Skip to main content

Advertisement

Log in

Inactivation of Pseudomonas putida by Pulsed Electric Field Treatment: A Study on the Correlation of Treatment Parameters and Inactivation Efficiency in the Short-Pulse Range

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

An important issue for an economic application of the pulsed electric field treatment for bacterial decontamination of wastewater is the specific treatment energy needed for effective reduction of bacterial populations. The present experimental study performed in a field amplitude range of 40 > E > 200 kV/cm and for a suspension conductivity of 0.01 = κ e > 0.2 S/m focusses on the application of short pulses, 25 ns > T > 10 μs, of rectangular, bipolar and exponential shape and was made on Pseudomonas putida, which is a typical and widespread wastewater microorganism. The comparison of inactivation results with calculations of the temporal and azimuthal membrane charging dynamics using the model of Pauly and Schwan revealed that for efficient inactivation, membrane segments at the cell equator have to be charged quickly and to a sufficiently high value, on the order of 0.5 V. After fulfilling this basic condition by an appropriate choice of pulse field strength and duration, the log rate of inactivation for a given suspension conductivity of 0.2 S/m was found to be independent of the duration of individual pulses for constant treatment energy expenditure. Moreover, experimental results suggest that even pulse shape plays a minor role in inactivation efficiency. The variation of the suspension conductivity resulted in comparable inactivation performance of identical pulse parameters if the product of pulse duration and number of pulses was the same, i.e., required treatment energy can be linearly downscaled for lower conductivities, provided that pulse amplitude and duration are selected for entire membrane surface permeabilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abram F, Smelt JPPM, Bos R, Wouters PC (2003) Modelling and optimization of inactivation of Lactobacillus plantarum by pulsed electric field treatment. J Appl Microbiol 94:571–579

    Article  CAS  PubMed  Google Scholar 

  • Ait-Ouazzou A, Espina L, García-Gonzalo D, Pagán R (2013) Synergistic combination of physical treatments and carvacrol for Escherichia coli O157:H7 inactivation in apple, mango, orange, and tomato juices. Food Control 161:23–30

    Google Scholar 

  • Alkhafaji SR, Farid M (2007) An investigation on pulsed electric fields technology using new treatment chamber design. Innov Food Sci Emerg Technol 8:205–212

    Article  Google Scholar 

  • Álvarez I, Pagán R, Condón S, Raso J (2003a) The influence of process parameters for the inactivation of Listeria monocytogenes by pulsed electric fields. Int J Food Microbiol 87:87–95

    Article  PubMed  Google Scholar 

  • Álvarez I, Virto R, Raso J, Condón S (2003b) Comparing predicting models for the Escherichia coli inactivation by pulsed electric fields. Innov Food Sci Emerg Technol 4:195–202

    Article  Google Scholar 

  • Aronsson K, Lindgren M, Johansson BR, Rönner U (2001) Inactivation of microorganisms using pulsed electric fields: the influence of process parameters on Escherichia coli, Listeria innocua, Leuconostoc mesenteroides and Saccharomyces cerevisiae. Innov Food Sci Emerg Technol 2:41–54

    Article  Google Scholar 

  • Castro AJ, Barbosa-Canovas GV, Swanson BG (1993) Microbial inactivation of foods by pulsed electric fields. J Food Proc Preserv 17:47–73

    Article  Google Scholar 

  • Damar S, Bozoglu F, Hizal M, Bayindirli A (2002) Inactivation and injury of Escherichia coli O157:H7 and Staphylococcus aureus by pulsed electric fields. World J Microbiol Biotechnol 18:1–6

    Article  Google Scholar 

  • Donsi G, Ferrari G, Pataro G (2007) Inactivation kinetics of Saccharomyces cerevisiae by pulsed electric fields in a batch treatment chamber: the effect of electric field unevenness and initial cell concentration. J Food Eng 78:784–792

    Article  Google Scholar 

  • Eing CJ, Bonnet S, Pacher M, Puchta H, Frey W (2009) Effects of nanosecond pulsed electric field exposure on Arabidopsis thaliana. IEEE Trans Dielectr Electr Insul 16:1322–1328

    Article  Google Scholar 

  • Engelberg-Kulka H, Sat B, Reches M, Amitai S, Hazan R (2004) Bacterial programmed cell death systems as targets for antibiotics. Trends Microbiol 12:66–71

    Article  CAS  PubMed  Google Scholar 

  • Engelberg-Kulka H, Amitai S, Kolodkin-Gal I, Hazan R (2006) Bacterial programmed cell death and multicellular behavior in bacteria. PLoS Genet 2:e135

    Article  PubMed Central  PubMed  Google Scholar 

  • Flickinger B, Berghofer T, Hohenberger P, Eing C, Frey W (2010) Transmembrane potential measurements on plant cells using the voltage-sensitive dye ANNINE-6. Protoplasma 247:3–12

    Article  PubMed  Google Scholar 

  • Frey W, White JA, Price RO, Blackmore PF, Joshi RP, Nuccitelli R, Beebe SJ, Schoenbach KH, Kolb JF (2006) Plasma membrane voltage changes during nanosecond pulsed electric field exposure. Biophys J 90:3608–3615

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Frey W, Sack M, Wuestner R, Mueller G (2009) Gas-insulated self-breakdown spark gaps: aspects on low-scattering and long-lifetime switching. Acta Phys Pol A 115:1016–1018

    CAS  Google Scholar 

  • Gabriel B, Teissié J (1997) Direct observation in the millisecond time range of fluorescent molecule asymmetrical interaction with the electropermeabilized cell membrane. Biophys J 73:2630–2637

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Galapate RP, Baes AU, Okada M (2001) Transformation of dissolved organic matter during ozonation: effects on trihalomethane formation potential. Water Res 35:2201–2206

    Article  CAS  PubMed  Google Scholar 

  • Garcia D, Gomez N, Condon S, Raso J, Pagan R (2003) Pulsed electric fields cause sublethal injury in Escherichia coli. Lett Appl Microbiol 36:140–144

    Article  CAS  PubMed  Google Scholar 

  • Gusbeth C, Frey W, Volkmann H, Schwartz T, Bluhm H (2009) Pulsed electric field treatment for bacteria reduction and its impact on hospital wastewater. Chemosphere 75:228–233

    Article  CAS  PubMed  Google Scholar 

  • Hamilton WA, Sale AJH (1967) Effects of high electric fields on microorganisms: II. Mechanism of action of the lethal effect. Biochim Biophys Acta 148:789–800

    Article  CAS  Google Scholar 

  • Hayes F (2003) Toxins–antitoxins: plasmid maintenance, programmed cell death, and cell cycle arrest. Science 301:1496–1499

    Article  CAS  PubMed  Google Scholar 

  • Heinz V, Sitzmann W, Töpfl S (2007) Selektive Abtötung von zellulären Krankheitserregern und Verderbsorganismen: Das ELSTERIL®-Verfahren. Chem Eng Technol 79:1135–1143

    CAS  Google Scholar 

  • Hibino M, Itoh H, Kinosita K Jr (1993) Time courses of cell electroporation as revealed by submicrosecond imaging of transmembrane potential. Biophys J 64:1789–1800

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ho SY, Mittal GS, Cross JD, Griffiths MW (1995) Inactivation of Pseudomonas fluorescens by high voltage electric pulses. J Food Sci 60:1337

    Article  CAS  Google Scholar 

  • Hoelzel R (1999) Non-invasive determination of bacterial single cell properties by electrorotation. Biochim Biophys Acta Mol Cell Res 1450:53–60

    Article  Google Scholar 

  • Huang KC, Mukhopadhyay R, Wen BN, Gitai Z, Wingreen NS (2008) Cell shape and cell-wall organization in gram-negative bacteria. Proc Natl Acad Sci U S A 105:19282–19287

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huang K, Tian H, Gai L, Wang J (2012) A review of kinetic models for inactivating microorganisms and enzymes by pulsed electric field processing. J Food Eng 111:191–207

    Article  CAS  Google Scholar 

  • Hülsheger H, Niemann EG (1980) Lethal effects of high-voltage pulses on E. coli K12. Radiat Environ Biophys 18:281–288

    Article  PubMed  Google Scholar 

  • Hülsheger H, Potel J, Niemann EG (1981) Killing of bacteria with electric pulses of high field strength. Radiat Environ Biophys 20:53–65

    Article  PubMed  Google Scholar 

  • Jaeger H, Meneses N, Knorr D (2009) Impact of PEF treatment inhomogeneity such as electric field distribution, flow characteristics and temperature effects on the inactivation of E. coli and milk alkaline phosphatase. Innov Food Sci Emerg Technol 10:470–480

    Article  CAS  Google Scholar 

  • Jungfer C, Schwartz T, Obst U (2007) UV-induced dark repair mechanisms in bacteria associated with drinking water. Water Res 41:188–196

    Article  CAS  PubMed  Google Scholar 

  • Katsuki S, Moreira K, Dobbs F, Joshi RP, Schoenbach KH (2002) Bacterial decontamination with nanosecond pulsed electric fields. In: Power Modulator Symposium, 2002 and 2002 High-Voltage Workshop, Record of the Twenty-Fifth International Conference, pp 648–651

  • Kotnik T, Miklavcic D, Slivnik T (1998) Time course of transmembrane voltage induced by time-varying electric fields—a method for theoretical analysis and its application. Bioelectrochem Bioenerg 45:3–16

    Article  CAS  Google Scholar 

  • Kotnik T, Miklavčič D, Mir LM (2001a) Cell membrane electropermeabilization by symmetrical bipolar rectangular pulses: part II. Reduced electrolytic contamination. Bioelectrochemistry 54:91–95

    Article  CAS  PubMed  Google Scholar 

  • Kotnik T, Mir LM, Flisar K, Puc M, Miklavčič D (2001b) Cell membrane electropermeabilization by symmetrical bipolar rectangular pulses: part I. Increased efficiency of permeabilization. Bioelectrochemistry 54:83–90

    Article  CAS  PubMed  Google Scholar 

  • Kotnik T, Pucihar G, Miklavcic D (2010) Induced transmembrane voltage and its correlation with electroporation-mediated molecular transport. J Membr Biol 236:3–13

    Article  CAS  PubMed  Google Scholar 

  • Mohamed HMH, Diono BHS, Yousef AE (2012) Structural changes in Listeria monocytogenes treated with gamma radiation pulsed electric field and ultra-high pressure. J Food Saf 32:66–73

    Article  Google Scholar 

  • Neu JC, Krassowska W (1999) Asymptotic model of electroporation. Phys Rev E 59:3471–3482

    Article  CAS  Google Scholar 

  • Neumann E, Sowers AE, Jordan CA (1989) Electroporation and electrofusion in cell biology. Plenum, New York

    Book  Google Scholar 

  • Nystrom T (2004) Stationary-phase physiology. Annu Rev Microbiol 58:161–181

    Article  PubMed  Google Scholar 

  • Pataro G, Senatore B, Donsi G, Ferrari G (2011) Effect of electric and flow parameters on PEF treatment efficiency. J Food Eng 105:79–88

    Article  Google Scholar 

  • Pauly H, Schwan HP (1959) Uber Die Impedanz Einer Suspension Von Kugelformigen Teilchen Mit Einer Schale—Ein Modell Fur Das Dielektrische Verhalten Von Zellsuspensionen Und Von Proteinlosungen. Zeitschrift Fur Naturforschung Part B—Chemie Biochemie Biophysik Biologie Und Verwandten Gebiete 14:125–131

    Google Scholar 

  • Poyatos JM, Almecija MC, Garcia-Mesa JJ, Munio MM, Hontoria E, Torres JC, Osorio F (2011) Advanced methods for the elimination of microorganisms in industrial treatments: potential applicability to wastewater reuse. Water Environ Res 83:233–246

    Article  CAS  PubMed  Google Scholar 

  • Pucihar G, Kotnik T, Teissié J, Miklavcic D (2007) Electropermeabilization of dense cell suspensions. Eur Biophys J Biophys Lett 36:173–185

    Article  Google Scholar 

  • Reasoner DJ, Geldreich EE (1985) A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49:1–7

    Google Scholar 

  • Rieder A, Schwartz T, Schon-Holz K, Marten SM, Suss J, Gusbeth C, Kohnen W, Swoboda W, Obst U, Frey W (2008) Molecular monitoring of inactivation efficiencies of bacteria during pulsed electric field treatment of clinical wastewater. J Appl Microbiol 105:2035–2045

    Article  CAS  PubMed  Google Scholar 

  • Sakarauchi Y, Kondo E (1980) Lethal effects of high electric fields on microorganisms. J Agric Chem Soc Jpn 54:837–844

    Google Scholar 

  • Saldana G, Puertolas E, Monfort S, Raso J, Alvarez I (2011) Defining treatment conditions for pulsed electric field pasteurization of apple juice. Int J Food Microbiol 151:29–35

    Article  CAS  PubMed  Google Scholar 

  • Sale AJH, Hamilton WA (1967) Effects of high electric fields on microorganisms: I. Killing of bacteria and yeasts. Biochim Biophys Acta 148:781–788

    Article  Google Scholar 

  • Sale AJH, Hamilton WA (1968) Effects of high electric fields on micro-organisms: III. Lysis of erythrocytes and protoplasts. Biochim Biophys Acta Biomembr 163:37–43

    Article  CAS  Google Scholar 

  • Saulis G (2010) Electroporation of cell membranes: the fundamental effects of pulsed electric fields in food processing. Food Eng Rev 2:52–73

    Article  Google Scholar 

  • Schoenbach KH, Joshi RP, Stark RH, Dobbs FC, Beebe SJ (2000) Bacterial decontamination of liquids with pulsed electric fields. IEEE Trans Dielectr Electr Insul 7:637–645

    Article  CAS  Google Scholar 

  • Schoenbach KH, Joshi RP, Kolb JF, Chen NY, Stacey M, Blackmore PF, Buescher ES, Beebe SJ (2004) Ultrashort electrical pulses open a new gateway into biological cells. Proc IEEE 92:1122–1137

    Article  CAS  Google Scholar 

  • Schoenbach KH, Joshi RP, Beebe SJ, Baum CE (2009) A scaling law for membrane permeabilization with nanopulses. IEEE Trans Dielectr Electr Insul 16:1224–1235

    Article  Google Scholar 

  • Schrive L, Grasmick A, Moussiere S, Sarrade S (2006) Pulsed electric field treatment of Saccharomyces cerevisiae suspensions: a mechanistic approach coupling energy transfer, mass transfer and hydrodynamics. Biochem Eng J 27:212–224

    Article  CAS  Google Scholar 

  • Sepulveda DR, Gongora-Nieto MM, San-Martin MF, Barbosa-Canovas GV (2005) Influence of treatment temperature on the inactivation of Listeria innocua by pulsed electric fields. LWT Food Sci Technol 38:167–172

    Article  CAS  Google Scholar 

  • Silhavy TJ, Kahne D, Walker S (2010) The bacterial cell envelope. Cold Spring Harb Perspect Biol 2:a000414

    Article  PubMed Central  PubMed  Google Scholar 

  • Smith PW (2002) Transient electronics: pulsed circuit technology. Wiley, Chichester

    Google Scholar 

  • Sobrino-López A, Martín-Belloso O (2010) Potential of high-intensity pulsed electric field technology for milk processing. Review. Food Eng Rev 2:17–27

    Article  Google Scholar 

  • Sohn J, Amy G, Cho J, Lee Y, Yoon Y (2004) Disinfectant decay and disinfection by-products formation model development: chlorination and ozonation by-products. Water Res 38:2461–2478

    Article  CAS  PubMed  Google Scholar 

  • Teissié J, Rols MP (1993) An experimental evaluation of the critical potential difference inducing cell membrane electropermeabilization. Biophys J 65:409–413

    Article  PubMed Central  PubMed  Google Scholar 

  • Teissié J, Golzio M, Rols MP (2005) Mechanisms of cell membrane electropermeabilization: a minireview of our present (lack of?) knowledge. Biochim Biophys Acta 1724:270–280

    Article  PubMed  Google Scholar 

  • Toepfl S, Heinz V, Knorr D (2007) High intensity pulsed electric fields applied for food preservation. Chem Eng Proc Process Intensif 46:537–546

    Article  CAS  Google Scholar 

  • Tsong TY (1990) On electroporation of cell-membranes and some related phenomena. Bioelectrochem Bioenerg 24:271–295

    Article  CAS  Google Scholar 

  • Vasilkoski Z, Esser AT, Gowrishankar TR, Weaver JC (2006) Membrane electroporation: the absolute rate equation and nanosecond time scale pore creation. Phys Rev E 74:21904-1–21904-12

    Google Scholar 

  • Weaver JC, Chizmadzhev YA (1996) Theory of electroporation: a review. Bioelectrochem Bioenerg 41:135–160

    Article  CAS  Google Scholar 

  • Weaver JC, Smith KC, Esser AT, Son RS, Gowrishankar TR (2012) A brief overview of electroporation pulse strength-duration space: a region where additional intracellular effects are expected. Bioelectrochemistry 87:236–243

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wouters PC, Alvarez I, Raso J (2001a) Critical factors determining inactivation kinetics by pulsed electric field food processing. Trends Food Sci Technol 12:112–121

    Article  CAS  Google Scholar 

  • Wouters PC, Bos AP, Ueckert J (2001b) Membrane permeabilization in relation to inactivation kinetics of Lactobacillus species due to pulsed electric fields. Appl Environ Microbiol 67:3092–3101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zgalin MK, Hodzic D, Rebersek M, Kanduser M (2012) Combination of microsecond and nanosecond pulsed electric field treatments for inactivation of Escherichia coli in water samples. J Membr Biol 245:643–650

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann U, Pilwat G, Riemann F (1974) Dielectric-breakdown of cell-membranes. Biophys J 14:881–899

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the efforts of Silke Kirchen and Silke-Mareike Marten for CFU analysis; the help of Rüdiger Wüstner in preparing and performing the pulse experiments; and the detailed discussions of Aude Silve on membrane charging. The authors appreciate the helpful scientific discussions on bacterial inactivation within the framework of COST TD1104. This study was funded by BMBF grant 02WT0675, administered by the Karlsruhe Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Frey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frey, W., Gusbeth, C. & Schwartz, T. Inactivation of Pseudomonas putida by Pulsed Electric Field Treatment: A Study on the Correlation of Treatment Parameters and Inactivation Efficiency in the Short-Pulse Range. J Membrane Biol 246, 769–781 (2013). https://doi.org/10.1007/s00232-013-9547-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-013-9547-6

Keywords

Navigation