123

264 M. Carbone et al.

Multiparty session types (MPSTs) Our work concisely unifies many of the ideas found in
separate developments of multiparty session types. Our global types with multicasting are
inspired from [12], to which we added nested and replicated types; both additions arise natu-
rally from our proof theory. Our nesting of global types can be seen as a logical reconstruction
of (a simplification of) those originally presented in [13], while repetitions in global types
reconstruct the concept presented in [10].

Our proof system for coherence is inspired by the notion of well-formedness found in
MPSTs [12,17], in the context of synchronous communications [2]. Since coherence is a
proof system, projection and extraction are derived from proof equivalences, rather than
being defined separately as in [17,19]. A benefit is that our projection and extraction are
guaranteed to be correct by construction, whereas in previous works they have to be proven
correct separately wrt the auxiliary notion of well-formedness.

In [12], MPSTs are combined with an ordering on session names to guarantee deadlock-
freedom. Our deadlock-freedom result, instead, is based on the structure of our proofs. In
some cases, our technique is more precise; for example, consider the deadlock-free system:

?a p(xa); ?br (xb); xa
pq (w1); xb

rs (w2); (xa
pt (w3); P1 | P2)

!aq (xa); xa
q p(w1); (P3 | P4) !at (xa); xa

t p(w3); (P5 | P6) !bs (xb); xb
sr (w2); P7

If we compose these processes in parallel, restricting sessions a and b accordingly, we obtain
a typable MCP process. Instead, the system in [12] rejects it, since the actions performed by
the first process create a cycle between the names xa and xb. In [23], the approach in [12] is
refined to type processes such as the one above by ordering the I/O actions of each session.

We conjecture that MCP can be used to naturally extend the work in [9], where linear
logic is used to type choreography programs, obtaining a Curry–Howard correspondence for
the calculus of compositional choreographies typed with multiparty session types [22].

Coherence Coherence can be generalised, e.g., in Fig. 2: (1) rule !? could allow for more
than one client; (2) similarly, rule 1⊥ could be relaxed to allow for more than one ⊥ type;
(3) rule ⊗� could allow the involved participants to play different roles in the nested session
they create, as in [13] (adding such roles as an extra annotation to each type respectively). We
leave these extensions as interesting future work. Point (2) influences greatly the complexity
of the cut admissibility proof for MCP (Theorem 5), because it would imply that the cut
reduction of a terminated session could lead to having more than one process in the reductum
(all the processes typed with ⊥), whereas now we have only one. This means that we would
have to type a parallel composition of processes without restriction, requiring to extend our
framework in the fashion of the logic presented in [9]. While extending the proof theory
of MCP would be easy, (extending coherence to allow for missing participants to be added
later, as in [22]), it would also cause an explosion in the number of cases to consider in the
proof [9]. As future work, we will investigate how our ruleMCut and the notion of coherence
can affect the mapping from the functional language GV [21,28].

In [11], a proof system similar to the multiplicative-additive fragment without channel
passing of our coherence is embedded in the calculus of constructions. Differently from our
approach, no correspondence between global types and proofs is provided; hence, extraction
does not follow automatically from the theory (and is not presented).

Acknowledgements We thank Kim Skak Larsen and the anonymous reviewers for their useful comments.
Montesi was supported by CRC (Choreographies for Reliable and efficient Communication software), grant
no. DFF–4005-00304 from the Danish Council for Independent Research. Schürmann was partly supported by
DemTech, grant no. 10-092309 from the Danish Council for Strategic Research. Yoshida was partially spon-

123

Multiparty session types as coherence proofs 265

sored by the EPSRC EP/K011715/1, EP/K034413/1, EP/L00058X/1, and EU project FP7-612985 UpScale.
This work is also supported by the COST Action IC1201 BETTY.

Appendix: Proof derivations for β-reductions

In this section, we present the full proof derivations for the process reductions in MCP given
in Fig. 8. While our structural equivalences are straightforward (they are similar to those
in [27], extended to parallel contexts), our process reductions are quite new because they
introduce multiparty synchronisations.

To improve the readability of our proof transformations, we adopt a short-hand notation for
MCP proof trees, similar to that in [6]. Calligraphic lettersD, E, . . . denote proof derivations
in either MCP or coherence (proofs, for short). We use “=” to define proofs, “:” to state that a
proof ends with a given judgement, and (Di)i to denote a list of proofs D1, . . . ,Dn . We also
write a proof name, e.g., D, above a judgement to denote that D is the proof used to derive
that judgement. We use the notationMCut(D1, . . . ,Dn)(G) to denote a proof that ends with
an application of rule MCut, where the Di are the left-hand premises and G the coherence
proof of such application respectively. In each case below, we adopt the convention that L
denotes the left-hand side proof of a β-reduction in Fig. 8 (our starting point, or hypothesis)
and R the right-hand side of the reduction (our goal).

Case β⊗�. Given

L = MCut ((Qi)i ,P, (D j) j) (G) P � {Γ j } j , Γ, {Δi }i , {Γi }i

where P = (νx : p -> q̃ : 〈G ′〉;G)
(∏

i xqi p(y); (Pi | Qi) | x pq̃(y); R | ∏
j Pj

)
and

such that

G =
G′′

G � {r j : E j } j , p : B, {qi : Di }i

G′
G ′ � p : A, {qi : Ci }i

p -> q̃ : 〈G ′〉; G � {r j : E j } j , p : A�
q̃ B, {qi : Ci ⊗p Di }i

⊗�

Qi =
Q′

i
Pi � Γi , yqi : Ci

Q′′
i

Qi � Δi , xqi : Di

xqi p(y); (Pi | Qi) � Γi ,Δi , xqi : Ci ⊗p Di
⊗

P =
P ′

R � Γ, y p : A, x p : B

x pq̃(y); R � Γ, x p : A�
q̃ B

�

D j : Pj �Γ j , xr j : E j

we can construct

R′ = MCut ((Q′′
i)i ,P ′, (D j) j) (G′′)

: (νx : G) (
∏

i Qi | R | ∏
j Pj)

)
� {Γ j } j , Γ, {Δi }i , y p : A

and, finally:

R = MCut ((Q′
i)i ,R′) (G′)

: (νy : G ′)
(∏

i Pi | (νx : G) (
∏

i Qi | R | ∏
j Pj)

)
� {Γ j } j , Γ, {Δi }i , {Γi }i

123

266 M. Carbone et al.

Case β⊕�1. Without loss of generality we only consider this reduction. The case for β⊕�2

is similar. Given

L = MCut (D, (Ei)i , (F j) j) (G)

: (νx: p-> q̃ : �(G1, G2))
(
x pq̃ .inl; P |∏i xqi p .case(Qi , Ri) | ∏

j Pj
) � Γ, {Δi }i , {Γ j } j

where

G =
G1

G1 � {r j : E j } j , p : A, {qi : Ci }i

G2
G2 � {r j : E j } j , p : B, {qi : Di }i

p -> q̃ : �(G1, G2) � {r j : E j } j , p : A ⊕q̃ B, {qi : Ci �
p Di }i

⊕�

D =
D′

P � Γ, x p : A

x pq̃ .inl; P � Γ, x p : A ⊕q̃ B
⊕1

Ei =
E ′

i
Qi � Δi , xqi : Ci

E ′′
i

Ri � Δi , xqi : Di

xqi p .case(Qi , Ri) � Δi , xqi : Ci �
p Di

�

F j : Pj �Γ j , xq j : E j

we can construct:

R = MCut (D′, (E ′
i)i , (F j) j) (G1)

: (νx : G1)
(

P | ∏
i Qi | ∏

j Pj

)
� Γ, {Δi }i , {Γ j } j

Case β1⊥. Given

L = MCut (P, (Qi)i) (G)

: (νx : endpq̃)
(
wait x p; P | ∏

i close xqi
) � Γ

where

G = endpq̃ � p : ⊥, {qi : 1}i
1⊥

Qi = close xqi � xqi : 1 1

P =
P ′

P � Γ

wait x p; P � Γ, x p : ⊥ ⊥

we can construct:

R = P ′
: P � Γ

Case β!?. Given

L = MCut (P, (Qi)i) (G)

: (νx :?p -> !q̃ : 〈G〉)
(
?x p(y); P | ∏

i !xqi (y); Qi

)
� Γ, {Δi }i

123

Multiparty session types as coherence proofs 267

where

G =
G′

G � p : A, {qi : Bi }i

?p -> !q̃ : 〈G〉 � p :?A, {qi :!Bi }i
!?

Qi =
Q′

i
Qi � ?Δi , yqi : Ai

!xqi (y); Qi � ?Δi , xqi : !Ai
!

P =
P ′

P � Γ, y p : B

?x p(y); P � Γ, x p : ?B
?

we can construct:

R = MCut (P ′, (Q′
i)i) (G′)

: (νy : G)
(

P | ∏
i Qi

)
� Γ, {Δi }i

Case β!W . Given

L = MCut ((Qi)i ,P) (G)

: (νx : ?p -> !q̃ : 〈G〉)
(∏

i !xqi (y); Qi | P
)

� Γ, {Δi }i

where

G =
G′

G � p : A, {qi : Bi }i

?p -> !q̃ : 〈G〉 � p :?A, {qi :!Bi }i
!?

Qi =
Q′

i
Ai � ?Δi , yqi : Ai

!xqi (y); Qi � ?Δi , xqi : !Ai
!

P =
P ′

P � Γ

P � Γ, x p : ?B
Weaken

we can construct:

R′ = P ′
: P � Γ

Finally, since all types in Δi are prefixed with ?, we can iteratively applyingWeaken to R′
for {Δi }i and obtain:

R : P � Γ, {Δi }i

Case β!C . Given

L = MCut ((Qi)i ,P) (G)

: (νx :?p -> !q̃ : 〈G〉)
(∏

i !xqi (w); Qi | P[x/y][x/z]
)

� Γ, {Δi }i

123

268 M. Carbone et al.

where

G =
G′

G � p : A, {qi : Bi }i

?p -> !q̃ : 〈G〉 � p :?A, {qi :!Bi }i
!?

Qi = Qi � ?Δi , w
qi : Bi

!xqi (w); Qi � ?Δi , xqi : !Bi
!

P =
F ′

P � Γ, y p : ?A, z p : ?A

P[x/y][x/z] � Γ, x p : ?A
Contract

we can construct:

R′ = MCut ((Qi)i ,P ′) (G)

: (νz :?p -> !q̃ : 〈G〉) (∏
i !zqi (w); Qi | P

) � Γ, {Δi }i , y p : ?A

Then, we can iteratively apply Contract to R′ and, finally, rule MCut to obtain:

R : (νy :?p -> !q̃ : 〈G〉)
(∏

i !yqi (w); Qi | (νz :?p -> !q̃ : 〈G〉) (∏
i !zqi (w); Qi | P

)) � Γ, {Δi }i

Case β+. Given

L = MCut (P, (Qi)i) (G)

: (νx : G)
(
(P1 + P2) | ∏

i Qi

)
� Δ, {Γi }i

where

P =
P1

P1 � Γ, x p : A
P2

P2 � Γ, x p : A

P1 + P2 � Δ, x p : A
+

we can construct, for i = 1 in Fig. 8:

R = MCut (P1, (Qi)i) (G)

: (νx : G)
(

P1 | ∏
i Qi

)
� Δ, {Γi }i

Otherwise, for i = 2 in Fig. 8, we construct:

R = MCut (P2, (Qi)i) (G)

: (νx : G)
(

P2 | ∏
i Qi

)
� Δ, {Γi }i

References

1. Abramsky, S., Gay, S.J., Nagarajan, R.: Interaction categories and the foundations of typed concurrent
programming. In: NATO ASI DPD, pp. 35–113 (1996)

2. Bejleri, A., Yoshida, N.: Synchronous multiparty session types. Electr. Notes Theor. Comput. Sci. 241,
3–33 (2009)

3. Bellin, G., Scott, P.J.: On the pi-calculus and linear logic. Theor. Comput. Sci. 135(1), 11–65 (1994)
4. Caires, L., Pérez, J.A.: A typeful characterization of multiparty structured conversations based on binary

sessions. CoRR, abs/1407.4242 (2014)
5. Caires, L., Pérez, J.A., Pfenning, F., Toninho, B.: Behavioral polymorphism and parametricity in session-

based communication. In: ESOP, pp. 330–349 (2013)
6. Caires, L., Pfenning, F.: Session types as intuitionistic linear propositions. In: CONCUR, pp. 222–236

(2010)

123

Multiparty session types as coherence proofs 269

7. Carbone, M., Debois, S.: A graphical approach to progress for structured communication in web services.
In: Proceedings of ICE’10 (2010)

8. Carbone, M., Montesi, F.: Deadlock-freedom-by-design: multiparty asynchronous global programming.
In: POPL, pp. 263–274 (2013)

9. Carbone, M., Montesi, F., Schürmann, C.: Choreographies, logically. In: CONCUR, pp. 47–62 (2014)
10. Castagna, G., Dezani-Ciancaglini, M., Padovani, L.: On global types and multi-party session. LMCS,

8(1), 1–45 (2012)
11. Ciobanu, Gabriel, Horne, Ross: Behavioural analysis of sessions using the calculus of structures. In:

Proceedings of the 10th International Andrei Ershov Informatics Conference, Perspectives of System
Informatics (PSI 2015), volume to appear of LNCS. Springer (2016)

12. Coppo, M., Dezani-Ciancaglini, M., Yoshida, N., Padovani, L.: Global progress for dynamically inter-
leaved multiparty sessions. MSCS 760, 1–65 (2015)

13. Demangeon, R., Honda, K.: Nested protocols in session types. In: CONCUR, pp. 272–286 (2012)
14. Deniélou, P.-M., Yoshida, N.: Multiparty compatibility in communicating automata: characterisation and

synthesis of global session types. ICALP 2, 174–186 (2013)
15. Girard, J.-Y.: Linear logic. Theor. Comput. Sci. 50, 1–102 (1987)
16. Honda, K., Vasconcelos, V., Kubo, M.: Language primitives and type disciplines for structured

communication-based programming. In: ESOP, pp. 22–138 (1998)
17. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In: Proceedings of POPL,

vol. 43(1), pp. 273–284. ACM (2008)
18. Kouzapas, D., Yoshida, N.: Globally governed session semantics. LMCS 10 (2015)
19. Lange, J., Tuosto, E.: Synthesising choreographies from local session types. In: CONCUR, pp. 225–239

(2012)
20. Lange, J., Tuosto, E., Yoshida, N.: From communicating machines to graphical choreographies. In: POPL

2015, pp. 221–232. ACM (2015)
21. Lindley, S., Garrett M.J.: A semantics for propositions as sessions. In: ESOP, pp. 560–584 (2015)
22. Montesi, F., Yoshida, N.: Compositional choreographies. In: CONCUR, pp. 425–439 (2013)
23. Padovani, L., Vasconcelos, V.T., Vieira, H.T.: Typing liveness in multiparty communicating systems. In:

COORDINATION, pp. 147–162 (2014)
24. Sangiorgi, D., Walker, D.: The π -calculus: A Theory of Mobile Processes. Cambridge University Press,

Cambridge (2001)
25. Scribble Project Home Page. http://www.scribble.org
26. Vasconcelos, V.T.: Fundamentals of session types. Inf. Comput. 217, 52–70 (2012)
27. Wadler, P.: Propositions as sessions. In: ICFP, pp. 273–286 (2012)
28. Wadler, P.: Propositions as sessions. J. Funct. Prog. 24(2–3), 384–418 (2014)

123

http://www.scribble.org

	Multiparty session types as coherence proofs
	Abstract
	1 Introduction
	2 Preview
	3 Coherence
	3.1 Properties of coherence

	4 Multiparty classical processes
	5 Semantics
	5.1 Structural equivalences as commuting conversions
	5.2 Process reductions as MCut reductions
	5.3 Properties

	6 The 2-buyer protocol example
	7 Relation to linear logic
	8 Related work and discussion
	Acknowledgements
	Appendix: Proof derivations for β-reductions
	References

