Skip to main content
Log in

Single Cysteines in the Extracellular and Transmembrane Regions Modulate Pannexin 1 Channel Function

The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Pannexins form high-conductance ion channels in the membranes of many vertebrate cells. Functionally, they have been associated with multiple functional pathways like the propagation of calcium waves, ATP release, responses to ischemic conditions and apoptosis. In contrast to accumulating details which uncovered their functions, the molecular mechanisms for pannexin channel regulation and activation are hardly understood. To further elucidate regulatory mechanisms, we substituted cysteine residues, expected key elements for channel function, in extracellular and transmembrane regions of Pannexin 1 (Panx1). Most apparently, substitution of the transmembrane cysteine C40 resulted in constitutively open channels with profoundly increased activity. Hence, Xenopus laevis oocytes injected with corresponding cRNA showed strongly impaired viability, anomalous dye uptake and greatly increased whole-cell conductivity. All changes induced by C40 substitution were significantly reduced by the Panx1 channel blocker carbenoxolone, indicating that channel activity of the mutated Panx1 had been affected. In contrast, no changes occurred after substitution of the two other transmembrane cysteines, C215 and C227, in terms of channel conductivity. Finally, substitution of any of the four extracellular cysteines resulted in complete loss of channel function in both X. laevis oocytes and transfected N2A cells. From this, we conclude that cysteine residues of Panx1 reveal differential functional profiles for channel activation and drug sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  • Bao L, Locovei S, Dahl G (2004a) Pannexin membrane channels are mechanosensitive conduits for ATP. FEBS Lett 572:65–68

    Article  PubMed  CAS  Google Scholar 

  • Bao X, Chen Y, Reuss L, Altenberg GA (2004b) Functional expression in Xenopus oocytes of gap-junctional hemichannels formed by a cysteine-less connexin 43. J Biol Chem 279:9689–9692

    Article  PubMed  CAS  Google Scholar 

  • Barbe MT, Monyer H, Bruzzone R (2006) Cell–cell communication beyond connexins: the pannexin channels. Physiology 21:103–114

    Article  PubMed  CAS  Google Scholar 

  • Boassa D, Ambrosi C, Qiu F, Dahl G, Gaietta G, Sosinsky G (2007) Pannexin1 channels contain a glycosylation site that targets the hexamer to the plasma membrane. J Biol Chem 282:31733–31743

    Article  PubMed  CAS  Google Scholar 

  • Bruzzone R, Hormuzdi SG, Barbe MT, Herb A, Monyer H (2003) Pannexins, a family of gap junction proteins expressed in brain. Proc Natl Acad Sci USA 100:13644–13649

    Article  PubMed  CAS  Google Scholar 

  • Bruzzone R, Barbe MT, Jakob NJ, Monyer H (2005) Pharmacological properties of homomeric and heteromeric pannexin hemichannels expressed in Xenopus oocytes. J Neurochem 92:1033–1043

    Article  PubMed  CAS  Google Scholar 

  • Bunse S, Locovei S, Schmidt M, Qiu F, Zoidl G, Dahl G, Dermietzel R (2009) The potassium channel subunit Kvbeta3 interacts with pannexin 1 and attenuates its sensitivity to changes in redox potentials. FEBS J 276:6258–6270

    Article  PubMed  CAS  Google Scholar 

  • Bunse S, Schmidt M, Prochnow N, Zoidl G, Dermietzel R (2010) Intracellular cysteine C346 is essentially involved in regulating Panx1 channel activity. J Biol Chem 285:38444–38452

    Article  PubMed  CAS  Google Scholar 

  • Chekeni FB, Elliott MR, Sandilos JK, Walk SF, Kinchen JM, Lazarowski ER, Armstrong AJ, Penuela S, Laird DW, Salvesen GS, Isakson BE, Bayliss DA, Ravichandran KS (2010) Pannexin 1 channels mediate “find-me” signal release and membrane permeability during apoptosis. Nature 467:863–867

    Article  PubMed  CAS  Google Scholar 

  • D’hondt C, Ponsaerts R, De Smedt H, Bultynck H, Himpens B (2009) Pannexins, distant relatives of the connexin family with specific cellular functions? Bioessays 31:953–974

    Article  PubMed  Google Scholar 

  • Dahl G, Locovei S (2006) Pannexin: to gap or not to gap, is that a question? IUBMB Life 58:409–419

    Article  PubMed  CAS  Google Scholar 

  • Dahl G, Levine E, Rabadan-Diehl C, Werner R (1991) Cell/cell channel formation involves disulfide exchange. Eur J Biochem 197:141–144

    Article  PubMed  CAS  Google Scholar 

  • Dahl G, Werner R, Levine E, Rabadan-Diehl C (1992) Mutational analysis of gap junction formation. Biophys J 62:172–180

    Article  PubMed  CAS  Google Scholar 

  • Dupont E, el Aoumari A, Briand JP, Fromaget C, Gros D (1989) Cross-linking of cardiac gap junction connexons by thiol/disulfide exchanges. J Membr Biol 108:247–252

    Article  PubMed  CAS  Google Scholar 

  • Foote CI, Zhou L, Zhu X, Nicholson BJ (1998) The pattern of disulfide linkages in the extracellular loop regions of connexin 32 suggests a model for the docking interface of gap junctions. J Cell Biol 140:1187–1197

    Article  PubMed  CAS  Google Scholar 

  • John SA, Revel JP (1991) Connexon integrity is maintained by non-covalent bonds: intramolecular disulfide bonds link the extracellular domains in rat connexin-43. Biochem Biophys Res Commun 178:1312–1318

    Article  PubMed  CAS  Google Scholar 

  • Lai CPK, Bechberger JF, Thompson RJ, MacVicar BA, Bruzzone R, Naus CC (2007) Tumor-suppressive effects of pannexin 1 in C6 glioma cells. Cancer Res 67:1545–1554

    Article  PubMed  CAS  Google Scholar 

  • Locovei S, Wang J, Dahl G (2006a) Activation of pannexin 1 channels by ATP through P2Y receptors and by cytoplasmic calcium. FEBS Lett 580:239–244

    Article  PubMed  CAS  Google Scholar 

  • Locovei S, Bao RJ, Dahl G (2006b) Pannexin 1 in erythrocytes: function without a gap. Proc Natl Acad Sci USA 103:7655–7659

    Article  PubMed  CAS  Google Scholar 

  • MacVicar BA, Thompson RJ (2010) Non-junction functions of pannexin-1 channels. Trends Neurosci 33:93–102

    Article  PubMed  CAS  Google Scholar 

  • Panchin YV (2005) Evolution of gap junction proteins—the pannexin alternative. J Exp Biol 208:1415–1419

    Article  PubMed  CAS  Google Scholar 

  • Panchin Y, Kelmanson I, Matz M, Lukyanov K, Usman N, Lukyanov S (2000) An ubiquitous family of putative gap junction molecules. Curr Biol 10:R473–R474

    Article  PubMed  CAS  Google Scholar 

  • Rahman S, Evans WH (1991) Topography of connexin32 in rat liver gap junctions. Evidence for an intramolecular disulphide linkage connecting the two extracellular peptide loops. J Cell Sci 100:567–578

    PubMed  CAS  Google Scholar 

  • Retamal MA, Cortes CJ, Reuss L, Bennett MV, Saez JC (2006) S-Nitrosylation and permeation through connexin 43 hemichannels in astrocytes: induction by oxidant stress and reversal by reducing agents. Proc Natl Acad Sci USA 103:4475–4480

    Article  PubMed  CAS  Google Scholar 

  • Silverman WR, de Rivero Vaccari JP, Locovei S, Qiu F, Carlsson SK, Scemes E, Keane RW, Dahl G (2009) The pannexin 1 channel activates the inflammasome in neurons and astrocytes. J Biol Chem 284:18143–18151

    Article  PubMed  CAS  Google Scholar 

  • Sosinsky GE, Boassa D, Dermietzel R, Duffy HS, Laird DW, Macvicar B, Naus CC, Penuela S, Scemes E, Spray DC, Thompson RJ, Zhao HB, Dahl G (2011) Pannexin channels are not gap junction hemichannels. Channels 5:193–197

    Article  PubMed  Google Scholar 

  • Thompson RJ, Zhou N, MacVicar BA (2006) Ischemia opens neuronal gap junction hemichannels. Science 312:924–927

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Dahl G (2010) SCAM analysis of Panx1 suggests a peculiar pore structure. J Gen Physiol 136:515–527

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Deng T, Sun Y, Liu K, Yang Y, Zheng X (2008) Role for nitric oxide in permeability of hippocampal neuronal hemichannels during oxygen glucose deprivation. J Neurosci Res 86:2281–2291

    Article  PubMed  CAS  Google Scholar 

  • Zoidl G, Meier C, Petrasch-Parwez E, Zoidl C, Habbes HW, Kremer M, Srinivas M, Spray DC, Dermietzel R (2002) Evidence for a role of the N-terminal domain in subcellular localization of the neuronal connexin36 (Cx36). J Neurosci Res 69:448–465

    Article  PubMed  CAS  Google Scholar 

  • Zoidl G, Petrasch-Parwez E, Ray A, Meier C, Bunse S, Habbes HW, Dahl G, Dermietzel R (2007) Localization of the pannexin1 protein at postsynaptic sites in the cerebral cortex and hippocampus. Neuroscience 146:9–16

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank Gerhard Dahl for the kind gift of Panx1 antibody, Matthias Tenbusch for help with the FACS analysis and Sabine Peuckert, Sabine Schreiber-Minjoli, Christiane Zoidl and Hans-Werner Habbes for excellent technical assistance regarding molecular biology and immunocytochemistry. This project was supported by grants of the GRK 736 (Development and Plasticity of the Nervous System: Molecular, Synaptic and Cellular Mechanisms) to S. B. and the DFG (292/11-4) to R. D. and G. Z.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Dermietzel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1712 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bunse, S., Schmidt, M., Hoffmann, S. et al. Single Cysteines in the Extracellular and Transmembrane Regions Modulate Pannexin 1 Channel Function. J Membrane Biol 244, 21–33 (2011). https://doi.org/10.1007/s00232-011-9393-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-011-9393-3

Keywords

Navigation