Skip to main content
Log in

The Degree of Resistance of Erythrocyte Membrane Cytoskeletal Proteins to Supra-Physiologic Concentrations of Calcium: An In Vitro Study

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Calcium is a key regulator of cell dynamics. Dysregulation of its cytosolic concentration is implicated in the pathophysiology of several diseases. This study aimed to assess the effects of calcium on the network of membrane cytoskeletal proteins. Erythrocyte membranes were obtained from eight healthy donors and incubated with 250 µM and 1.25 mM calcium solutions. Membrane cytoskeletal proteins were quantified using SDS-PAGE at baseline and after 3 and 5 days of incubation. Supra-physiologic concentrations of calcium (1.25 mM) induced a significant proteolysis in membrane cytoskeletal proteins, compared with magnesium (p < 0.001). Actin exhibited the highest sensitivity to calcium-induced proteolysis (6.8 ± 0.3 vs. 5.3 ± 0.6, p < 0.001), while spectrin (39.9 ± 1.0 vs. 40.3 ± 2.0, p = 0.393) and band-6 (6.3 ± 0.3 vs. 6.8 ± 0.8, p = 0.191) were more resistant to proteolysis after incubation with calcium in the range of endoplasmic reticulum concentrations (250 µM). Aggregation of membrane cytoskeletal proteins was determined after centrifugation and was significantly higher after incubation with calcium ions compared with control, EDTA and magnesium solutions (p < 0.001). In a supra-physiologic range of 1.25–10 mM of calcium ions, there was a nearly perfect linear relationship between calcium concentration and aggregation of erythrocyte membrane cytoskeletal proteins (R 2 = 0.971, p < 0.001). Our observation suggests a strong interaction between calcium ions and membrane cytoskeletal network. Cumulative effects of disrupted calcium homeostasis on cytoskeletal proteins need to be further investigated at extended periods of time in disease states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Aiken NR, Galey WR et al (1995) A peroxidative model of human erythrocyte intracellular Ca2+ changes with in vivo cell aging: measurement by 19F-NMR spectroscopy. Biochim Biophys Acta 1270(1):52–57

    Article  PubMed  Google Scholar 

  • Almog B, Gamzu R et al (2005) Enhanced erythrocyte aggregation in clinically diagnosed pelvic inflammatory disease. Sex Transm Dis 32(8):484–486

    Article  PubMed  Google Scholar 

  • Bennett V (1989) The spectrin–actin junction of erythrocyte membrane skeletons. Biochim Biophys Acta 988(1):107–121

    Article  CAS  PubMed  Google Scholar 

  • Bennett J, Weeds A (1986) Calcium and the cytoskeleton. Br Med Bull 42(4):385–390

    CAS  PubMed  Google Scholar 

  • Brini M, Carafoli E (2009) Calcium pumps in health and disease. Physiol Rev 89(4):1341–1378

    Article  CAS  PubMed  Google Scholar 

  • Carafoli E (1987) Intracellular calcium homeostasis. Annu Rev Biochem 56:395–433

    Article  CAS  PubMed  Google Scholar 

  • Deman J, Bruyneel E (1973) A method for the quantitative measurement of cell aggregation. Exp Cell Res 81(2):351–359

    Article  CAS  PubMed  Google Scholar 

  • Dodge JT, Mitchell C et al (1963) The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes. Arch Biochem Biophys 100:119–130

    Article  CAS  PubMed  Google Scholar 

  • Fletcher DA, Mullins RD (2010) Cell mechanics and the cytoskeleton. Nature 463(7280):485–492

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fowler V, Taylor DL (1980) Spectrin plus band 4.1 cross-link actin. Regulation by micromolar calcium. J Cell Biol 85(2):361–376

    Article  CAS  PubMed  Google Scholar 

  • Fusman G, Mardi T et al (2002) Red blood cell adhesiveness/aggregation, C-reactive protein, fibrinogen, and erythrocyte sedimentation rate in healthy adults and in those with atherosclerotic risk factors. Am J Cardiol 90(5):561–563

    Article  CAS  PubMed  Google Scholar 

  • Goldin Y, Tulshinski T et al (2007) Rheological consequences of acute infections: the rheodifference between viral and bacterial infections. Clin Hemorheol Microcirc 36(2):111–119

    CAS  PubMed  Google Scholar 

  • Jaiswal JK (2001) Calcium—how and why? J Biosci 26(3):357–363

    Article  CAS  PubMed  Google Scholar 

  • Kabaso D, Shlomovitz R et al (2010) Curling and local shape changes of red blood cell membranes driven by cytoskeletal reorganization. Biophys J 99(3):808–816

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lew VL, Tiffert T (2007) Is invasion efficiency in malaria controlled by pre-invasion events? Trends Parasitol 23(10):481–484

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Mizukami H et al (2005) Calcium-dependent human erythrocyte cytoskeleton stability analysis through atomic force microscopy. J Struct Biol 150(2):200–210

    Article  CAS  PubMed  Google Scholar 

  • Luna EJ, Hitt AL (1992) Cytoskeleton–plasma membrane interactions. Science 258(5084):955–964

    Article  CAS  PubMed  Google Scholar 

  • Mostafavi E, Nakhjavani M et al (2013) Protective role of calcium ion against stress-induced osmotic fragility of red blood cells in patients with type 2 diabetes mellitus. Clin Hemorheol Microcirc 53(3):239–245

    CAS  PubMed  Google Scholar 

  • O’Brien ET, Salmon ED et al (1997) How calcium causes microtubule depolymerization. Cell Motil Cytoskeleton 36(2):125–135

    Article  PubMed  Google Scholar 

  • Rivas FV, O’Keefe JP et al (2004) Actin cytoskeleton regulates calcium dynamics and NFAT nuclear duration. Mol Cell Biol 24(4):1628–1639

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rosado JA, Sage SO (2000) The actin cytoskeleton in store-mediated calcium entry. J Physiol 526(Pt 2):221–229

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schmidt C, Kosche E et al (1995) Arachidonic acid metabolism and intracellular calcium concentration in inflammatory bowel disease. Eur J Gastroenterol Hepatol 7(9):865–869

    CAS  PubMed  Google Scholar 

  • Sharshun Y, Brill S et al (2003) Inflammation at a glance: erythrocyte adhesiveness/aggregation test to reveal the presence of inflammation in people with atherothrombosis. Heart Dis 5(3):182–183

    Article  PubMed  Google Scholar 

  • Takakuwa Y, Mohandas N (1988) Modulation of erythrocyte membrane material properties by Ca2+ and calmodulin. Implications for their role in regulation of skeletal protein interactions. J Clin Invest 82(2):394–400

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Verkhratsky A (2005) Physiology and pathophysiology of the calcium store in the endoplasmic reticulum of neurons. Physiol Rev 85(1):201–279

    Article  CAS  PubMed  Google Scholar 

  • von Tempelhoff GF, Nieman F et al (2000) Association between blood rheology, thrombosis and cancer survival in patients with gynecologic malignancy. Clin Hemorheol Microcirc 22(2):107–130

    Google Scholar 

  • Wehrens XH, Lehnart SE et al (2005) Intracellular calcium release and cardiac disease. Annu Rev Physiol 67:69–98

    Article  CAS  PubMed  Google Scholar 

  • Williams RJ (2006) The evolution of calcium biochemistry. Biochim Biophys Acta 1763(11):1139–1146

    Article  CAS  PubMed  Google Scholar 

  • Yamawaki S, Kagaya A et al (1998) Intracellular calcium signaling systems in the pathophysiology of affective disorders. Life Sci 62(17–18):1665–1670

    Article  CAS  PubMed  Google Scholar 

  • Yu R, Hinkle PM (2000) Rapid turnover of calcium in the endoplasmic reticulum during signaling. Studies with cameleon calcium indicators. J Biol Chem 275(31):23648–23653

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manouchehr Nakhjavani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mostafavi, E., Nargesi, A.A., Ghazizadeh, Z. et al. The Degree of Resistance of Erythrocyte Membrane Cytoskeletal Proteins to Supra-Physiologic Concentrations of Calcium: An In Vitro Study. J Membrane Biol 247, 695–701 (2014). https://doi.org/10.1007/s00232-014-9689-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-014-9689-1

Keywords

Navigation