Skip to main content
Log in

Comparison of Alkaline Lysis with Electroextraction and Optimization of Electric Pulses to Extract Plasmid DNA from Escherichia coli

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The use of plasmid DNA (pDNA) as a pharmaceutical tool has increased since it represents a safer vector for gene transfer compared to viral vectors. Different pDNA extraction methods have been described; among them is alkaline lysis, currently the most commonly used. Although alkaline lysis represents an established method for isolation of pDNA, some drawbacks are recognized, such as entrapment of pDNA in cell debris, leading to lower pDNA recovery; the time-consuming process; and increase of the volume due to the buffers used, all leading to increased cost of production. We compared the concentration of extracted pDNA when two methods for extracting pDNA from Escherichia coli were used: alkaline lysis and a method based on membrane electroporation, electroextraction. At the same time, we also studied the effect of different pulse protocols on bacterial inactivation. The concentration of pDNA was assayed with anion exchange chromatography. When alkaline lysis was used, two incubations of lysis time (5 and 10 min) were compared in terms of the amount of isolated pDNA. We did not observe any difference in pDNA concentration regardless of incubation time used. In electroextraction, different pulse protocols were used in order to exceed the pDNA concentration obtained by alkaline lysis. We show that electroextraction gives a higher concentration of extracted pDNA than alkaline lysis, suggesting the use of electroporation as a potentially superior method for extracting pDNA from E. coli. In addition, electroextraction represents a quicker alternative to alkaline lysis for extracting pDNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Atkinson H, Chalmers R (2010) Delivering the goods: viral and non-viral gene therapy systems and the inherent limits on cargo DNA and internal sequences. Genetica 138:485–498

    Article  CAS  PubMed  Google Scholar 

  • Baulard A, Jourdan C, Mercenier A, Locht C (1992) Rapid mycobacterial plasmid analysis by electroduction between Mycobacterium spp. and Escherichia coli. Nucleic Acids Res 20:4105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Birnboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brodelius PE, Funk C, Shillito RD (1988) Permeabilization of cultivated plant-cells by electroporation for release of intracellularly stored secondary products. Plant Cell Rep 7:186–188

    Article  CAS  PubMed  Google Scholar 

  • Daud AI, DeConti RC, Andrews S, Urbas P, Riker AI, Sondak VK, Munster PN, Sullivan DM, Ugen KE, Messina JL, Heller R (2008) Phase I trial of interleukin-12 plasmid electroporation in patients with metastatic melanoma. J Clin Oncol 26:5896–5903

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Edhemovic I, Gadzijev EM, Brecelj E, Miklavcic D, Kos B, Zupanic A, Mali B, Jarm T, Pavliha D, Marcan M, Gasljevic G, Gorjup V, Music M, Vavpotic TP, Cemazar M, Snoj M, Sersa G (2011) Electrochemotherapy: a new technological approach in treatment of metastases in the liver. Technol Cancer Res Treat 10:475–485

    PubMed Central  CAS  PubMed  Google Scholar 

  • Eynard N, Rodriguez F, Trotard J, Teissié J (1998) Electrooptics studies of Escherichia coli electropulsation: orientation, permeabilization, and gene transfer. Biophys J 75:2587–2596

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Foung S, Perkins S, Kafadar K, Gessner P, Zimmermann U (1990) Development of microfusion techniques to generate human hybridomas. J Immunol Methods 134:35–42

    Article  CAS  PubMed  Google Scholar 

  • Ganeva V, Galutzov B, Teissie J (2004) Flow process for electroextraction of intracellular enzymes from the fission yeast, Schizosaccharomyces pombe. Biotechnol Lett 26:933–937

    Article  CAS  PubMed  Google Scholar 

  • Gunn L, Nickoloff JA (1995) Rapid transfer of low copy-number episomal plasmids from Saccharomyces cerevisiae to Escherichia coli by electroporation. Mol Biotechnol 3:79–84

    Article  CAS  PubMed  Google Scholar 

  • Gusbeth C, Frey W, Volkmann H, Schwartz T, Bluhm H (2009) Pulsed electric field treatment for bacteria reduction and its impact on hospital wastewater. Chemosphere 75:228–233

    Article  CAS  PubMed  Google Scholar 

  • Haberl S, Miklavcic D, Sersa G, Frey W, Rubinsky B (2013) Cell membrane electroporation—part 2. The applications. IEEE Electr Insul Mag 29:29–37

    Article  Google Scholar 

  • Kilbane JJ, Bielaga BA (1991) Instantaneous gene transfer from donor to recipient microorganisms via electroporation. Biotechniques 10:354–365

    PubMed  Google Scholar 

  • Kotnik T, Pucihar G, Miklavcic D (2010) Induced transmembrane voltage and its correlation with electroporation-mediated molecular transport. J Membr Biol 236:3–13

    Article  CAS  PubMed  Google Scholar 

  • Kubiniec RT, Liang H, Hui SW (1988) Use of fluorescence labeled dextrans by 10 T1/2 fibroblasts following permeation by rectangular and exponential decay electric field pulses. Biotechniques 8:16–20

    Google Scholar 

  • Lederberg J (1952) Cell genetics and hereditary symbiosis. Physiol Rev 32:403–430

    CAS  PubMed  Google Scholar 

  • Mali B, Jarm T, Snoj M, Sersa G, Miklavcic D (2013) Antitumor effectiveness of electrochemotherapy: a systematic review and meta-analysis. Eur J Surg Oncol 39:4–16

    Article  CAS  PubMed  Google Scholar 

  • Martin SEV, Bergmann K, Pollard-Knight DV (2002) Release of intracellular material and the production therefrom of single stranded nucleic acid. US Patent 6335161

  • Martin SEV, Bergmann K, Pollard-Knight D (2004) Release of intracellular material. US Patent 6811981

  • Morales-de la Peña M, Elez-Martínez P, Martín-Belloso O (2011) Food preservation by pulsed electric fields: an engineering perspective. Food Eng Rev 3:94–107

    Article  Google Scholar 

  • Moser D, Zarka D, Hedman C, Kallas T (1995) Plasmid and chromosomal DNA recovery by electroextraction of cyanobacteria. FEMS Microbiol Lett 128:307–313

    Article  CAS  PubMed  Google Scholar 

  • Naglak TJ, Hettwer DJ, Wang HY (1990) Chemical permeabilization of cells for intracellular product release. Bioprocess Technol 9:177–205

    CAS  PubMed  Google Scholar 

  • Neal RE 2nd, Rossmeisl JH Jr, Garcia PA, Lanz OI, Henao-Guerrero N, Davalos RV (2011) Successful treatment of a large soft tissue sarcoma with irreversible electroporation. J Clin Oncol 29:e372–e377

    Article  PubMed  Google Scholar 

  • Neumann E, Rosenheck K (1972) Permeability changes induced by electric impulses in vesicular membranes. J Membr Biol 10:279–290

    Article  CAS  PubMed  Google Scholar 

  • Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH (1982) Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J 1:841–845

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pucihar G, Miklavcic D, Kotnik T (2009) A time-dependent numerical model of transmembrane voltage inducement and electroporation of irregularly shaped cells. IEEE Trans Biomed Eng 56:1491–1501

    Article  PubMed  Google Scholar 

  • Pucihar G, Krmelj J, Rebersek M, Batista Napotnik T, Miklavcic D (2011) Equivalent pulse parameters for electroporation. IEEE Trans Biomed Eng 58:3279–3288

    Article  PubMed  Google Scholar 

  • Reasoner DJ (2004) Heterotrophic plate count methodology in the United States. Int J Food Microbiol 92:307–315

    Article  PubMed  Google Scholar 

  • Rols MP, Teissie J (1998) Electropermeabilization of mammalian cells to macromolecules: control by pulse duration. Biophys J 75:1415–1423

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rubinsky B (2007) Irreversible electroporation in medicine. Technol Cancer Res Treat 6:255–260

    Article  PubMed  Google Scholar 

  • Saade F, Petrovsky N (2012) Technologies for enhanced efficacy of DNA vaccines. Expert Rev Vaccines 11:189–209

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sack M, Sigler J, Frenzel S, Eing C, Arnold J, Michelberger T, Frey W, Attmann F, Stukenbrock L, Muller G (2010) Research on industrial-scale electroporation devices fostering the extraction of substances from biological tissue. Food Eng Rev 2:147–156

    Article  CAS  Google Scholar 

  • Sardesai NY, Weiner DB (2011) Electroporation delivery of DNA vaccines: prospects for success. Curr Opin Immunol 23:421–429

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schleef M, Blaesen M, Schmeer M, Baier R, Marie C, Dickson G, Scherman D (2010) Production of non viral DNA vectors. Curr Gene Ther 10:487–507

    Article  CAS  PubMed  Google Scholar 

  • Shiina S, Ohshima T, Sato M (2007) Extracellular production of alpha-amylase during fed-batch cultivation of recombinant Escherichia coli using pulsed electric field. J Electrostat 65:30–36

    Article  CAS  Google Scholar 

  • Suga M, Hatakeyama T (2009) Gene transfer and protein release of fission yeast by application of a high voltage electric pulse. Anal Bioanal Chem 394:13–16

    Article  CAS  PubMed  Google Scholar 

  • Sukharev SI, Klenchin VA, Serov SM, Chernomordik LV, Chizmadzhev YA (1992) Electroporation and electrophoretic DNA transfer into cells. The effect of DNA interaction with electropores. Biophys J 63:1320–1327

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Takayuki O, Takahiro O, Masayuki S (1999) Decomposition of nucleic acid molecules in pulsed electric field and its release from recombinant Escherichia coli. J Electrostat 46:163–170

    Article  CAS  Google Scholar 

  • Tatum EL, Lederberg J (1947) Gene recombination in the bacterium Escherichia coli. J Bacteriol 53:673–684

    PubMed Central  CAS  PubMed  Google Scholar 

  • Teissie J, Rols MP (1993) An experimental evaluation of the critical potential difference inducing cell membrane electropermeabilization. Biophys J 65:409–413

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tschapalda K, Streitner N, Voss C, Flaschel E (2009) Generation of chromosomal DNA during alkaline lysis and removal by reverse micellar extraction. Appl Microbiol Biotechnol 84:199–204

    Article  CAS  PubMed  Google Scholar 

  • Usaj M, Trontelj K, Miklavcic D, Kanduser M (2010) Cell–cell electrofusion: optimization of electric field amplitude and hypotonic treatment for mouse melanoma (B16-F1) and Chinese hamster ovary (CHO) cells. J Membr Biol 236:107–116

    Article  CAS  PubMed  Google Scholar 

  • Ward LJH, Jarvis AW (1991) Rapid electroporation-mediated plasmid transfer between Lactococcus lactis and Escherichia coli without the need for plasmid preparation. Lett Appl Microbiol 13:278–280

    Article  Google Scholar 

  • Wolf H, Rols MP, Boldt E, Neumann E, Teissie J (1994) Control by pulse parameters of electric field-mediated gene transfer in mammalian cells. Biophys J 66:524–531

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wong TW, Chen TY, Huang CC, Tsai JC, Hui SK (2011) Painless skin electroporation as a novel way for insulin delivery. Diabetes Technol Ther 13:929–935

    Article  CAS  PubMed  Google Scholar 

  • Wu B, Ganesan K, Handique K, Parunak G (2007) Methods and systems for releasing intracellular material from cells within microfluidic samples of fluids. US Patent 7192557

  • Xie TD, Tsong TY (1992) Study of mechanisms of electric field–induced DNA transfection. III. Electric parameters and other conditions for effective transfection. Biophys J 63:28–34

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zakhartsev M, Momeu C, Ganeva V (2007) High-throughput liberation of water-soluble yeast content by irreversible electropermeation (HT-irEP). J Biomol Screen 12:267–275

    Article  CAS  PubMed  Google Scholar 

  • Zgalin MK, Hodzic D, Rebersek M, Kanduser M (2012) Combination of microsecond and nanosecond pulsed electric field treatments for inactivation of Escherichia coli in water samples. J Membr Biol 245:643–650

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support of their work through various grants from the Slovenian Research Agency. Research was conducted within the scope of the EBAM European Associated Laboratory (LEA). This research was possible as a result of networking efforts within COST Action TD1104 (www.electroporation.net).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damijan Miklavčič.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haberl, S., Jarc, M., Štrancar, A. et al. Comparison of Alkaline Lysis with Electroextraction and Optimization of Electric Pulses to Extract Plasmid DNA from Escherichia coli . J Membrane Biol 246, 861–867 (2013). https://doi.org/10.1007/s00232-013-9580-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-013-9580-5

Keywords

Navigation