Skip to main content

Advertisement

Log in

Enhanced Killing Effect of Nanosecond Pulse Electric Fields on PANC1 and Jurkat Cell Lines in the Presence of Tween 80

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

We investigated the effects of nanosecond pulse electric fields (nsPEFs) on Jurkat and PANC1 cells, which are human carcinoma cell lines, in the presence of Tween 80 (T80) at a concentration of 0.18 % and demonstarted an enhanced killing effect. We used two biological assays to determine cell viability after exposing cells to nsPEFs in the presence of T80 and observed a significant increase in the killing effect of nsPEFs. We did not see a toxic effect of T80 when cells were exposed to surfactant alone. However, we saw a synergistic effect when cells exposed to T80 were combined with the nsPEFs. Increasing the time of exposure for up to 8 h in T80 led to a significant decrease in cell viability when nsPEFs were applied to cells compared to control cells. We also observed cell type–specific swelling in the presence of T80. We suggest that T80 acts as an adjuvant in facilitating the effects of nsPEFs on the cell membrane; however, the limitations of the viability assays were addressed. We conclude that T80 may increase the fragility of the cell membrane, which makes it more susceptible to nsPEF-mediated killing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • André FM, Rassokhin MA, Bowman AM et al (2010) Gadolinium blocks membrane permeabilization induced by nanosecond electric pulses and reduces cell death. Bioelectrochemistry 79:95–100

    Article  PubMed  Google Scholar 

  • Basrur V, Chitnis M, Menon R (1983) Differential agglutination of P388 Adriamycin-sensitive and P388 Adriamycin-resistant leukemia cells. Oncology 40:202–204

    Article  PubMed  CAS  Google Scholar 

  • Beebe S, White J, Blackmore P et al (2003a) Diverse effects of nanosecond pulsed electric fields on cells and tissues. DNA Cell Biol 22:785–796

    Article  PubMed  CAS  Google Scholar 

  • Beebe SJ, Fox PM, Rec LJ et al (2003b) Nanosecond, high-intensity pulsed electric fields induce apoptosis in human cells. FASEB J 17:1493–1495

    PubMed  CAS  Google Scholar 

  • Bowman A, Nesin O, Pakhomova O et al (2010) Analysis of plasma membrane integrity by fluorescent detection of Tl+ uptake. J Membr Biol 236:15–26

    Article  PubMed  CAS  Google Scholar 

  • Chen X, James Swanson R, Kolb J et al (2009) Histopathology of normal skin and melanomas after nanosecond pulsed electric field treatment. Melanoma Res 19:361–371

    Article  PubMed  Google Scholar 

  • Chitnis M, Menon R, Gude R (1984) Effect of Tween 80 on Adriamycin cytotoxicity in murine P388 leukemia. Tumori 70:313

    PubMed  CAS  Google Scholar 

  • Coors E, Seybold H, Merk H et al (2005) Polysorbate 80 in medical products and nonimmunologic anaphylactoid reactions. Ann Allergy Asthma Immunol 95:593–599

    Article  PubMed  CAS  Google Scholar 

  • Jones M (1999) Surfactants in membrane solubilisation. Int J Pharm 177:137–159

    Article  PubMed  CAS  Google Scholar 

  • Kandušer M, Šentjurc M, Miklavcic D (2006) Cell membrane fluidity related to electroporation and resealing. Eur Biophys J 35(3):196–204

    Article  PubMed  Google Scholar 

  • Kolb J, Kono S, Schoenbach K (2006) Nanosecond pulsed electric field generators for the study of subcellular effects. Bioelectromagnetics 27:172–187

    Article  PubMed  Google Scholar 

  • Nuccitelli R, Pliquett U, Chen X et al (2006) Nanosecond pulsed electric fields cause melanomas to self-destruct. Biochem Biophys Res Commun 343:351–360

    Article  PubMed  CAS  Google Scholar 

  • Pakhomov A, Kolb J, White J et al (2007) Long-lasting plasma membrane permeabilization in mammalian cells by nanosecond pulsed electric field (nsPEF). Bioelectromagnetics 28:655–663

    Article  PubMed  CAS  Google Scholar 

  • Parris C, Masters J, Walker M et al (1987) Intravesical chemotherapy: combination with Tween 80 increases cytotoxicity in vitro. Urol Res 15:17–20

    Article  PubMed  CAS  Google Scholar 

  • Peskin A, Winterbourn C (2000) A microtiter plate assay for superoxide dismutase using a water-soluble tetrazolium salt (WST-1). Clin Chim Acta 293:157–166

    Article  PubMed  CAS  Google Scholar 

  • Riehm H, Biedler J (1972) Potentiation of drug effect by Tween 80 in Chinese hamster cells resistant to actinomycin D and daunomycin. Cancer Res 32:1195

    PubMed  CAS  Google Scholar 

  • Sabuncu A, Kalluri B, Qian S et al (2010) Dispersion state and toxicity of mwCNTs in cell culture medium with different T80 concentrations. Colloids Surf B Biointerfaces 78:36–43

    Article  PubMed  CAS  Google Scholar 

  • Schwan H, Chiabrera C, Nicolini C (1985) Interactions between electromagnetic fields and cells. Plenum Press, New York, pp 173–191

    Google Scholar 

  • Sehested M, Jensen P, Skovsgaard T et al (1989) Inhibition of vincristine binding to plasma membrane vesicles from daunorubicin-resistant Ehrlich ascites cells by multidrug resistance modulators. Br J Cancer 60:809

    Article  PubMed  CAS  Google Scholar 

  • Stacey M, Fox P, Buescher S, Kolb J (2011) Nanosecond pulsed electric field induced cytoskeleton, nuclear membrane and telomere damage adversely impact cell survival. Bioelectrochemistry 82:131–134

    Article  PubMed  CAS  Google Scholar 

  • Tennant J (1964) Evaluation of the trypan blue technique for determination of cell viability. Transplantation 2:685

    Article  PubMed  CAS  Google Scholar 

  • Tsujino I, Yamazaki T, Masutani M et al (1999) Effect of Tween-80 on cell killing by etoposide in human lung adenocarcinoma cells. Cancer Chemother Pharmacol 43:29–34

    Article  PubMed  CAS  Google Scholar 

  • Vernier P, Sun Y, Marcu L et al (2003) Calcium bursts induced by nanosecond electric pulses. Biochem Biophys Res Commun 310:286–295

    Article  PubMed  CAS  Google Scholar 

  • Wallace PG, Huang M, Linnane AW (1968) The biogenesis of mitochondria: II. The influence of medium composition on the cytology of anaerobically grown Saccharomyces cerevisiae. J Cell Biol 37:207–220

    Article  PubMed  CAS  Google Scholar 

  • Yaoqin Y, Huchuan Y, Huihong T et al (1996) The enhancement of Tween-80 on the antitumor effect of the hyperthermia 41 °C in tumor-bearing mice. Chin J Cancer Res 8:168–173

    Article  Google Scholar 

  • Zheng Z, Obbard J (2002) Evaluation of an elevated non-ionic surfactant critical micelle concentration in a soil/aqueous system. Water Res 36:2667–2672

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We acknowledge the support of the Breeden Adams Foundation. The study sponsors had no role in the study design, data collection, data analysis, compiling the manuscript or the decision to submit it for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael W. Stacey.

Additional information

G. Basu and B. S. Kalluri contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basu, G., Kalluri, B.S., Sabuncu, A.C. et al. Enhanced Killing Effect of Nanosecond Pulse Electric Fields on PANC1 and Jurkat Cell Lines in the Presence of Tween 80. J Membrane Biol 245, 611–616 (2012). https://doi.org/10.1007/s00232-012-9472-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-012-9472-0

Keywords

Navigation