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Abstract

For quadratic word equations, there exists an algorithm based on rewriting rules
which generates a directed graph describing all solutions to the equation. For regu-
lar word equations — those for which each variable occurs at most once on each side
of the equation — we investigate the properties of this graph, such as bounds on its
diameter, size, and DAG-width, as well as providing some insights into symmetries
in its structure. As a consequence, we obtain a combinatorial proof that the problem
of deciding whether a regular word equation has a solution is in NP.
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1 Introduction

A word equation is a tuple («, §), which we shall usually write as « = B, such that «
and B are words comprised of letters from a terminal alphabet ¥ = {a, b, ...} and
variables from a set X = {x, v, z,...}. Solutions are substitutions of the variables
for words in X* making both sides identical. For example, one solution to the word
equation xaby = ybax is given by x — b and y — bab. A system of equations
is a set of equations, and a solution to the system is a substitution for the variables
which is a solution to all the equations in the system.
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Theory of Computing Systems

One of the most fundamental questions concerning word equations is the satis-
fiability problem: determining whether or not a word equation has a solution. The
first general algorithm for the satisfiability problem was presented by Makanin [22]
in 1977. Since then, several further algorithms have been presented. Most notable
among these are the algorithm given by Plandowski [25] which demonstrated that
the problem is included in the complexity class PSPACE, the algorithm based on
Lempel-Ziv encodings by Plandowksi and Rytter [26], and the method of recom-
pression by Jez, which has since been shown to require only non-deterministic linear
space [15, 16]. On the other hand, it is easily seen that solving word equations is
NP-hard due to fact that the subcase when one side of the equation consists only of
terminals is exactly the pattern matching problem which is NP-complete [3, 12]. It
remains a long-standing open problem whether or not the satisfiability problem for
word equations is contained in NP.

Recently, there has been elevated interest in solving more general versions of the
satisfiability problem, originating from practical applications in e.g. software verifi-
cation where several string solving tools capable of solving word equations are being
developed [1, 2, 4, 6, 18] and database theory [13, 14], where one asks whether a
given (system of) word equation(s) has a solution which satisfies some additional
constraints. Prominent examples include requiring that the substitution for a variable
x belongs to some regular language £, (regular constraints), or that the lengths of
the substitutions of the variables satisfy a set of given linear diophantine equations.
Adding regular constraints makes the problem PSPACE complete (see [10, 25, 27]),
while it is another long standing open problem whether the satisfiability problem
with length constraints is decidable. There are also many other kinds of constraints,
however many lead to undecidable variants of the satisfiability problem [7, 19]. The
main difficulty in dealing with additional constraints is that the solution-sets to word
equations are often infinite sets with complex structures. For example, they are not
parametrisable [24], and the set of lengths of solutions is generally not definable in
Presburger arithmetic [20]. Thus, a better understanding of the solution-sets and their
structures is a key aspect of improving our ability to solve problems relating to word
equations both in theory and practice.

Quadratic word equations (QWEs) are equations in which each variable occurs
at most twice. For QWEs, a conceptually simple and easily implemented algorithm
exists which produces a representation of the set of all solutions as a graph. Despite
this, however, the satisfiability problem for quadratic equations remains NP-hard,
even for severely restricted subclasses [8, 11], while inclusion in NP, and whether the
satisfiability problem with length constraints is decidable, have remained open for a
long time, just as for the general case.

The algorithm solving QWEs is based on iteratively rewriting the equation(s)
according to some simple rules called Nielsen transformations. If there exists a
sequence of transformations from the original equation to the trivial equation ¢ = ¢,
then the equation has a solution. Otherwise, there is no solution. Hence the sat-
isfiability problem becomes a reachability problem for the underlying rewriting
transformation relation, which we denote = 7. It is natural to represent this relation
as a directed graph ¢~ VT in which the vertices are word equations and the edges are
the rewriting transformations. This has the advantage that the set of all solutions to
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an equation E corresponds exactly to the set of walks in the graph starting at E and
finishing at the trivial equation & = .! Consequently, the properties of the subgraph
of 4= NT containing all vertices reachable from E (denoted %[?]N ) are also infor-
mative about the set of solutions to the equation. For example, in [24] a connection
is made between the non-parametrisability of the solution set of E and the occur-
rence of combinations of cycles in the graph. Since equations with a paramtrisable
solution set are much easier to work with when dealing with additional constraints,
this also establishes a connection between the structure of %[?]N T and the potential
(un)decidability of variants of the satisfiability problem. Moreover, new insights into
the structure and symmetries of these graphs are necessary for better understanding
and optimising the practical performance of the algorithm.

Our contribution We consider a subclass of QWEs called regular equations (RWEs)
introduced in [23]. A word equation is regular if each variable occurs at most once
on each side of the equation. Thus, for example, xaby = ybax is regular while
xabx = ybay is not. Understanding RWEs is a vital step towards understanding the
quadratic case, not only because they constitute a significant and general subclass, but
also because many non-regular quadratic equations can exhibit the same behaviour
as regular ones (consider, e.g. zz = xabyybax for which all solutions must satisfy
z = xaby = ybax). The satisfiability problem was shown in [8] to be NP-hard
for RWESs, and shown to be in NP in [9] for some restricted subclasses including the
classes of regular-reversed and regular-ordered equations.

For RWEs E, we investigate the structure of the graphs [?]N T, and as a conse-
quence, are able to describe some of their most important properties. We achieve this
by first noting that %[?]N T can be divided into strongly connected components 54“:55]
for which all the vertices are equations of the same length (= shall be used to denote
the restriction of = y7 to length preserving transformations only). The ‘full’ graph
%[?]N T is comprised of these individual components %[?,J arranged in a DAG-like
structure of linear depth (see Section 3) and therefore many properties and parameters
of the ‘full’ graph E?[?]N T are determined by the equivalent properties and parameters
of the individual components ¥, ? . We then focus on the structure of the subgraphs
%[?,], and as a result are able to give bounds on certain parameters such as diameter,
size, and DAG-width.

Our structural results come in two stages, based on whether the equation belongs
to a the class of ‘jumbled’ equations introduced in Section 6. In the first stage, we
consider equations which are not jumbled, and we show that for all such equations E,
there exists a jumbled equation E such that g[?] is comprised mainly of several well-

"Each choice of edge in a walk can be seen as a decision about the corresponding solution. It is not
necessarily true that different walks will result in different solutions. However, all possible decisions are
accounted for, so it is guaranteed that for every solution there is a walk from E to ¢ = ¢ which corresponds
to that solution.
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connected near-copies of %[ E. For jumbled equations E, we show in Section 7 that
every vertex in %[ :5] is close to a vertex in a certain normal form. We show that the

vertices in this normal form are determined to a large extent by a property invariant
under = introduced in Section 5.

With regards to the diameter of %[?,], we give upper bounds which are polynomial
in the length of the equation. It follows that the diameter of the full graph %[?]N T
is also polynomial, and consequently, that the satisfiability problem for RWEs is
NP-complete. This can be generalised to systems of equations satisfying a natural
extension of the regularity property (see Section 11). We also give exact upper and
lower bounds on the number of vertices? in %l?/ | for a subclass of RWEs called basic
RWEs (see Section 4), as well as describing exactly for which equations these bounds
are achieved. For RWEs which are not basic, we can infer similar bounds, at the cost
of a small (linear in the length of the equation) degree of imprecision. Since in the
worst case (e.g. for equations without a solution), running the algorithm will perform
a full ‘search’ of the graph, the number of vertices is integral to the running time
of the algorithm, and is potentially a better indicator of difficult instances than the
complexity class alone. An example of this, comes from comparing two subclasses
of RWEs called regular-ordered and regular rotated equations. It follows from our
results that while both classes have an NP-complete satisfiability problem, if E’ is
regular-ordered, then %[zf,] will contain at most n vertices, where n is the length of the

equation, while if £’ is regular rotated, but not regular-ordered, then %[?,] will contain

% vertices, indicating a vast difference in the number of vertices the algorithm would
have to visit.

Motivated by generalisations of the satisfiability problem permitting additional
constraints, we also consider the connectivity of the graphs %[?]N T To do this, we
use DAG-width, a measure for directed graphs which is in several ways analogous
to treewidth for undirected graphs. Intuitively, equations for which %[T;]N  has low
DAG-width are likely to be more amenable when considering additional constraints
such as length constraints (see Section 3.3). We give an example class of equations for
which the DAG-width is unbounded, as well as a class for which the DAG-width is at
most two. The latter includes the class of regular-ordered equations which is the most
general subclass of QWEs for which it is known that the satisfiability problem with
length constraints is decidable [20], and we expect that both cases will be interesting
classes to consider in the context of this problem.

2 Preliminaries

For a set S, we denote the cardinality of S by Card(S). Let X be an alphabet. By
X*, we denote the set of all words over X, and by & the empty word. By X,

2We consider the number of vertices, rather than edges, because it is the number of vertices which is
relevant to the performance of the algorithm, and by definition of = y7, the out-degree of the graph is
bounded by a constant so the the number of edges is linear in the number of vertices.
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we denote the free semigroup X *\{e}. A word u is a prefix (resp. suffix) of a word
w if there exists v such that w = uv (resp. w = vu). Similarly, u is a factor of w
if there exist v, v’ such that w = vuv’. A prefix/suffix/factor is proper if is neither
the whole word w, nor ¢. The length of a word w is denoted |w|, while for a € X,
|w|s denotes the number of occurrences of a in w. For a word w = ajaj...a,
with a; € X for 1 < i < n, the notation w[i] refers to the letter a; in the i'"
position. By w®, we denote the reversal anan—1...a; of the word w. Two words
wi, wy are conjugate (written wi ~ wy) if there exist u, v such that w; = wuv
and wy = vu.

We shall generally distinguish between two types of alphabet: an infinite set
X = {x1,x2,...} of variables, and a set ¥ = {a, b, ...} of terminal symbols.
We shall assume that Card(X) > 2, and that there exists an order on X lead-
ing to a lexicographic order on X*. For a word ¢ € (X U X)*, we shall denote
by var(«) the set {x € X | x is afactor of «}. We shall denote by gv(x) the set
{x € var(a) | |a|x = 2}. A word equation is a tuple (a, ) € (X U X)* x (X U X)*,
usually written @ = S. Solutions are morphisms / : (X U X)* — X* with h(a) = a
for all a € X such that h(«) = h(B). The satisfiability problem is the problem of
deciding algorithmically whether a given word equation has a solution. For equations
E given by a = f, we shall often extend notations regarding words in (X U X)* to E
for convenience, so that, e.g. |E| = |aB|, var(E) = var(«f) and qv(E) = qv(ap).
An equation @ = B is quadratic if |¢f], < 2 for all x € X. It is regular if ||, < 1
and |B|x < 1 hold for all x € X. Thus all regular equations are quadratic, but not all
quadratic equations are regular. We shall usually abbreviate regular (resp. quadratic)
word equation to RWE (resp. QWE). For Y C X, let 7y : (X U X¥*) — Y™ be the
morphism such that 7y (x) = x if x € Y and 7y(x) = ¢ otherwise; i.e. my is a
projection from (X U X)* onto Y*. A regular equation E given by o = 8 is regular-
ordered if 7,y () (@) = myu(E) (B), it is regular rotated if 74y () (@) ~ 74u(E) (B) and
it is regular reversed if 7y (g) (@) = T40(E) (ﬂ)R.

Given a set S and binary relation Z C S x S, we denote the reflexive-transitive
closure of #Z as Z*. For each s € S, we denote by [s]g the set {s’ | (s,s") € Z*}.
The relation Z may be represented as a directed graph, which we denote @7 with
vertices from S and edges from Z%. Usually, we will be interested in the subgraph
of 4% containing vertices belonging to [s]g for some s € S. Thus, for a subset T
of § we shall denote by %T‘% the subgraph of ¢ % containing vertices from 7. Given
a (directed) graph ¢, with vertices V(¥) and edges E(¥), a root vertex is some
v € V(¥) such that there does not exist (1, v) € E(¥). We denote by diam(¥)
the diameter of the graph ¢, by which we mean the maximum length of a shortest
(directed) path between two vertices. For our purposes, we are really interested in the
maximum length of shortest paths only when they exist, meaning that we shall not
adopt the convention that diam(¥) = oo when ¥ is a directed graph which is not
strongly connected.

For W, V' C V(¥), we say that W guards V' if for all (u,v) € E(¥) with
uc V', wehavev € V'UW.If¥ is acyclic, we write v| <g¢ v, if there is a directed
path from v; to vy in 4 or v; = v;. Following [5], A DAG-decomposition of ¥ is a
pair (D, x) such that D is a directed acyclic graph (DAG) with vertices V (D), and
x ={Xg4 | d € V(D)} is a family of subsets of V (¥¢) satisfying:
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O V@)= U Xa
deV (D)
(D2) ifd,d’,d" € V(D) suchthatd <p d <p d”’,then X;N Xy C Xy,
(D3) For all edges (d,d’) of D, X4 N Xy guards X>4\Xg4, where Xs>q =
(U Xg», and for all root vertices d, X>4 is guarded by .
d”ZDd/
The width of the DAG-decomposition is max{Card(Xy) | d € V(D)}. The DAG-
width of ¢ is the minimum width of any possible DAG-decomposition of ¢ and is
denoted dgw(¥).

3 An Algorithm for Solving Regular Word Equations

In this section we present the algorithm for solving QWEs as a rewriting system
defined by a relation = y7. The rewriting relation is derived from morphisms called
Nielsen transformations, and we shall abuse this terminology slightly and generally
also refer to the rewriting transformations themselves as Nielsen transformations.
The Nielsen transformations never introduce new variables or terminal symbols, and
never increase the length of the equation. They also preserve the properties of being
quadratic (resp. regular). Thus, given a quadratic (resp. regular) word equation E,
the set {E’ | E =%, E'} of equations reachable via Nielsen transformations is
finite. Moreover, given an equation which has a solution #, there is always a Nielsen
transformation which produces an equation which has a solution, such that at least
one of the new equation or the new solution is strictly shorter than the previous one. It
follows that, given an equation which possesses a solution, it is possible to reach the
equation ¢ = ¢ after finitely many rewriting steps. For a more detailed description of
the algorithm, we refer the reader to e.g. Chapter 12 of [21].

3.1 Nielsen Transformations

The Nielsen transformations (morphisms) are defined as follows: for x € X U X' and
yeX,letyoy: (XUX)* — (XU X)* be the morphism given by ¥, ., (y) = xy
and ¥y <y(z) = z whenever z # y. We define the rewriting transformations via the
relations =, =g, =~ as follows. Suppose we have a QWE E of the form xo = yf
where x,y € XU X and o, B € (X U X)*. Then:

ifx e qu(E) and x # y, then xa = yB =1 x¥y (o) = Yy (B), and
if y € qu(E) andx # y, then xae = yf =g Yx<y(a) = yYr<y(B), and
if x € X\qv(E), thenxae = yf =~ xa = 8, and

if y € X\qv(E), then xa = y8 =. o = yB, and

ifx =y, thenxa = yf = o = 8.

Moreover, for a QWE E of the form o = 8 with &, 8 € (X U X)*, and for each Y C
var (E), we have the additional transformations a = 8 = 7x\(y)(a) = 7wx\(v}(B).

Nk e =
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Now, our full rewriting relation, = y7, is given by =; U = U =_..3 For
convenience, we shall define = to be = U = g. We shall call the rewriting trans-
formations from = length-preserving, since they are exactly those for which the
resulting equation has the same length as the original. The following observation
follows directly from the definition of = y7.

Remark 3.1 Let E, E' be QWES such that E =7 E’. If E is regular, then E’ is
regular. Moreover, if E = E’, then var(E) = var(E’), qv(E) = gv(E’), and
|E| = |E’|. Similarly, if E =~ E’, then var(E’) C var(E), qu(E’") C qv(E), and
|E'| < |E|. Hence the set {E” | E =7}, E"} is finite.

If E1, E; are RWEs such that E; = E», then it follows from the definitions
that there exist x, y € X and «y, a2, B1, B2 € (X\{x, y})* such that E| is given by
xapyar = yB1xps and Ej is given by xa 1 yay = B1yxf;. Extending this observation
to multiple applications of =7, we may conclude that the set {E> | E; =] E}}is
exactly the set {xa1yows = B3xB2 | B3 ~ yB1}. A similar statement can be made
for =7%. Consequently, the reflexive transitive closures =} and =7 are symmetric.
Hence, we may also observe the following.

Remark 3.2 Let E be aRWE and Z € {L, R}. Then Card({E’ | E =% E'}) < |E|
and =7 is an equivalence relation. It follows that =™ is also an equivalence relation.

The following well-known result forms the basis for the algorithm for solving
QWE:s.

Theorem 3.3 [21] Let E be a QWE. Then E has a solution if and only if
E=yre=e

3.2 Representing the Set of Solutions as a Graph

Theorem 3.3 provides the basis for treating the satisfiability of QWEs as a reach-
ability problem for the rewriting relation = 7. Since any relation R is naturally
represented as a (directed) graph X, it is also natural to interpret the resulting algo-
rithm as a search in the graph g[?]f\’ T it suffices to to determine whether there exists
a path in the graph from the original equation E to the trivial equation ¢ = ¢. In fact,
the graph g[?]N T can tell us significantly more than simply whether a solution to E
exists: every walk from E to ¢ = ¢ in %[?]N T corresponds to a solution to E and like-
wise, every solution to E is represented by a walk in %[?N T from E to &€ = &. Thus
the graphs {4[?] contain a full description of all solutions to E, and as such, their

3There are several possible variations on the definition of the length-reducing rewriting transformations
=>-. for which the algorithm remains correct and is guaranteed to terminate. However, for our results, the
exact choice is not important as we concentrate our investigations on the length preserving part = of the
rewriting relation for reasons described in Section 3.2.
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properties and structure are of inherent interest to the study of QWEs and their
solutions. An immediate example of this is the diameter, which is strongly related
to the complexity of the satisfiability problem, as demonstrated in the following
proposition.

Proposition 3.4 Let € be a class of QWEs. Suppose there exists a constant k € N
such that for each E € €, we have diam (%[?]NT) € O(|E|%). Then the satisfiability
problem for € is in NP.

Proof Let € be a class of quadratic word equations and let k € N such that for each
E €%, diam(%[?]’”) € O(|E|%). By Theorem 3.3, to check whether an equation
E € % has a solution, we have to check whether there is a path from E to ¢ = ¢
in {4“:;]” T If such a path exists, then due to our assumptions about the diameter, one

exists of length at most O (| E [X). Moreover, for each edge E1 = 1 E3 in the path,
we have that |E>| < |Eq| < |E|, so verifying that E;1 =7 E> can be achieved
in linear time. Hence, subject to appropriate non-deterministic choices, we may find
such a path whenever it exists in O (| E[**!) time and the satisfiability problem for &
is in NP. O

Many properties will be determined mostly (i.e.up to some small imprecision)
on the subgraphs obtained by restricting our rewriting relation to length-preserving
transformations only (i.e. to =). Since the rewriting relation = y7 allows us to pre-
serve or decrease the length, but never increase it again, any walk in the graph will
visit a subgraph containing equations of each length only once, and in order of
decreasing length. The following proposition confirms how we may infer a global
property of %[T;]N " from its ‘local’ values in the individual subgraphs &7, in the case
of two properties we are particularly interested in: diameter and DAG-width.

Proposition 3.5 Let E be a QWE. Then

1. diam(%[?]”) < (E|+ D —i—max{diam(g[z?,]) | E =% E') — 1, and

2. dgw(%[?]”) = max{dgw(g[?,]) | E =% E').

Proof The second statement is a direct consequence of Theorem 6 in [5]. We shall
consider the first statement. Let E be a quadratic word equation. Let

m= max{diam(%[?] | E =5 ED)

Let Eq, Es, ... E, be the shortest path in %[?]NT between Eq and E,,. Then E; =y
Eiyy for 1 < i < n. Consequently, for each i, 1 < i < n either |E;| = |Ej41]
or |E;| > |Ejy1]. Let ji, ja, ..., jx be all the indices i for which the latter holds.
Then, since the length of an equation cannot be negative, we necessarily have that
k < |E|. Moreover, we have that £y =* E;, Ej 41 =" E,, and for each i, 1 <
i <k,Ej+1 =" Ej_,.Since, for each E;, %E,J is a subgraph of %[?]NT, and by our
assumption that the path Eq, E», ... E, is minimal in %[?]N T, it follows that the path
Ey, Ey, ..., Ej is minimal in %“:E’I], and thus j; — 1 < m. By the same argument,
the path Ej, 1, Ej 42, ..., E, is minimal in 54[?1_“1] sowe getthatn — jr — 1 <m
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and similarly, for each i, 1 < i < k, we may conclude that ji11 — j; — 1 < m. It
follows that

n=m-j+ Gk = ji-1) + ...+ G2 = j) +j1 < (k+1)(m+ 1)

meaning the length of the path Ey, E», ... E, is at most (|E| 4+ 1)(m + 1). Since this
holds for all choices of E;, E,, we have that diam(%[?]m) <(El+Dm+1)—1
as claimed. O

In what follows, we shall focus predominantly on the structure of the (sub)graphs
%[?,] corresponding to the length-preserving transformations belonging to = (see
Fig. 1). This has the advantage of allowing us to apply further restrictions, in par-
ticular a reduction to the case of basic equations introduced in Section 4, without
significantly altering the structure of the graph. It is worth pointing out that due to
Remark 3.2, the graph g[?] is strongly connected whenever E is a RWE. The same

is generally not true in the case of arbitrary QWEs E, or for the full graph g[?]N T

Xayazbw = wbyxaza

ayazbxw = wbyxaza

xayazbw = bywxaza

zbxayaw = xawbyza bxazyaw = yxawbza

zbxayaw = awbyxza

Fig. 1 The graph %[?] in the case that E is the equation xayazbw = wbyxaza with variables x, y, z, w
and terminal symbols a, b. Generated in python using the PyDot graph drawing package
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3.3 Solving Equations Modulo Constraints

Often, it is important to determine whether a given equation has a solution which
satisfies some additional constraints. For some types of constraints, it is possible
to adapt the algorithm by finding, for each Nielsen transformation, an appropriate
corresponding transformation of the constraints. For example, if x,y,z € X and
we have the length constraint [x| = |z|, when we apply the Nielsen transformation
associated with ¥, - ; to our equation, we replace each occurrence of x with yx. Thus,
the updated constraint would be |x| 4+ |y| = |z|. Unfortunately, as is the case for
length constraints, the resulting set of possible equation/constraint combinations can
become infinite, meaning that the modified version of the algorithm is not guaranteed
to terminate.

A possible solution to this is to find finite descriptions of the potentially infinite
sets of constraints which may occur alongside each equation. The task of finding
such descriptions, and consequently the potential decidability of the correspond-
ing extended satisfiability problems, is dependent on the structural properties of the
graph, as can be seen e.g. in [20, 24].

One case in which computing finite descriptions is straightforward is when the
graph [T;]N T is acyclic (i.e. a DAG). Unfortunately, inspection of the definition of
= n7 reveals that this is not true for the majority of RWEs (or QWEs). Hence, when
considering the existence of algorithms for solving word equations with length con-
straints (or constraints of other types), it is natural to specifically consider classes of
equations E where the graphs %[?]N T have particularly DAG-like (or un-DAG-like)
structures, which we can measure using parameters such as DAG-width.

3.4 Properties of the Graphs %[?]”T for Regular Equations E

In order to understand the full graphs %[?]N T, we mostly need to understand the

(strongly connected) components corresponding to the length-preserving transforma-
tions, as we can easily see that these components will be connected in a DAG-like
structure whose depth is at most | E|. Hence, our main goal is to describe the struc-
ture of the graphs g[?] for RWEs E. This is done in several steps, with each one
accounting for a particular structural feature or aspect as follows.

(1) In the first step (Section 4), we describe the effect of terminal symbols, single
occurrence variables, and ‘decomposability’ on the structure of %“:E’], essentially
reducing the structure of g[?] to g[zf,] for a ‘basic’ equation E’ which does not
contain any of these features.

(2) Building on an important technical tool developed in Section 5, the second step
(Section 6) introduces the class of jumbled equations. For equations E’ which
are not jumbled, but which have nevertheless been simplified as per the first
step, there exists a specific repetitive structure allowing us to express g[?] as
a combination of (near) copies of some smaller graph g[?/] where E” is a
jumbled equation obtained by deleting the appropriate variables from E’.
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(3) In the third step (Section 7), we show that for jumbled equations E”, all ver-
tices in %[?,, are ‘close’ to a vertex from a small subset conforming to a very
particular structure called Lex Normal Form.

(4) Finally, in Sections 8, 9 and 10, we exploit our structural results to investi-
gate the diameter, number of vertices and connectivity (DAG-width) of %[?]
respectively. In Section 11 we note a generalisation of our results to systems of
equations.

4 Basic Equations: A Convenient Abstraction

The current section is devoted to reducing the study of the graphs g[?] to the case
of basic equations. This has several advantages, including a significant reduction in
the size of the graphs which is useful for working with examples, as well as allowing
for the simpler formulation of precise results, e.g. regarding the size of the graphs in
Section 9, as well as avoiding unnecessary repetition in the formal statements and
their proofs.

Definition 4.1 (Basic Equations) Let £ be a QWE given by « = B. Then E is
decomposable if there exist proper prefixes o, 8’ of @ and 8 such that var(a’) N
qu(E) = var(B’) N qu(E). Otherwise, E is indecomposable. E is basic if it is
indecomposable and «, 8 € qu(E)*.

For a basic RWE, both sides of the equation are permutations of the same set of
variables, for example x1x2x3 = x3x1x2 and xywz = wzxy are both basic RWEs.
On the other hand, xyzw = yxzw, axby = ybax and xy = yz are not — the first
being decomposable and the latter two containing terminal symbols and variables
occurring on one side only.

We firstly consider decomposable equations E, showing that in this case the graph
54[:5] is isomorphic to g[?] for some shorter equation E’. The main step in this respect
is the following observation.

Lemma 4.2 Let E be a RWE given by ajay = 182 where a1, az, B1, B2 € (XUX)*
such that ay, B1 # & and var(ay) N qu(E) = var(B;) Nqu(E). Let E' be a RWE.
Then E = E’ if and only if there exist a3, B3 € (X U X)* such that E' is given by
azay = B3fr and ay = B1 = a3z = Ba.

Proof Suppose E is a RWE given by ojap = 812 where ay, a2, B1, B2 € (X U X)*
with a1, B1 # & such that var(a;) N qu(E) = var(B1) Nqu(E). Let E' be a RWE.
Suppose firstly that a3, 83 € (X U X)* such that o = 81 = a3 = B3 (the case that
a1 = B1 =g a3z = B3 is symmetric). Then it follows from the definition of = that
oy has a prefix y € qv(E). Hence, there exist x € X U X and y, §;, 8, € (X U X)*
such that o1 = yy, 1 = x61y82, a3 = o1 and B3 = §1xyd,. By the definition of
=, it follows that ajan = B1 B2 =1 azas = B3B; and thus E = E'.

Now suppose instead that E =>; E’ (again, the case that E =g E’ is symmetric).
Then by definition of =, there exists a variable y € quv(E) in the leftmost position
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of «; which also occurs in 81 8,. Moreover, it follows from the definition of =,
and the fact that E = E’ that y # B1[1]. Furthermore, since var(a;) N qv(E) =
var(B1)Ngv(E), y must in fact occur somewhere in §1, so there exist x € XU X and
y,81,82 € (X U X)* such that ¢y = yy and 81 = x8;y8>, and such that E’ is given
by a3y = B38> where oz = a1 and 3 = §1xy8;. It follows from the definition of
= that @1 = 1 = @3 = B3 and thus the statement holds. O

It follows immediately from Lemma 4.2 that the relation = preserves the
properties of being (in)decomposable and basic.

Corollary 4.3 Let E|, E> be RWEs such that E1 = E;. Then E| is indecomposable
if and only if E, is indecomposable. Consequently E1 is basic if and only if E; is
basic.

Moreover, a straightforward induction yields the following description of the
graphs 54[?] in the case that E is decomposable.

Corollary 4.4 Let E be a decomposable RWE given by a0y = P12 where a1, a2,
B1, B2 € (X U X)* such that oy, By # € and var(ay) Ngv(E) = var(By) N qu(E).
Then 97, is isomorphic to %[Z 4] and can be obtained from g[z 4] by replacing

each vertex a3 = B3 € [a] = B1]= with azan = B35».

Corollary 4.4 accounts for decomposable equations. It remains to consider the case
of equations containing terminal symbols and variables occurring on only one side
(and therefore once overall). For this case, we need the following notion for relating
the structure of two graphs.

Definition 4.5 (Isolated path compression) Let G|, Go» be (directed) graphs.
We say that Gp is an isolated path compression of order n of G, if G»
may be obtained from G; by replacing each edge (e,¢’) in G| by a path
(e,ey), (e1,e2),...(ex—1,ex), (ex, e) suchthatk < n and ey, es, e3, ..., e; are new
vertices unique to the edge (e, ¢’).

Informally, an isolated path compression of a graph is obtained simply by replac-
ing ‘isolated paths’ (paths whose internal vertices are not adjacent to to any vertices
outside the path) of a bounded length with single edges. Therefore, the overall
structure is generally preserved, and most properties will be preserved, or change
proportionally to the order n (Fig. 2).

Remark 4.6 Consider graphs G1, G such that G is an isolated path compression of
order n of G;. If dgw(G1) = 1, then dgw(G>) € {1, 2).4

4The case that dgw(G1) = 1 and dgw(G3) = 2 is a special case arising from the possibility of ‘isolated
cycles’ being compressed into singleton self-loops.

@ Springer



Theory of Computing Systems

-— "
\.

\.\.

G

Fig.2 The graph G is an isolated path compression of order two of the graph G,

If dgw(G1) > 2, then the dgw(G1) = dgw(G»). Moreover, diam(G;) < (n +
1)diam(G1), and the number of vertices (resp. edges) in G is at most the number
of vertices in G plus n times the number of edges of G.

Using isolated path compressions, it is possible to describe the structure of the
graph &7, for any RWE E in terms of the graph E?[Ef,] for the RWE E’ obtained
from E by erasing all terminal symbols and single-occurrence variables from E (i.e.
projecting onto qv(E)).

Lemma 4.7 Let E be an indecomposable RWE given by oo = B. Then the graph

:> . . . . .
. is isomorphic to an isolated path compression of order |E| o
[Z;,u(E)(a)=7Tqu(E)(/3)] p p P f |E| of

LET

Proof Let E be an indecomposable RWE given by ¢ = . Note that by Corollary 4.4,
it follows that E’ is indecomposable for every E’ € [E]-. We begin by considering
the simple cases arising when Card(qv(E)) < 2. If Card(qv(E)) = 0, then %[75’] isa
single vertex with no edges. Moreover, gy (g) (@) = 740(£)(B) is the trivial equation

o N . : ;
& =¢g,80 Ef[an(E) @=0() ()] is also a single vertex with no edges. The two graphs

are clearly isomorphic, so the lemma holds trivially.

Now suppose that Card(qv(E)) = 1. Then E has the form wixwy; = w3xws
where gv(E) = {x} and wi, wp, w3, wg € (X U X)\{x})*. It necessarily fol-
lows that the equation 7,yg)(0) = m4p(E)(B) has the form x = x, meaning

N . . . .
that %[nqv(m (@)= (B)] is again a single vertex with no edges. If wi, wy # e,

then E is decomposable, a contradiction. Otherwise, %[713] is a cycle of length
max{|wi]|, |lwa2|} < |E], so again the statement of the lemma follows directly. Thus,
for the remainder of the proof, we shall suppose that Card(qv(E)) > 2.

Before proceeding, we remark that for any equation E’ given by o’ = g/, if
a'[1], B'[1] ¢ qu(E'), then either E’ is decomposable, or ||, |8'| € {0, 1}. Both
are contradictions to previous assumptions (the former to the fact that E is inde-
composable, and hence E’ is indecomposable for all E’ € [E]-, and the latter to
the assumption that Card(qv(E)) > 2 which is only possible if |«|, |8] > 2). Con-
sequently, we may partition [E]-, into two sets S1 and S> where S; contains all
equations E’ given by o’ = B’ such that «’[1] and B8/[1] are both in gv(E’), and S,
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contains all equations E’ given by o’ = B’ such that exactly one of o’[1], B'[1] is
in gu(E’). Intuitively, S| will be the set of ‘surviving’ vertices in the isolated path
compression while Sy consists of those vertices which belong only to the ‘isolated
paths’ which are contracted/compressed. Supporting this, we show the following two
claims regarding elements of S5.

Claim 4.7.1 Suppose that E’ € S,. Then the in-degree and out-degree of E’ in 54“:;]
are both exactly one.

Proof W.lo.g.suppose that E’ is given by xajya), = yp’ with y € gv(E’) and
x ¢ qu(E"). It follows from the definitions of = and = that there is no E” such
that E’ =g E”, and exactly one E” such that E’ = E”. Thus the out-degree is
one as claimed. Now consider the in-degree and let E” € [E]— such that E” = E’.
Note that by the definition of = g, we cannot have that E” =g E’, so we must have
that E” = E’. It follows from the fact that the Nielsen transformation morphisms
Yy are injective that there is exactly one such E”, and thus we also have that the
in-degree of E’ is one as claimed. O

Claim 4.7.2 Let E' € §;. Then there exists k < |E| — 2 and Eg, E;, ..., Ex11 €
[E]l= and Z € {L, R} such that all the following statements hold:

1. Eg, Ex+1 € 81,

2. E;eSforl <i <k,

3. Ei=>z Ei;for0<i <k,

4. thereexistsi,1 <i < k suchthat £/ = E;.

Proof W.l.o.g.suppose that the RHS of E’ has a prefix contained in gv(E’). Then
since Card(qv(E’)) > 2 and since E’ is regular, the LHS also contains at least one
variable in gv(E’) and we may either write E’ as
(1) ajaiy1 ... qpxax'aray .. .a;_1yoy, = yp’, or
() aiaiy1...akxaray ... a1y, = yp’
where k < |E| —2,a; € (X\qu(E))UX forl < j <k, x,x’,y € qu(E) with
x,x" #y,and e, ), B/ € (X U X)*. Consider the first case. Let Eq be the equation
given by

x'ajay ... agxalyeh = yB',
let Ex11 be the equation given by

! /- /

xepx'aray . . .agyo, = yp’,

and for 1 < j <k, let E; be the equation given by
ajajii...axayx'ajas .. aj_yyoy, = yp'.

Then clearly, E; = E’, Ey, Ex+1 € Si, Eje$ forl < j <k, and Ej =Rr Ejt1
for 0 < j < k as claimed.
Now consider the second case. Let Eg = Ej1 be the equation given by

/. /
Xaaz . ..agyo, = yp
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and for 1 < j <k, let E; be the equation given by
!/ /
AjAjy]...QEXa102 ...aj_1y0, = yB.

Then clearly, E; = E’, Eo, Ex41 € S1, Ej € S forl1 < j <k,and E; = Ejq
for 0 < j < k as claimed. O

Claims 4.7.1 and 4.7.2 are sufficient to show that the equations/vertices in S; are
exactly those which survive in an isolated path compression of order |E| of %[?].
To state this more formally, we define a relation ¢ on the equations in S; such that
E' o E"if E', E” € S| and either E’ = E”, or there exist E, E, ... E; € S, and
Z € {L,R}suchthat E' =7 E| =7 E» =7 ... =z Ex =z E”. Then we get the
following.

Claim 4.7.3 The graph 54§1 is an isolated path compression of order |E| of
G2
[E]

Proof Directly from Claims 4.7.1 and 4.7.2. O

It remains to show that 54§1 is isomorphic to {4{?’] where E is given by 7,y (g (@) =
Tqv(E)(B). In other words, we must show that there is an isomorphism f : §; —
[E]:> such that for any E’, E” € Sy, f(E|) = F(Ey) if and only if E; ¢ E. Before
we can define f, we must firstly show that there exists E € S; given by a = B
such that ”qv(E)(‘?) = myu(E) (@) and ”qu(é)(ﬁ) = mauE)(B). If E € §) then we
may simply take £ = E. Otherwise, E € S, meaning exactly one of ¢[1], B[1] is in
qv(E). W.l.o.g. suppose that «[1] ¢ gv(E). Then we may write « = yxojyws and
B = yp1 where y € ((X\quv(E))U Z‘)i’,x, y € qu(E), and 1, a2, B1 € (X U X)*.
Furthermore, we have E =7 E where E € Sy is given by xay2yas = yBi, in which
case we have that gy g)(a) = nqv(ﬁ)(xalyayaz) and 7gyE)(B) = nqv(é)(yﬂl)
(note that we have that gv(E) = qu(E) since E € [E]=).

Since E € S1, we may write E as

VIVIV2Y2 -« YnVn = V819582 - . Yhbn

where y;, y{ € qv(E) and y;, §; € ((X\qv(E)) U X)* for 1 <i < n. Consequently,
by our assumptions about E, it follows that E may be written as y;yz, ...y, =
V1Y% - - - ¥y, With this information, we are now ready to define our isomorphism f :
ST — [l:?]é via two morphisms o7 g5 and oggs. In particular, letor g5 : qv(E)* —
(X U X)* be the morphism such that oy gs(y;) = y;y; for 1 <i < n and ogpys :
gqu(E)* — (X U X)* be the morphism such that aRHg(y}) = y}(S,- forl <j <n.
Then we define f such that f(a’ = B') isorgs(@’) = ogpgs(B’) foralla’ = B’ €
S1. In order to show that f is indeed an isomorphism with the desired property that
f(E1) = F(E»)if and only if E| ¢ E>, we need the following claim.
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A~

Claim 4.7.4 Let dy,d>, Bi.fr € qu(E)* such that &y = f; € [E]s, and
orLHs(d)) = GRHSE,Bl) € [E]-. Then «; Ai B1 = ap = B, if and only if
oLus(d) = orus(B1) o oLus(d2) = orus(P2).

Proof Suppose firstly that ¢, = f; = d, = f», and w.1.0.g. suppose that dj = f; =
) = ﬂAz. Then there exist z1, 22, ..., 2n € qU(E), u € q})(E)* such that a7 = z;
forsomei,1 <i <n,B1 =zi122...2n, 2 = a1 and Bo = 22...Zi—121%i - - - Zn-
Let ay,ap,...a; € (X\qu(E)) U X such that ogrys(z1) = ziaiaz...ay. Let Eg
be given by opps(ziit) = orHs(Z122...2n), and for 1 < j < k, let E; be given
by orms(zin) =ajajyi...axoras(22 ... 2i-1)2141G2 . .. a;j—10RHS(Zi - - . Zn), and
let Ex11 be given by o gs(zinn) = orps(z2...2i—1)210102 . .. aroRHS(Zi - . - Zn)-
Then we have Eqg = E; =L .. =L Ei+1. Moreover, we have that Ey € Sy is
given by o ys(cf1) = orus(B1), Exs+1 € Sy is given by o7 ys(c2) = orus(B2), and
Eje Sforl < j<ksoEyo Ery as required.

Now suppose that o7 ys(cf1) = orus(B1) ¢ orus(d2) = orps(p2). Then by
the definition of ¢, there exist Eo, Eq, ..., Exy1 € [E]= such that Eo € Sl is
given by o1is(d1) = orus(f1), Ext1 € Sy is given by orus(d2) = orus(b2),
Ey=z E1=z...=z Ey1forsome Z € {L,R},and E; € Sy for1 < j < k.

W.l.o.g.suppose that Z = L. Then there exist z1,22,...,2n € qu(E),u €
qu(E)*, and aj,as,...,a; € (X\qv(E)) U X such that @] = z;u for some
i,1 <i <n, ,3 = 7122 ...2n, and orgs(z1) = ziaias...ay. Hence Ep can be
written as

oLus(zik) = z1a1a2 . . . agoRHS(2223 - - - Zn)-

Moreover, we have that Eg =1 E} =1 E;, =1 ... = E, = E1/5+1 where E; is
given by
oLas(zit) =ajajiy...ae0RrHs(22...2i-1)2101 ... Aj1ORHS(ZiZi41 - -+ Zn)
for1 < j <k, and E}_ is given by
orLus(zin) = orus(z2...2i-1)2101 - .. QORHS(ZiZi+1 - - - Zn)-

Note that E¢41 may also be written

orLas(Zin) = orus(2223 « . Zi—121ZiZi41 - - - Zn)-
Now, since =, is deterministic, and since E¢y1, Ex41 € S1 while E}l, Ej, €$
for each j;, 1 < j; < € and jp,1 < j» < k, we must necessarily have that
k = £. Since o ys and ogys are injective, we must have ap = «] and By =

2223 .. .2i—121%iZi+1 - - - 2n. It follows from the definitions that o} = ,3A1 =7 o) =
Ba- O

It follows from Claim 4.7.4 by a simple induction with E as the base case that
= {orus@) = orus(B)) | @' = B’ € [E]:>} or equivalently that f(Sl)
[E]:> The claim also states exphcltly that JLHS(a’) = GRHS(,B ) o ULHS(a”) =

GRHS(,B”) if and only if @/ = ﬂ/ = o = ,3” and thus f is an isomorphism such
that f(E1) = f(E») ifand only if E| ¢ E, for all E1, E> € S1. We may therefore
conclude that g;l is indeed isomorphic to E?[ ?] as required. O
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Combining Corollary 4.4 and Lemma 4.7, it is now possible to formulate the main
result of this section, describing the graphs %[?J for arbitrary RWEs E in terms of
graphs 54“:5}/ for basic RWEs E’. An example of the theorem is given in Fig. 3.

Theorem 4.8 Let E be a RWE given by o = B. Let o', B’ be the shortest non-empty
prefixes of «, B respectively such that var(o/) Nqv(E) = var(B’) N qu(E). Let E’
be the equation given by mwqygy(a') = 74uE)(B)). Then E' is basic, and %E, is
isomorphic to an isolated path compression of order |E| of %[ £

Proof Let S = qu(a’ = B’). Firstly, we shall show that &’ = 8’ is indecomposable.
Suppose for contradiction that &’ = B’ is decomposable. Then there exist proper
prefixes o”, B” of o’ and B’ respectively such that var(a¢”) NS = var(B”) N S.
Then o’ and B” are proper prefixes of « and B, and since they are shorter than o’
and B’, by our assumptions about o’ and B’, we cannot have that var(a”) Ngv(E) =
var(B8"”) N qu(E). Consequently, either there exists x € var(a”) N gv(E) such that
x ¢ var(B”) Ngv(E) or there exists x € var(B”) Nqv(E) such that x ¢ var(a”) N
qv(E). W.Lo.g. suppose the former is true. Then x ¢ var(B”), but since x € qu(E),
it follows from var(a’) N gv(E) = var(B") N quv(E) that x € var(B’). However,
this implies that x € S, and since x € var(a”) but x ¢ var(B”), we arrive at a
contradiction to our assumption that var(a”) NS = var(B”) N S.

xayzabw = yazaxwb

axyzabw = yazaxwb

xayzabw = azayxwb

ayxzabw = zayaxwb xayzabw = ayazxwb

yxazabw = azyaxwb

yxazabw = zayaxwb

Fig.3 Anexample of Theorem 4.8. On the left is the graph (4 1n the case that E is given by xayzabw =
yazaxw with variables x, y, z, w and terminal symbols a, b On the right is 54 | for the corresponding
basic equation E’, which in this case is given by xyz = yzx. The graph on the rlght is isomorphic to an
isolated path compression of order 2 of the graph on the right. Vertices internal to the isolated paths (i.e.
those which are removed by the compression are shown in grey
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Now, let E” be the equation given by wg(a’) = ms(8’). By the assumption that
var(a’) Ngu(E) = var(B’) Nqu(E), there is no variable x € gv(E)\S occurring in
o or B’. Consequently, E” = E’, and by Lemma 4.7, we have that &7, is isomorphic
to an isolated path compression of order |E| of %[j: P which by Corollary 4.4 is

isomorphic to 47 O

5 A Useful Invariant

When reasoning about the graphs %[?], we need a way to help determine whether or
not, for two equations Eq, E», we have E; =* E,. Showing the positive case that
E| =* E; can be achieved by simply finding an appropriate sequence of length-
preserving Nielsen transformations from E; to E,. However, showing that £| A*
E» presents more of a challenge: the naive way would be to enumerate all vertices in
Ef[?l] and show that E; is not among them. However, this is not suitable for abstract
reasoning, and, even in concrete cases, is inelegant and time-consuming.

The contribution of this section is a property of basic RWEs, defined as 7g below,
which is preserved under the relation = and thus provides a concise and more general
means for showing that £y 4™ Ej. It is an indispensable component of the proofs
of our main results.

Definition 5.1 (The invariant Yg) Let E be a basic RWE such that Card(var(E)) >
1. Let # be a new symbol not in X. Then we may write E as xajyoy = yB1x82
with x, y € X and oy, a2, B1, B2 € (X\{x, yD*. Let 2 = var(xjo28182) U {#}.
Let the function Qf : Zg — X2 be defined as follows: for each z € Ze\{#}, let
QE(z) = (u,v) where uz is a factor of x| yay and vz is a factor of yB1x8;. Let
Or#) = (u,v) where uy is a factor of xajyw, and vx is a factor of yB1xfB;. Let
Yy ={0fr() | z € Zg}. If Card(var(E)) < 1, then 1z = 0.

Intuitively, given a basic RWE E of the form o« = §, we construct ¢ by taking,
for each variable x € var(E), the pair (u, v) of predecessors of x in E, i.e. such
that ux is a factor of @ and vx is a factor of g. It follows directly from the definition
of basic RWEs that this pair is unique, and it exists whenever x is not the leftmost
variable in either o or . The special case that x is the leftmost variable of « or g
is handled by the special symbol #. The following observations follow directly from
the definitions, but are central to the use of 1g in later proofs.

Remark 5.2 Let E be a basic regular word equation given by «y = fx withx, y € X
and «, B € X*. Then for each z € var (), there is exactly one element (u, v) € g
such that u = z. For each z ¢ var(«), there is no element (1, v) € 7E such that
u = z. Similarly, for each w € var(B), there is exactly one element (u, v) € 7g such that
v = w and for each w ¢ var(B), there is no element (u, v) € Yg such that v = w.

The usefulness of 7 as a property of basic RWE:s arises from the fact that it is invariant

under the length-preserving Nielsen transformations. Consequently for a given basic
RWE E, we can use the set {E’ | Y/ = g} as an over-approximation of the set [E],.
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Theorem 5.3 Let E1, E; be basic RWEs such that Ey =* E,. Then 1g, = 1g,.

Proof 1t is sufficient to prove the same statement for the case that £y = E;. W.l.o.g.
we may assume that £y = E;. The case that £ =g E» is symmetric. Moreover, if
E1 = E», then the statement holds trivially, thus we may assume that E; # E;. The
statement trivially holds for equations of the form xy = yx, since [xy = yx]o =
{xy = yx}. Otherwise, taking into account the fact that £; and E, are basic and
therefore indecomposable, we have two cases: we may write E| and E, as either

1. xajwoaryasz = ywpBixBr and xajwayyaz = whyxpfa, or
2. xaypyoowaes = ywpixBr and xay yorwaz = whyxpr

respectively, where w, x, y € X with x # y and o1, a2, a3, B1, B2 € (X\{x, y, w})*
such that var(ajoaa3) = var(B182).

Suppose that we have the first case, then Zg, = var(ajoza3) U{#, w}and Zg, =
var(ajaaa3)U{#, y}. Moreover, for each z € var(ajopa3), there existu, v € X such
that uz (resp. vz) is a factor of the LHS (resp. RHS) of both E and E», so Qf,(z) =
QF,(2). Now, let a, b, c be the rightmost variables in xa, way and wf; respectively
(i.e. their length-1 suffixes). Then we have that Qg (w) = (a, y), O, (#) = (b, ¢),
Ok, () = (b, c), and Qp,(#) = (a. y). Thus Vg, = Tg,.

Now suppose instead that we have the second case. Similarly to the first case, we
have that Zg, = var(ojaxa3) U {#, w}, Zg, = var(ajooaz) U {#, y} and for each
z € var(ajopaz), Qf,(z) = QF,(2). Now, let a, b, ¢ be the rightmost variables
in xaq, wh; and ya; respectively. Then we have that Q g, (w) = (¢, y), O, (#) =
(a,b), Qp,(y) = (c,y), and Qp,(#) = (a, b). Thus Tg, = 7E, in both cases as
required. O

As an example, let E; be the basic RWE given by xuzwy = ywuxz. Then
Zg, ={u, z, w,#} and Qg, is the function with Qg, (1) = (x, w), Qf,(z) = (u, x),
Qp (w) = (z,y) and Qp, (#) = (w, u). Thus, Tg, = {(w, u), (x, w), (u, x), (z, y)}.
Similarly, if E, is the basic RWE given by xuwzy = yuxwz, then g, =
{(x,y), (u,x), (w, w), (z, u)}. Consequently, we may conclude that £| A* E, (and
symmetrically that E; A* E1).

Since the invariant 7 provides a necessary condition on when two basic RWEs
belong to the same equivalence class under =*, we might also ask whether it is
also sufficient, and hence characteristic. However, this is not the case. For instance,
if E3 is given by xuvwy = ywovux and E4 is given by xwvuy = yuvwx,
then 7, = Y, = {(x,v), (u, w), (v, y), (w, u)} but it can be verified (e.g. by
enumerating [E3]— and [E4]-) that E3 ™ E4.

6 Jumbled Equations and a Special Case of Symmetry
The invariant property 7 introduced in the Section 5 consists of pairs of variables.
The case that (x, x) € g for some x € var(E) is special in the sense that it leads to

a particular repetitive structure in the graph g[zg], described in the current section. We
shall call basic RWEs E for which no pair of the form (x, x) occurs in 7 jumbled.
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Definition 6.1 (Jumbled Equations and A(E)) Let E be a basic RWE and let
A(E) = {x € var(E) | (x,x) € 1g}. If Card(A(E)) = 0, then E is jumbled.

For example, if we consider the equation E given by xyzw = wyzx, then 1z =
{(x, w), (v, ¥), (z,2)} so A(E) = {y, z} and E is not jumbled. On the other hand,
for E’ given by xyzw = wzyx, we have g = {(x, 2), (¥, w), (z, y)},s0 A(E") = @
and E’ is jumbled.

Note that since 7 is invariant under =*, so is the property of being jumbled.
Furthermore, it follows from the definitions that (x, x) € Yz for some basic RWE E
and x € X if and only if there exists y € X such that one of the following holds:’

1. xy occurs as a factor of both the LHS and RHS of E, or
2. there exists E’ with E = E’ such that xy occurs as a factor of both the LHS and
RHS of E'.

The cardinality of A(E) can be interpreted as a measure of the similarity of the two
sides of the equation. If Card(A(E)) is large in comparison to Card(E), then the
orders in which the variables occur on the LHS and RHS of E will be similar. On the
other hand, when A(E) = @, there will be no common order in the variables on each
side, and hence the equation is ‘jumbled’. In general, we may observe the following
bounds on Card(A(E)) as follows.

Remark 6.2 Let E be a basic RWE. It follows directly from Definition 5.1 that if
Card(var(E)) < 2, then Card(A(E)) = 0. Otherwise, E can be written as ax = By
for some x,y € X, € (X\{x})* and B8 € (X\{y})*. Since E is basic, it is indecom-
posable, so we may additionally conclude that x # y. By Remark 5.2, neither (x, x)
nor (y, y) can be contained in 7, so we must have Card(A(E)) < Card(var(E))—2.

The rest of this section is devoted to describing the structure of the graphs 54[?] in
the general case in terms of the graphs ¢ ?,] where E’ is jumbled. The first step is to
notice that we can easily transform any basic RWE E into one which is jumbled by
simply removing all variables x such that (x, x) € A(E).

Lemma 6.3 Let E be a basic RWE given by « = B and let Y = var(E)\A(E).
Then the equation Ey given by wy (o) = mwy(B) is a jumbled basic RWE.

Proof If A(E) = @, then the lemma holds trivially. Assume that A(E) # ¢J. We shall
prove the following statement, from which the lemma follows by a simple induction.

Claim 6.3.1 Suppose that E is a basic RWE given by « = f, and that x € A(E).
Let E’ be the equation myar(£)\ (x} (@) = Tvar(E)\(x}(B). Then E’ is a basic RWE and
Ye = Te\{(x, 0)}.

5The first case corresponds to the possibility that Qg (y) = (x, x) for some variable y. The second case
corresponds to the possibility that Qg (#) = (x, x), meaning that E has the form yojxzay = zB1xyB2,
with x, y,z € X and a1, a2, B1, B2 € X*, in which case E = ajxyzan = z81xyB.
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Proof Let Qp, Zg be defined as per Definition 5.1. We shall consider two cases
depending on whether Qg (#) = (x, x). Suppose firstly that Qg (#) # (x, x). Then
there exist ay, a2, B, B2 such that o = ajxyas, B = B1xyB2, Tyar(E)\(x) (@) =
ayyor and TyqrE)(x}(B) = B1yB2. Suppose for contradiction that E’ is not basic.
Clearly both sides of E’ belong to gv(E’), so we may infer that E’ is decomposable,
and thus that there exist proper prefixes @’ and 8’ of a1 ya; and B;yB; respectively
such that var (¢")Ngv(E") = var(B)Ngv(E’). Clearly, either y occurs in both «’ and
B’, orin neither. Let T : var(E")* — var(E)* be the morphism such that t(y) = xy
and t(z) = z for z € var(E)\{y}. Then o’ = t(a’) and B = t(B’) are proper
prefixes of @ and B respectively which satisfy var(a”) Ngv(E) = var(B”) Nqv(E).
Thus E is decomposable and therefore not basic, a contradiction.

To see that Ygr = Tg\{(x, x)}, suppose firstly that x is not a prefix of « or g,
and thus that o1 # ¢ and B1 # ¢. Then Zg = (var(E)\{o1[1], B1[1]1}) U {#},
and Zgr = (var(E)\{a1[1], B1[1], x}) U {#}. It follows from the definitions that
Qp/(y) = Qp(x) = (allaill, BillB1]D- Since ay, 1 # &, ai[l] ¢ {x, y} and
Bi1l1] ¢ {x, y}. Consequently there exist ug, vy € var(E)\{x} such that ugo[1] is
a factor of both & and 7y (£)\(x) () and such that v#8;[1] is a factor of both g and
Toar(EN\{x}(B). It follows that O (#) = Q' (#) = (us, v#). Likewise, for any z ¢
{x, vy, a1[1], B1[1]1}, there exist u, v € var(E)\{x} such that uz is a factor of both «
and 7y, (E)\ (x} (o) and such that vz is a factor of both 8 and 7y, (E)\ (x} (B). It follows
that Qg (z) = Qp/(z) = (u, v). Thus we may conclude that Yz = T\ {(x, x)}.

Next, suppose that o] = € and B # ¢ (the case that 81 = ¢ and o1 # € is symmet-
ric). Then Zg = (var(E)\{x, f1[11H) U{#} and Zp = (var(E)\{y, x, Bi[11}) U {#}.
Then Qfr(#) = (ug, B1[|B11]) where uzB1[1] is a factor of xyw;. Since E is regu-
lar, each variable occurs once per side, so we may infer that 81[1] # y, and hence
that ugy # x. It follows that ugB[1] is also a factor of ya,, so we may further
conclude that Q g/ (#) = (ug, B1lIB11]) = Qe #). Note that Qr(y) = (x, x). Let
z € var(E)\{x, y, B1[1]}. Then there exist u, v € var(E)\{x} such that uz is a fac-
tor of both xyas and ywy, and such that vz is a factor of both 81xyf, and B1yB. It
follows that Qg (z) = Qp/(z) = (u, v). Again we have T = Tg\{(x, x)}. Finally,
note that if «; = B; = ¢, then E is decomposable, which is a contradiction to the
assumption that E is basic.

It remains to consider the case that Qg (#) = (x, x). This implies that there exist
u,v € var(E)\{x} and o1, a2, B1, B2 € var(E)* such that « = uajxvay, B =
vB1xupBy, meaning E’ is given by uajvay = vBiufBy. Suppose for contradiction that
E'’ is not basic. Then as in the previous case, it must be decomposable, and there exist
proper prefixes o', B/ of uajvay and vBiuB, respectively which satisfy var(a’) N
qv(E") = var(B’)Ngv(E’). Then we must have that &’ = uojvasz and 8 = vBiupB;
for some a3, B3 € X*. However, it follows that a” = uajxvas and B’ = vB1xupBs
are proper prefixes of o and B satisfying var(a”) N gv(E) = var(B”) N qv(E), so
E is decomposable which is a contradiction to the assumption that E is basic.

To see that Tz = Y \{(x, x)}, note that in this case Zr = (var(E)\{u, v}) U {#}
and Zgr = (var(E)\{u, v, x}) U #. It follows from the definitions that Qg (#) =
Qp(x) = (wy, wy), where wq is the leftmost variable in uc«; and w; is the left-
most variable in vB;. Moreover, for any z € var(E)\{u, v, x}, there exist w/l, u/2 €
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var (E)\{x} such that w]z is a factor of both ua| xverz and uaj vara, and such that wz
is a factor of both vBixups and vBuf,, meaning that Q' (z) = Qr(2) = (W), w)).
It follows that Y = Tg\{(x, x)} as required. O

We conclude the proof by noting that if A(E) = {x1, x2, ..., xi}, then there exist
equations E; for 0 <i < k given by o; = f; such that
1. E() = FE and Ek = Ey, and
2. forl <i <k, o =myarE;,_p\()(@i—1) and B; = Tyar(Ei_p\ () (Bi=1)-
Since E is basic, it follows by Claim 6.3.1 that E; is basic for | < i < k, and

moreover by the same claim that 7z, = Ye\{(x;, x;) | 1 <i < k} meaning that Ey
is both basic and jumbled. O

There is a strong relation between the graph %[:g] for a basic RWE E and g[?y]
where Ey is the jumbled basic RWE obtained from E by deleting the variables in
A(E). The relation is described formally in Theorem 6.8. Before presenting the the-
orem, it is useful to first introduce some additional notions. Essentially, %[?] is made

up of approximate copies of %Efy]. Each copy is a subgraph %E of %[?] which is
associated with a certain morphism ¢ : Y* — var(E)* from a set @ g defined below.
Intuitively, ¢ can be seen as a way of assigning variables in A(E) to variables in
Y = var(E)\A(E).

Definition 6.4 (The set @) Let E be a basic RWE. Let Y = var(E)\A(E). Let
@ be the set of morphisms ¢ : Y* — var(E)* satisfying ¢(y) € A(E)*y for all

yeY,and Y ||y = 1forall x € A(E).
yey

The subgraphs %E are obtained by restricting %[?] to subsets Hf defined below.
More precisely, %E consists of vertices H(f and edges (E1, E;) whenever E1, E; €
H(f and E1 = E; (i.e. whenever (E1, E7) is an edge of%[?]). We shall say that %E
is the subgraph of %7, induced by H, .

Definition 6.5 (V£ U(f and Hf ) Let E be a basic RWE given by « = 8 and let
Y = var(E)\A(E). Let Ey be the equation 7wy (o) = wy (). Let ¢ € @g. Then we
define the sets V(pE U (pE and H(f as follows:

L VE=1{p@ =B |&=peclErls),
2. HF ={E'|3E"eV},Ze{L,R}). E"=} E'},
3. UF=HE\V}].

For each ¢ € @, the subgraph %’f is an approximate copy of %[?Y] in the sense
that g[?y ] is isomorphic to an isolated path contraction of %E. The intuition behind
the sets V(f and Uf is that they provide a decomposition of the set H(f of vertices
of %E into those which survive after the isolated path compression (V(pE ) and those
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which are compressed/removed (U(/‘)E ). The underlying isomorphism is the function
which maps equations & = B e[Eyls to p@) = (p(ﬁ).

The structure of each subgraph %E is therefore essentially the same as the struc-
ture of %[T;Y]. In order to fully understand the structure of 54[?] however, we also need
to know how the individual subgraphs are connected, or in other words, when two of
subgraphs %’f , %’2‘: share a common vertex. We shall later see (Lemma 6.14) that
%‘IE and %‘ZE share a vertex if and only if the corresponding morphisms @1, ¢> sat-
isfy a ‘closeness’ condition defined as follows. See Fig. 4 for a complete example of
the resulting relation.

Definition 6.6 (Close morphisms ¢, 92 € @g) Let E be a basic RWE and let Y =
var(E)\A(E). Let ¢1, ¢» € ®@g. Then @1, ¢; are close if there exist y;, y» € Y with
y1 # y2 and yy, y» € A(E)* such that:

1. Forally € Y\{y1, y2}, 1(y) = ¢2(y), and
2. o1() = v1v2y1, ©2(01) = y2y1, and @2(y2) = y191(32).

01 (%)

X1 — X3X4X1 X1 — X1
X2 — X2 X2 —> X3X4X2

®3 Q4

X1 — X4X1 X1 — X3X1
X2 — X3X2 X2 —> X4X2

®s Pe

X1 — X1 X1 — X4X3X1
X2 —> X4X3X) X2 — X2

Fig.4 A graphrepresenting the closeness relation for morphisms in @ for a basic RWE E with var(E) =
{x1, x2, x3, x4} and A(E) = {x3, x4}, meaning that Y = {xy, x}. In this case, @ contains six morphisms,
@i, 1 < i < 6, which make up the vertices of the graph. Vertices connected by an edge are close in the
sense of Definition 6.6
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Informally, two morphisms @1, ¢» € @ are close if we can obtain one from the
other by removing some prefix of the image of a variable y; and appending it to
the left of the image of another variable y,. For example, suppose that var(E) =
{x1, x2, x3, x4, x5, x¢} and A(E) = {x3, x4, x5, X¢}, and consider the two morphisms
©1, 92 = {x1, x2}* = {x1, x2, X3, X4, X5, x6}* given by @1 (x1) = xax3x5x1, @1 (x2) =
XeXx2, ¢2(x1) = x5x1 and @2(x2) = xax3x6x2. Then @1, o both belong to @ and
are close, since we can get one from the other simply by moving the the prefix x4x3
from the image of x| to the image of x,.

The following lemma shows that even when ¢ and ¢, are not close, we can find
a sequence of intermediate morphisms in @ starting with ¢; and ending with ¢,
such that each morphism in the sequence and its successor are close, and such that
this sequence is ‘short’. This will form the basis of our claim that the subgraphs %E
which make up the graph %[?] are well-connected, and in particular means that there
is a (short) path in %[?] between any two of the subgraphs.

Lemma 6.7 Let E be a basic RWE and suppose that ¢', "' € @ g with¢' # ¢". Then
there exist k < 4Card(A(E)) + 1 and @1, @2, @3, ..., o € @ such that ¢’ = ¢y,
0" = @i, and @;, ;11 are close foralli,1 <i < k.

Proof Let Y = var(E)\A(E). If A(E) = 0, then @g contains only the identity
morphism. Thus we may assume that A(E) # ¢ and consequently by Remark 6.2
that Card(Y) > 2. Note the following claim.

Claim 6.7.1 Let @1, p2 € ®g,y1,y2 € Y,z € A(E) and y1, y» € A(E)* such that
Y1 # y2 and

L o1(y1) = vizyey1, 92(y1) = y1v2y1 and @2(y2) = z91(y2), and
2. @1(y) =@a(y) forall y € Y\{y1, y2}.

Then there exists ¢3 € @ such that ¢1, ¢3 are close, and ¢3, ¢; are close.

Proof Let @3 be the morphism such that ¢3(y1) = y2y1, ¥3(02) = y1z¢1(32), and
@3(y) = @1(y) for all y € Y\{y1, y2}. Then it follows directly from the definitions
that ¢1, @3 are close. Moreover, since ¢2(y) = ¢1(y) for all y € Y\{y1, y2}, it also
follows from the definitions that ¢;, @3 are also close. O

Claim 6.7.1 shows us that with two successors in a sequence, we can ‘move’ any
variable z € A(E) from ¢(y;) to the prefix of ¢(y2) where yi, yo € Y with y; # y
(leaving the rest of the morphism unchanged). Given any ¢’ € &g we can reach any
other morphism ¢” € @g by moving each variable z € A(E) twice in this manner
according to the following strategy: firstly, we move each variable z € A(E) to the
prefix of the image of a variable y € Y such that z ¢ var(¢”(y)). Note that this is
possible due to the assumption that Card(Y) > 2 and requires moving each variable
in A(E) at most once. Then, we move the variables z € A(E) back to the images of
the ‘correct’ y € Y in the appropriate order. For example, if ¢”(y) = z1z2. .. znY,
then we would first move z, to the prefix of the image of y, then z,_1, and so on.
Again this requires moving each variable at most once, and once we have done this
for all variables, then we will be left with exactly the morphism ¢”. Overall we have
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moved each variable at most twice. Since each move requires two successors in the
underlying sequence, we need at most 4A(E) successors in total and the statement
of the lemma follows. O

We are now ready to give the full statement relating %[ £) and 54[ £y formally as
follows. An example demonstrating the theorem is given in Fig. 5.

Theorem 6.8 Let E be a basic RWE given by « = . Let Y = var(E)\A(E). Let
Ey be the equation my (o) = my(B). Let d = max{l, diam(%[?y])}. Then:

1. for each ¢ € P, Hf C [E]l= and % Ey] 18 isomorphic to an isolated path
contraction of order Card(A(E)) of the subgmph %E of Y, [E] induced by H(f.
— E
2. %[?] = U Ay
YEPE
3. dtam(% NS OW|E?).

gClote

Fig. 5 Example illustrating Theorem 6.8. On the left is %[:E’] for the equation E given by y;xy2y3y4
yaysxy2y1. Note that A(E) = {x}, so Y = {y1,y2,y3,y4} and Ey is given by yiy2y3ys =
yvay3y2y1. The graph g[:gy] is shown on the top-right, where the equations in [Ey]- have been labelled
A,B,C,D,E,F,G. The set @ contains four morphisms ¢;, 1 < i < 4, such that ¢;(y;) = xy;
and ¢;(y;) = y; for j # i. In this case, all morphisms in @£ are close to each other so the close-
ness relation (depicted as the graph %g}z"se on the bottom-right) is a complete graph. The graph %%,
is comprised of four subgraphs %IE , 1 < i < 4. Each subgraph and morphism from @ is depicted
with a distinct colour in the figure. For each Z € {A,B,C,D, E, F,G} given by oz = Bz, Z;
denotes the equation ¢; (¢z) = ¢;(Bz). Thus the set of vertices unique to the subgraph )ijE is given by
qu = {A;, B;, Ci, D;, E;, F;, G;}. The vertices shared between two subgraphs (i.e. those belonging to
U¢’EI )are labelled u1, uz, . . ., ue. Since any two morphisms from @ are close, each pair of subgraphs have
at least one vertex in common. Each subgraph can be made isomorphic to @[?I by contracting the paths
(dashed) passing through the shared vertices i1, i2, . .., i¢. For example, the subgraph éfE containing the
vertices Ay, By, Cy, Dy, Ey, F1, Gy, uy, ug, us can be made isomorphic to ¢ ‘”[? ] by contractmg the paths
(A1, ug, Ev), (By,us, Dy), and (Cy, uy, Cy) into single edges (A1, E1), (B1, D) and (Cy, C1)
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Before we proceed with proving Theorem 6.8, it deserves a few further comments.
Firstly, we note that since each morphism ¢ € @ is clearly injective, the subsets
VWE of vertices of each subgraph %@E are pairwise disjoint. Consequently, while the
subgraphs %’f do overlap (and it is precisely these overlaps which mean they are all
connected), each one contains a unique copy of the vertices of g[?y].

Secondly, note that the number of morphisms in the set @g will grow expo-
nentially with respect to Card(A(E)). More precisely, we may assume some order
Y = {y1,y2, ..., yn} on the variables in Y and represent each morphism ¢ € @ as
aword ¢(y1)@(y2) . .. @(yn). This representation is clearly unique to ¢. Furthermore,
a word over var (E)* is a representation of this form for some ¢ € @ if and only if
each variable occurs exactly once, the variables y; occur in order from left to right,
and y, occurs as a suffix. Thus, the number of morphisms in total is given by

(Card(var(E)) — 1)!
(Card(var(E)) — Card(A(E)))!

Since each subgraph contains a subset of vertices not shared with any other, it
follows that the number of vertices in g[?] will also be (at least) exponential in
Card(A(E)). We shall see later in Section 9 that this is essentially the worst case for
the size of g[?] for RWEs E, with the largest graphs corresponding exactly to the
case that Card(A(E)) is maximal. Nevertheless, it is worth pointing out that in the
same case, the graph %[?Y] will be consist of a single vertex and two self-loops and
thus the diam(%[?]) will be (at most) quadratic in |E|. This is significantly better
than our upper bound in the general case.

Card(®fg) =

Proof of Theorem 6.8 The rest of the section focuses on the proof of Theorem 6.8.
The main technical content is presented in the following series of lemmas. State-
ment 1 is given by Lemmas 6.15 and 6.16, while Statements 2 and 3 are given by
Lemmas 6.17 and 6.18 respectively. Throughout the remainder of this section, for a
basic RWE E given by @ = B and a morphism ¢, we shall use the notation ¢ (E)
as shorthand for p(a) = ¢(B). We begin by noting some properties of equations
belonging to the sets H‘f. The first deals with equations belonging to V(f and follows
directly from the definitions.

Fact 6.9 Let E be a basic RWE. Let Y = var(E)\A(E), n = Card(A(E)) and
let Ey = my(E). Suppose that ¢ € @p. Then E' € VwE if and only if there
exists a permutation o : {1,2,...,n} — {1,2,...,n} and y1, y2,...,y, with

Y = {y1,y2,..., yn} such that y1y2 ... yu = Yo(1)Ys(2) - - - Yo) € [Ey]= and such
that E’ can be written as

o) ... 0n) = (Ve 1)LV @) - - - ¥V @))-

With a little additional reasoning, we can give a similar characterisation of
equations contained in U(f .

Lemma 6.10 Let E be a basic RWE. Let Y = var(E)\A(E), n = Card(A(E))
and let Ey = my(E). Suppose that ¢ € ®g. Then E' € U(f if and only if there
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exist a permutation o : {1,2,...,n} — {1,2,...,n}and y1,y2, ...,y withY =
{y1, y2, ..., yn} sSuch that one of the following holds:

L Yiy2.o .Y = Yo()Vo@) - - - Yo(n) € [Eyl= and E’ may be written as:

eODP2) - 9(n) = 8200Ve@) - - (Vo =1))819 Vo) - - - Vo (n))
2. Ye)Yo@) ---Yom) = V1Y2...Yn € [Eyl= and E' may be written as:

59(Ve@) - 0Vo =119 Vo) - - - Vo)) = ¢(YD@(¥2) - .. ©(Vn)
where o (1) =1, 8182 = (Yo (1)), and 81, 62 # €.

Proof Suppose that E’ satisfies the conditions of the lemma. We shall consider the
case that Statement 1 holds. The case that Statement 2 holds is symmetric. Then
E” =7 E’ where E” is the equation given by

©(Yo(1))
. —~ =
eODe(2) ... 0on) = 8182 ¢(Yo2) - V-1 PVo®) - - - ¥ Yo m))-

Consequently, E” = <p(l:7) for some E € [Eyl=,so E" € VwE and thus E’ € H¢E.
Note however, that since E’ is a basic RWE, each variable occurs exactly once on
each side of the equation. We may therefore conclude that §182 = ¢(ys(1)) is not a
factor of the RHS of E’, and consequently, by Fact 6.9, E’ ¢ V(pE. Thus E’ € U(f .
Now suppose instead that E' € Uf . Then there exists some E” € V(f ,keN

and Z € {L, R} such that E” :>’§ E’. Suppose we choose E”, Z and k such that
k is minimal. Suppose additionally that Z = L. We shall show that Statement 1 of
the lemma is satisfied. The case that Z = R is symmetric and results in Statement 2
being satisfied.

Since we have E” € VWE , it follows from Fact 6.9 that there exists a permutation
o:{1,2,...,n}—>{1,2,...,n}and y1, y2, ..., yp With Y = {y1, ¥2, ..., y,} such
that y1y2... Y0 = Yo(1)Yo(2) - - - Yon) € [Ey]= and such that E” can be written as

eODe2) .. 9(n) = (Vo) @) - - - (Vo m))-
Let £ = |¢(yo(1))| and let E” be the equation given by

e(YDe(2) ... @) = (Vo 2) - - ¥Vo-1)P Vo (1) Vo) - - - Vo))

where o (1) = 1. Then E” :>€Z E"’. However, since y1y2...n = Yo(1)Yo(@) - -- Yon) €
[Ey]ls and

VIY2e Y =Yo()Ys(2) -+ Vo) P V1Y2 -+ Yn=Vo(2) - - Yo =) Yo (1) Yo (1) - - - Yo ()

we may conclude that y1y2...y0 = Yo2) -+ Yo=1)Yo (D Yo () - - - You) € [Ev]=.
Thus, by Fact 6.9, E” € VWE. Consequently, since VWE and U(f are by definition
disjoint, we must have that k ¢ {0, £}. Moreover, by our assumption that k is as
minimal, we must have that k < £ (otherwise we could choose E” in place of E’
and get a smaller value of k). This directly implies that there exist 81, 81 # & with
8182 = ¢(¥5(1)) such that E’ may be written as

eODe(2) ... 0n) = 6200062) - - - Vo 1=1))810Vo ) - - - ¥ Vo))

@ Springer



Theory of Computing Systems

and thus Statement 1 of the lemma is satisfied. The case that Z = R is symmetrical,
leading instead to the satisfaction of Statement 2. O

We shall now focus on the claim that H(f C [E]= for each ¢ € @. The first step
is to show that for at least one ¢ € @, the equation ¢(EYy) is contained in [E]—.

Lemma 6.11 Let E be a basic RWE. Let Y = var(E)\A(E) and let Ey = my(E).
Then there exists ¢ € @ such that p(Ey) € [E]=.

Proof Note that if A(E) = @, then Ey = E and @ contains only the identity
morphism, so the lemma holds trivially. Suppose that A(E) # ¢. By Remark 6.2, we
may therefore assume that E is a basic RWE with at least two variables, so may write
it as xaquiuy ... uyyoy = ypruiuy ... uyxpr where x, y,uy, ua, ..., u, € X are
pairwise distinct variables and oy, a2, 81, B2 € (var(E)\{x,y,uy,uz, ..., uy})*,
and such that oy and B; do not share a common non-empty suffix. Then E =% E’
where E’ is given by ujus ... uyxayyoy = yBiuiuy ... u,xpB.

Now, consider the function Qg as defined in Definition 5.1. Note in particular
that Qg'(#) = (v, w) where v, w € X are the length-1 suffixes of xa; and yB, and
hence v # w. By Theorem 5.3, Tz = 7 (and hence A(E) = A(E’)). Thus, for
every z € A(E), there exists 7’ € var(E) such that Qg/(z') = (z, z), meaning that z
occurs directly to the left of z’ on both the LHS and RHS of E’. It follows that each
z € A(E) has a unique ‘successor’ variable 7' occurring to the right of z on both
sides of the equation, and therefore that there exists some morphism ¢ € @g such
that E' = ¢(;ry (E")). Finally, notice that u; € A(E’) = A(E) for 1 < i < n, and
consequently, 7y (E') = ny(E) = Ey. O

The following lemma shows a correspondence between edges in g[?y] and paths
in the subgraphs f%’jpE of %[?] which start and end with vertices from VWE and whose
internal vertices (if there are any) belong to Uf .

Lemma 6.12 Let E be a basic RWE. Let Y = var(E)\A(E) and let Ey = wy(E).
Let Z € {L, R} and suppose that E', E" € [Ey]— suchthat E' =7 E". Let ¢ € ®p.
Then there exist k < Card(A(E)) and Eq, E1, E», ..., Exy1 such that

1. ¢(E")=Eyand o(E") = Eyy1, and
2. EieUfforlfifk,and
3. Ev=zE1=zEy=>7...27 Ex =7 Ery1.

Proof Note that if Card(Y) < 2, then [Ey]= is a singleton and the lemma holds
trivially. We may therefore assume that Card(Y) > 2. Suppose that Z = R. The case
that Z = L is symmetric. Then there exist x, y € Y and &1, a2, B1, B2 € Y* such that
E’ may be written as xa1 yap = yB1xB2 and E” may be written as aj xyay = yB1xB2.
Let Eg = ¢(E’) and Er | = @(E"). If p(x) = x, then Ey =g Ejy| so the lemma
holds for k = 0. Suppose that p(x) # x.

Then there exists k, 1 < k < Card(A(E)) and z1, 22, ..., 2k € A(E) such that
¢(x) =z122...zkx. Foreachi, 1 <i <k, let E; be the equation given by:

Zitl - - 2X@(@1)2122 .. Zip (V@) = (Ve (Be(x)e(B2).
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Then it follows directly from Lemma 6.10 that E; € U(f for 1 <i < k. Moreover,
Eo=r E1 =R E2 =R ... =R Ex =r Ert1
as required. O

A straightforward induction on Lemma 6.12 allows us to conclude that if, for some
¢ € ®p, 9(Ey) € [E]=, then H(pE C [E]=. We have already shown (Lemma 6.11
that this is true for at least one choice of ¢. The next step is to show that ¢(Ey) €
[E]= for all ¢ € @, which we obtain as a consequence of Lemmas 6.7 and 6.14
below. Before proving Lemma 6.14, we need the following result, which we shall
reuse later and is therefore stated separately.

Lemma 6.13ALet EAbe a basic RWE.A Then there exist ny,ny < |E|2 and E such
that E =" E and E ="? E where E can be written as xay = ypx where x,y €
var(E) and a, B € (var(E)\{x, y}*

Proof We shall prove the case that £ ="! E. The case that £ =" E is easily
adapted. Recall that we may write any basic RWE as xo1yar = yB1xB82 where x, y €
X and a1, o, B1, B2 € (X\{x, y})*. We have the following claim:

Claim 6.13.1 For every basic, regular equation E given by xayoy = yf1xf2, either
ay = By = ¢, or there exists n < |E| and E’ such that E =" E’ and E’ may be
written as x'ajy'ay = y'Bx'B, where x',y' € X, ay, o), By, B € (X\{x',y'D*,
and such that || + |8} > la1] + |B1].

Proof Let E be given by xa1yas = yB1xf> where x,y € var(E) and a1, a2, B1, f2 €
(var(E)\{x, y})*. We have two cases, either var(a;) = var(B;), in which case,
due to the fact that E is basic and therefore indecomposable, we must have that
oy = B = &, so the claim holds. Otherwise, there exists z € (var(«y)\var(B1)) U
(var(B1)\var(oy)). W.l.o.g. suppose that z € var(oy)\var(B1). Then since E is
regular, z € var(B;) and we can write E as xyjzysyay = yB1x81262 where
Y1, ¥2, 81, 82 € (var (E)\{x, y, z})*. Consequently, we have that E =% E’ where E’
is given by zyaxy1yas = yB1x81z82. By Remark 3.2, we have that E =" E’ where
n < |E|. Moreover, E’ clearly has the form described in the claim as witnessed by
X' =z, y =y, a] = yxy, ) = az, f; = P1x81 and B = 8». O

Since for any equation E of the form xaya = yBixB2, we must clearly have that
loer] + 181 < |E|, it follews from a simple induction on Claim 6.13.1 that £ =" E
for some n < |E|? and E of the form x’ay’ = y’Bx’ as claimed. O

Lemma 6.14 Let E be a basic RWE. Let Y = var(E)\A(E) and let Ey = wy(E).

Let o1, 92 € @g. Then H(fl N H(g # O if and only if @1, @2 are close.

Proof If Card(Y) < 2, then @ consists of the identity morphism only so the state-
ment holds trivially. Suppose that Card(Y) > 2. Suppose firstly that ¢, ¢ are
close. Then there exist y;, y2 € Y with y; # y; and y1,y2 € A(E)* such that

01(y1) = Y2y, ©2(01) = y2y1, 2(2) = v191(y2), and for y € Y\{y1, y2},

©1(¥) = ¢2(y). In order to show that H(f] N Hfz # (), we need the following claim.
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Claim 6.14.1 There exist £ € [Ey]- and &, 2, B1. B2 € (Y\{y1.y2})* such that
E can be written either as:

L. yi@iyada = y2Biy1a, or
2. yaiyidz = yiB1y282

Proof By Lemma 6.13, there exists E’ € [Ey]- such that £’ may be written as
X0z = z,éx where x,z € Y, x # z and &,3 € (Y\{x, z})*. By Lemma 6.3, Ey
is basic, meaning that each variable in ¥ = var(Ey) occurs exactly once on each
side of Ey. It follows by properties of = that each variable in Y also occurs exactly
once in each of x&z and zBx. Hence there exist &, &@” € (Y\{y2})* such that xéz =
a@’yra” (and such that y; occurs in either &’ or a”).

Suppose w.l.o.g. that y; occurs to the left of y; in the RHS. We shall show that
Statement 1 of the lemma is satisfied. The case that y, occurs to the right of y; is
symmetric and leads to Statement 2 being satisfied. Then there exist 8', 8", B €
(Y\{y1, y2))* such that zBx = B'y1B"y28"". Then we may write £’ as

N Al e Al Ll ol
oyt = pyi B

Note that z is a suffix of y,@” and a prefix of ,3 y1 Since y, does not occur in

B'y1, we have ys # z. Consequently, we may write o’ = &'z for some &". Then

E’\/

al

&'y28"z = B'yi B y2P

=>>; y2a///a/z - ﬁ y]ﬂ//yzﬂ///
=7 wna"dz=y BBy B
‘h /—,, \K—/ \(-/

apyjon Bi B

so ypa"a'z = ylﬁ”ﬁ/yzﬁ/” € [Ey]:> Since y; occurs either in @' orin @” = @"'z,
we may write @&’z as &1y ay for some 011 ap € (Y\{yl, y2})*. Thus the first
statement of the lemma holds with 8; = " and B> = B O

Assume that the first statement of Claim 6.1i1.1 holds. The case ttlat the second
statement holds is symmetric. Then there exists E € [ Ey]~, such that E has the form

Yi&1y2dy = y2Biy1fa. for some @1, &2, 1. o € (Y\(y1. y2))*. Let Ejyr be the
equation given by

Y2y191@DY191(72)91(@2) = o1 ()1 BV v2y191(B2)
and notice that

p1(E)

o1 (yD@1@DP1 (7)e1(@2) = 1 (v2)e1 (BDe1 ()1 (B2)
=% 2e1@)yier(n2)e1(@2) = e1(v2)e1(BDvivayi1e1(B2) .

EinT
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Moreover, recall that ¢2(y1) = y2y1, 92(y2) = v1g1(y2). Since a1,a2 €
(Y\{y1, y2)*, we also have @2 (@1) = ¢1(a1) and ¢ (@2) = @1 (a2). Consequently

02(E)

Yay191@DY191(12)91(@2) = vig1(32)¢1 (B y2y191(B2)
=7 v1e1@Dyie1(v2)e1(@2) = e1(y2)e1 (B Y1v2yie1(B2) .

EinT

Since E € [Ey]=, by definition (pl(E) € V(f] and goz(E) € V(g. Thus it follows
that E;y7 € Ugfl N Ufz and consequently H(fl N H(pb; £ .

Now suppose instead that HS N Hf, # 0. Let E;nt € Hf NHE . 1f o1 = ¢
then the statement holds trivially. Thus we assume that ¢; # ¢». Before we proceed,

we need the following claim.

Claim 6.14.2 Let ¢', ¢" € &g and ', u” € Y* such that |u'|, = [u”|, = 1 for all
yeY. Ifo' () =¢"(u"), theng' = ¢” and ' = p”.

Proof Suppose that ¢’ (1) = ¢”(u”). It follows from the definition of @ that for
any ¢ € @, the morphism 7y o ¢ is the identity over Y. Thus u’ = my (¢’ (1)) =
my (" (")) = p”. Furthermore, for each y € Y, we may uniquely reconstruct ¢’(y)
and ¢”(y) as the longest factors of the form A(E)*y in ¢’(u’) and ¢” (") respec-
tively. It follows from the definition of @£ and the fact that ||, |i”|, = 1 that these
factors will exist and be unique. Thus, under the assumption that ¢’ (") = ¢” (1),
it follows that ¢’(y) = ¢”(y) for all y € Y and hence ¢’ = ¢”. O

It follows from Fact 6.9 and Lemma 6.10 that for each i € {I, 2}, there exists
;i € Y* with |u;], = 1forall y € Y such that at least one of the LHS or RHS
of Ejnt has the form ¢; (u;). By Claim 6.14.2, and since ¢; # ¢2, a single side
of Ejyr cannot have the form ¢;(1;) for bothi = 1 and i = 2. By Fact 6.9, this
means that E;y7 ¢ V(pb;, Vf; and consequently that E;y7 € U(fl N U(fz. Thus, either
Statement 1 or Statement 2 of Lemma 6.10 holds with ¢ = ¢; and E' = E;n7.
W.l.o.g. suppose that the LHS of E;yr has the form ¢;(u1) and the RHS of E;n7
has the form ¢, (w2). This corresponds to the case that Statement 1 of Lemma 6.10
holds, so there exist yi, y2,..., ¥, with ¥ = {y1, y2,..., y»} and a permutation

o:{1,2,...,n} = {1,2,..., n} such that E;y7 may be written as

e101D)01(072) ... 01(¥n) = 8201(Ve2) - - - 1Yo =1))8101 Vo ) - - - 01 Vo (n))

where 8182 = ¢1(yo(1)) with 81,82 # & and o (1) = 1. Note that by the definition
of @, the fact that 6, # & implies that §; € A(E)* and 8, = 83y5(1) for some
83 € A(E)*.

Recalling that the RHS of E;y7 has the form ¢, (u2), we may directly infer that
U2 = Yo(1)Yo (2) ... Yo (n) and subsequently ¢2(ys(2)) = 82, 92(¥o () = 81901 (Vo))
and ¢2(y) = @1(y) forall y ¢ {ys(2), Yo} Thus ¢ and ¢, are close as required.

]
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We are now able to prove that each set H(f is in fact a subset of the vertices of
%> and thus that the subgraphs %’;E of 47, are well-defined.

Lemma 6.15 Let E be a basic RWE. Then H(f C [E]= for each ¢ € ®E.

Proof Let Y = var(E)\A(E) and let Ey = ny(E). By Lemma 6.11, there exists
¢ € @ such that ¢(Ey) € [E]=. Let E € Hﬁ for some arbitrary ¢’ € ®@g. By
Lemma 6.7, there exist k < 4Card(A(E)) + 1 and @1, @2, ..., ¢r € @g such that
¢ =¢1,¢9 =@, and for 1 <i <k, ¢; and ¢;4] are close. Thus, by Lemma 6.14,
there exist Eq, Es, ..., Ex such that E; € H(g N H;;H forl <i <k.

It follows from Lemma 6.12 that if E’, E” € H(f; for some i, 1 < i < k, then
E' =* E”.Thus, ¢(Ey) =* ¢(E,), Ex =* E,andfor 1 <i < k, E; =* Eii1.
Consequently, E € [E]=. Since this holds for all E € jff for all ¢’ € @f, the
lemma follows. O]

The following lemma completes the proof of Statement 1 of Theorem 6.8.

Lemma 6.16 Let E be a basic RWE. Let Y = var(E)\A(E), let Ey = my(E),
and let ¢ € @f. Then g[?y] is isomorphic to an isolated path contraction of order

Card(A(E)) of Hf.

Proof For k > 0, we shall say that a sequence of equations Ey, E1, ..., Ex4+1 as a
U-pathif Eg, Ex4+1 € V(f, E; e U(pE for 1 <i <k, and there exists Z € {L, R} such
that Eg =7 E| =7 Ey =7 ... =7 E; =7 Eiy1. Let ¢ be the relation on V(pE
such that E’ ¢ E” if and only if E’, E” € VwE and there exists a U -path starting with
E’ and ending with E”. We shall show firstly that the graph g‘ZE is an isolated path

compression of order Card(A(E)) of %E , and secondly that g[:gy] is isomorphic to
%‘j -

Clearly, every U -path is a path in %E . Moreover, it follows from the definition
of H(f , along with the fact that =7, is an equivalence relation for Z € {L, R}, that
for every vertex E’ € U(f , there exist E”, E"" € VWE and Z € {L, R} such that
E" =% E’and E' =% E". Consequently, every vertex in %’f either belongs to
V(pE or is the internal vertex of some U -path. It follows as a direct consequence of the
following claim that U-path containing a given vertex in U, f is unique, and therefore
that no two distinct U-paths share an internal vertex. Thus %‘i E is an isolated path
compression of order k of %E where k is the number of internal vertices in the
longest U-path in .7f".

Claim 6.16.1 Let E' € U(f. Then the in- and out-degrees of E’ in %E are exactly
one.

Proof Since E' € Uf, there exist a permutation o : {1,2,...,n} — {1,2,...,n}
and y1, y2, ..., ¥y, with Y = {y1, y2, ..., y»} such either Statement 1 or Statement 2
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of Lemma 6.10 holds. Suppose that Statement 1 holds. The case that Statement 2
holds is symmetric. Then we may write E’ as follows:

eDe(2) ... o) = 200002) - - - (Yo 1=1))810 Vo) - - - ¥ Yo ()

where o (1) =1, 8182 = ¢(y5(1)) and 81, 82 # e. Moreover, E e [Ey]— where E is

given by VIV2 ... Vp = Vo) Yo (2) - - - Yo (n)- Note that (p(é) iz E’.

Let Ejy, . Eq., be the equations such that Ey,. =, E’ and E' = E{,, . It

follows from the definitions that ¢(E) =% Ey., and o(E) =% Eg,, » 0 both
belong to Hf and the in- and out-degree of E’ in %E are both at least one. To see

that they are exactly one, we must show that for the equations E/ . and E. . such

preg SUCR

that Ej,. =g E'and E' =g E{,, neither E,. nor E{, is contained in the set
E ; /

H, . We may write E. as

2o(YD)P(2) ... 8302...0(Vn) = 20(Vs) - - Vo (i=1))019Vo (i) - - - Vo))

where 7 € X and 83 € X* such that §3z = §;, and we may write EguCR as

Yo(y2)...812'82...0(yn) = 8200052 - - - Vo (i—-1))819 Vo (@) - - - € Vo (m))

where 77 € X and y € X* such that 7y = @(y;). It follows by Fact 6.9 and
Lemma 6.10 that any equation in VWE U U(pE = H(pE must have ¢ (Yo (1)) = 8182
occurring as a factor of at least one side. However, since each variable occurs exactly
once on each side of the equations Ej. . Eg,.,. we may immediately observe that
(Yo (1)) does not occur as a factor of the LHS or of the RHS of either equation. Thus

Efrey> Equcy ¢ H, Eand the in- and out-degrees of E’ in %E are exactly one as
claimed. N

The following claim asserts that each vertex in E’ € U(f occurs on a U-path
with at most Card(A(E)) internal vertices. Since we have already shown that E’
occurs on exactly one U-path, it follows that all U-paths have at most Card(A(E))
internal vertices and thus that the order of the isolated path compression is at most
Card(A(E)).

Claim 6.16.2 Let E' € US. Then there exist k < Card(A(E)), Eq, E1, ..., Ext1
and Z € {L, R} such that:

1. Eo, Ex41 € VE and

2. E,-eU(fforlfifk,and

3. Ei=z Ej;1for0<i<k,and

4. thereexistsi,1 <i < k such that £/ = E;.

Proof Since E' € Uf, there exist a permutation o : {1,2,...,n} — {1,2,...,n}
and y1, y2, ...,y with Y = {y1, y2, ..., yu} such either Statement 1 or Statement 2

of Lemma 6.10 holds. Suppose that Statement 1 holds. The case that Statement 2
holds is symmetric. Then the equation E given by y1y2... Y1 = Yo(1)Yo(2) - - - Yo ()
is contained in [Ey]— and we may write E’ as follows

o). .. o) =2j41---2%kPVo2) - - Vo=1))21- - -Z2j@ Vo) - - - © Vo))
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where 0 (1) = 1,z122... 2k = ¢(Vo(y) and 1 < j < k < Card(A(E)) + 1.

Now, let E be the equation given by

o)

PODP(2) o 9O =722 R PV6@) - - 0 G (1) PTo®) - - - 9 Vo))

let E;+1 be the equation
o)

DY) ... 0On) = ¢(Vo) - - - w(ya(tfl))mfp(yn(t)) 0 om),

and for 1 <i <k, let E; be the equation given by

e(YDO(2) . 0(Yn) = Zit1-- 2k Yo ()P Vo 2)) @ Yo t=1))Z1 - - - Zi P Yo 1) -0 Vo (n)) -

Then clearly we have Eg = (E) € VwE . Let E’ be the equation given by

YIY2 o Yn = Yo@) - Yo(=)Yo()Yo(w - - - Yo(m)- Then E = E'so E' € [Ey], and
moreover Ex41 = (p(E )so Exy € VE Thus Statement 1 is satisfied. Note also that
E; =1 Eiy1 for0 <i <k, so Statement 3 is satisfied, and furthermore we have
that E; € H(f for1 <i <k.Foreachi, 1 <i <k, since each variable y € Y occurs
exactly once on each side E;, we may conclude that ¢(ys(1)) = 2122 ...2¢ isnot a
factor of the RHS of E;. Thus, by Fact 6.9, E; ¢ V(/,E so E; € U(f and Statement 2 is
satisfied. Finally note that E = E, so Statement 4 is also satisfied. O

It remains to show that 47 (Ey] 18 isomorphic to g © .. Recall that by definition VE =

{p(E") | E' € [Ey]=} and note that the functlon mapping equations E € [E Yl=
to their counterparts (p(E ) € VE is a bijection. Consequently, the fact that 4 vE is

isomorphic to %[?y] follows directly from the following claim.

Claim 6.16.3 Let E1, E; € [Eyl. Then E| = E» if and only if p(£))op(E»).

Proof Suppose that L%l = Ez. Then it follovzs from Lemma 6.12 that (p(El ) <>g0(ﬁ2).
Suppose instead that ¢ (E1) ¢ ¢(E>). Since E| € [Ey]=, it may be written as

VIY2.oYn = Yo(1)Vo(2) - - - Yo(n)
where Y = {y1, y2,...,ym}ando : {1,2,...,n} — {1,2,...,n} isgpermutatign.
By definition of ¢, there exists Z € {L, R} and £ € N such that p(E1) :>£Z o(E?).
Suppose that Z = L. The case that Z = R is symmetric. For i > 1, let E; be the
equation such that ¢(E1) :>’L @(E;). Let k = |¢(ys(1))| — 1. Then we may write
Eryq as

eDe(2) .. @) = Vo) - - Vo -1))P Vo (1)) Vo) - - - Vo m))-

Let E3 be the equation given by y1y2...y: = Yo2) -+ Yo(=1)Yo (1) Yo () - - - Yo (n)-
Then El = Eg SO Eg € [Ey]= and it follows from Fact 6.9 that E}| € VWE.
Hence we must have £ < k + 1. Moreover, for 1 < i < k, there exist 1, 62 such that
8182 = ¢(¥s(1)) and 81, 62 # € and such that we may write E; as

eODe(2) .. 0n) = 60200062) - - - Vo =1))810Vo ) - - - ¥ Yo @))-
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Consequently, by Lemma 6.10, E; € U(f for 1 <i < k. By definition, (p(EQ) e VE,

so it followsAthat £ > k and thus £ = k + 1, and thus that in fact Ez = Eg, meaning
that E1 = E» as required. O]

Claims 6.16.1 and 6.16.2 show that the graph %{;F is an isolated path compression
¢

of order Card(A(E)) of %E. Claim 6.16.3 shows that éf“:;] is isomorphic to %“;E, )
4

the statement of the lemma holds. O]

The following lemma deals with the second statement of Theorem 6.8. It asserts
that the subgraphs %’jpE completely cover the graph g[?]; each edge and each vertex

of ,(4[?] also belong to at least one subgraph %E .

Lemma 6.17 Let E be a basic RWE. Then 977, = | ).
YePE

Proof We have already shown in Lemma 6.15 that each vertex of | J %E is a vertex
YePE

of %[T;] Moreover, it follows directly from the definition of (%‘jpE that each edge in

U %’;,E is also an edge of %[?]. It remains to show that each vertex/edge of g[?] isa
YEPE

vertex/edge of %E for some ¢ € @g. The main step is Claim 6.17.1 as follows.

Claim 6.17.1 For every E' € [E]-, and Z € {L, R}, there exists ¢ € @ and
E" € V[ suchthat E” =% E'.

Proof Note that by Lemma 6.11, there exists Eg € [E]- and ¢9 € P such that
Ey € V(/f) and thus the claim holds for Ey = E’. Note also that for every E’ € [E]-,
since =™ is an equivalence relation, we have Eg =* E’. Thus it is sufficient to show
that if the claim holds for E; and E; = E;1, then it also holds for E; .

Suppose that the claim holds for E; € [E]- and that E; =7, E;y;. Then there
exist ¢; € @ and E!' € Vw‘? such that E/ iz E; and thus E/ :>§,_ E;11. Thus
Eiyy € Hf. If Eiyy € V[, then the claim holds trivially. Suppose instead that
Ei+1 (S U(g

LetY = var(E)\A(E) and let Ey = my (E). Recall that there exist a permutation
o:{1,2,...,n} > {1,2,...,n}and y1, y2, ..., yp With Y = {y1, y2, ..., y,} such
either Statement 1 or Statement 2 of Lemma 6.10 holds. Suppose that Statement 1
holds (the case that Statement 2 holds is symmetric). Then we may write E; 41 as

0i (YD) (32) - 0 (Yn) = 820i Vo) - - - 0i Vo 1=1))010i Vo) - - - ©i Vo))

where 0 (1) =1, 6162 = ¢; (Yo(1)) and 81, 6 # &. Furthermore, we have Ec [Ey]l—
where E is the equation given by

YIY2 - Yn = Yo(1)Vo @) - - - Yo(n)-

It is straightforward to see that for Z = L, (p,-(EA“) :>§ E;;1 and since (p,-(E) € V(f
by definition, the claim holds in this case.
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It remains to consider the case that Z = R. By Lemma 6.3, Ey is basic and
therefore indecomposable. Thus y; # ys(1). Let ;11 : Y* — X* be the morphism
such that @; 11 (Yo (1)) = 82, @i+1(1) = 819 (y1), and @;11(y;) = @i(y;) for 1 <
Jj =< nwith j ¢ {1,0(1)}. Note that g;+1 € Pg since §; € A(E)* and &, €
A(E)*yq(1). Let El”Jrl be the equation given by ¢; 41 (E), so that E[’H € quﬂ. Then
we may write E7 | as:

310 (Y@ (32) - .- 0i Vo (1)=1)820i Yo (1)+1) - - - @i (V)
= 520i(Ve@) - i Vo=1))010i Vo) - - - i Qo))

Consequently E;', | =% Ei41, so the claim holds for E; 11 and by induction, it holds
forall E' € [E]-. O

It follows directly from Claim 6.17.1 that every vertex of %[733] belongs to Hf for
some ¢ € @ and is consequently also a vertex of some subgraph %E . To see why
the same holds for edges, note firstly that for every edge (E1, E») in %[?], there exists
Z € {L, R} such that E1 =7 E». By Claim 6.17.1 and since E; € [E]-, there exist
¢ € Ppand E' € V(f such that E' =% E;. It follows that E’ =% Ej, meaning
that Ey, Ey € Hf (so they are both vertices of .%"). It follows by definition that
(E1, Ey) is an edge of %’;,E. L]

The proof of Theorem 6.8 is completed by the following lemma which addresses
the third statement of the theorem.

Lemma 6.18 Let E be a basic RWE. Let Y = var(E)\A(E) and let Ey = ny(E).
Let d = max{1, diam(%[?yl)}. Then diam(%[?]) € O|E)).

Proof Let E', E” € [E]—. Then by Lemma 6.17, there exist ¢’, " € ®g such
that E' € Hy and E” € Hyr. For each ¢ € ®p, note that by Lemma 6.16 and
Remark 4.6, there is path of length O(dCard(A(E))) between any two vertices in
H(f. Thus if ¢’ = ¢”, then there is path of length O (dCard(A(E))) from E' to E”.
Suppose otherwise that ¢’ # ¢”. Then it follows from Lemma 6.7, there exist
k € O(Card(A(E))) and @1, @2, ..., 9 € Pg such that ¢’ = ¢, ¢” = ¢ and

@i, pi+1 are close for 1 <i < k. By Lemma 6.14, there exist Eq, E3, ..., Ex_1 such
that E; € Hy N H,  forl <i <k

It follows that there exist paths from E’ to Ey, from Ey to E” and from E; to E; 4
for 1 < i < k of length O(dCard(A(E))). Thus there is a path from E’ to E” of
length O (kdCard(A(E))) = O(dCard(A(E))z) = 0(d|E|2). Since this is true for
all E’, E”, the statement of the lemma follows. O

7 Normal Forms and Block Decompositions
Having described the structure of g[?] for equations E which are not jumbled in the
previous section, the current section focuses on the structure of %[?] in the case that

E is jumbled. Our main result in this direction is the existence of specific normal
forms, from which every vertex in %[?] is polynomial distance away. We present two
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normal forms, with the second being a restriction on the first. Both are constructed
based on reversed structures in such a way that they allow for taking full advantage
of the invariant Yg from Section 5. A major advantage of this is that we are able to
show later in Section 8 that the number of equations occurring as vertices in %[?] in
the second normal form is bounded by a polynomial in | E|, allowing us to prove that
the diameter of %[?] is also polynomial.

Since the results in this section mainly concern positive reachability statements,
the technical content relies heavily on describing sequences of applications of =.
Certain sequences will occur repeatedly, so it is convenient to define some shorthand
notations given in terms of the following ‘shortcut’ relations.

Definition 7.1 (u—’v> and ®) Foreachu, v € X, we define the relation L% over basic
regular equations as E kY E» if there exist x, y € X and o, a2, a3, B1, B2, B3 €
(X\{u, v, x, y})* such that E1 may be written as xajuayvazy = yBiufrvf3x and
E> may be written as xajvasuary = yBivB3uprx. Additionally, we define © =

g

u,veX

Note that there exist u, v € X such that E; ik E; if and only if E1 © E».
The following lemma verifies that if £; ® E;, then we can reach E> from E; by
a short sequence of applications of the rewriting transformation =, or equivalently,
that there is a short path from E| to E3 in %[?1].

Lemma 7.2 Let x, y,u,v € X and a1, a2, a3, 1, B2, B3 € (X\{x, y,u, v})*. Let
E1 be the basic RWE given by xajuarvazy = yBiuprvfsx and let E; be the basic
RWE given by xajvaszuary = yBivBsufax. Then there exist ny,ny < 4|E1]| such
that E; =" Ey and E; =™ E;.

Proof Let E3, E4, E5 be the equations given as follows:

Es: vazxauony = yBiufrvBix
Eq:  xajvasuay = ufrypivfsx
Es : vazxajuary = ufryBivfsx.

Then it follows directly from the definitions that £y =% E3 =] Es =% E4 =]
E>. Thus, by Remark 3.2, there exists n| < 4|E| such that E; ="! E,. By the same
remark, we know that :2, :”1} are symmetric, and thus we may similarly conclude
that £y =7 E4 =% Es =] E3; =} E; so there exists ny < 4|E| such that
Ey =™ E. L]

Corollary 7.3 Let E|, E3 be basic RWEs. If E{ O™ E; for some m € N, then E1 ="
E> for somen € O(|E1|m).

The first of our two normal forms is defined as follows. Theorem 7.5 confirms the

desired property that any basic RWE E can be transformed into an equation E which
is in normal form in a small (i.e. polynomial in | E|) number of rewriting steps.
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Definition 7.4 (Normal Form) Let E be a basic RWE. Then E is in normal form if
it can be written as xajo2, ... o,y = ycxfeaf .. .oz,lfx where x,y € X, a; € X for

1<i<n,and |o;| <3forl <i <n.

Theorem 7.5 Let E be a jumbled basic RWE. Then there exists E which is in normal
form and such that E =™ E and E =™ E for some n1,ny € O(|E|?).

The main step in the proof of Theorem 7.5 is the following lemma, which we shall
make use of again later and is therefore stated independently.

Lemma 7.6 Let E be a jumbled basic RWE of the form xy1 81y = yy2B2x where
x,y € X, v1,v2, B1B2 € (X\{x, y})* and var (y)) = var(y,). Then at least one of
the following two statements holds:

1. Bi=BX or
2. there exists o € var(B1)* with 1 < |a| <3, n1,n2 € var(B1)* andn € O(|E|)
such that E O" xyiany = yyrafnox.

Proof Throughout this proof, we shall use the fact that E; L5 E> implies E; ©
E> and shall use the two notations interchangeably where convenient. Let E be a
jumbled basic RWE of the form xy1 81y = yy»282x where x,y € X, y1, y2, B152 €
(X\{x, y)* and var(y;) = var(yz). Suppose that 8; #* ,BZR. Note that since E is
basic and regular, var(81) = var(f,), and moreover we have that 81, B> # ¢. Hence
we may write E in the form:

Xyjudyy = yy28oudzx (D

where u € X, and 81, 87, 83 € X™* such that ué; = B; and S,ué3 = B». If 8, = ¢ then
we can set « = u and we are done. Otherwise, the next step is to show that we can
get to an equation of the form

xy1u8iZ1Z2 - Zk(?éy = YV2Z2kZk—1 - - .zluégx 2)

where z1, 22, ..., 2k € X, 81, 85, 85 € X*. Suppose that our equation of the form (1)
is not already of the form (2). Suppose firstly that there exist vi, v € X such that
v1 and vy occur in the same order in §; and ;. In other words, suppose there exist
81,1,81,2,813,82,1,822,823 € X* such that we can write §; = §1,1v181,2v2813
and 6, = 82’11)152,21)232,3. Then we have that E M El,g where E1,2 is given
by xy1u81y = yy28udsx such that |8| < |8, with 8] = 81.1v281 301812, 82 =
82,1v282,3 and 3A3 = 03v182,2.

Iterating this, we may thus conclude that there exists n; < |§2| and a sequence
E=E1OE20...0 Ejj, suchthat Ey ,, has the form

Qo7 . Q7
XY1u8|y = YY22kZk—1 ... 21Ud3x

where z1, 22, ..., 2t € X and 3/1 € X*11 X* 2 X* ... X*z: X*. If all the internal X*
factors are the empty word (i.e. if 3’1 € X*z1z2...zx X™), then Eq ,,, already has the
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desired form described by (2). Otherwise, there exists w € X\{z1, 22, ..., zk} such
that w occurs between z; and zx in §]. More precisely, we can write E1 ,, as:

XY1u81,12101,2w81,32k61,4Y = YV22k62,12103,1W83 2X

where 81,1, 81,2, 81,3, 81,4, 62,1, 83,1, 83,2 € X* such that 6] = 81,12181,2w81,32k81 4

? 2 ? ? . 71w
and zxp—12k—2...22 = 82,1, and 8:; = §3,1wd3 2. In this case we have Eq SilaY

Zk»21 . .
E>1 —— E;»» where Ej j is given by

xy1ud1,1wd1,32k81,421812Y = Y¥22xk82,1 W3 22183 1%

and E» > is given by

Xy1ud1,1wd1,32161,22k81,4Y = Yy221u83,12162,1 W33 2X

which is again of the desired form described by (2) for k = 1 and z; = v;. In all
cases, there exists np < |E| such that E ©"2 E, for some equation E» of the
desired form (2).

Now suppose that E; > has the form (2), and define 81, 85, 85 accordingly. Next,
we note that there exists n3 € {0, 1} such that E; » ©"* E3 where E3 has the form

/ " . !l
XYIU'Z122 ... 2kO1Y = YV2ZkZh—1 ... 21U Oy X 3)

where u’ € X and 87,87 € X*. Indeed, if 8] = &, then this is trivial, simply taking
E3 = E . Otherwise, there exists u’ € X and 8 |, 85 |, 8; , such that §] = & ,u’

and 85 = &, ,u'8; ,. Then E> > may be written as:

/ Vi / . / 12
xyluél’lu 2122+ - 20y = YV2ZkZk—1 ...zlu83,lu 83’2x

’
and E > i E3 where E3 is given by
xy1u'z122 ... 2k8yuU| |y = yyazkzi—1 ... 21’85 udy  x

which is of the form (3) as required. Now, if k < 2, we may take @« = u'z122 ... 2k,
m = 8ud| , and ny = & ,ud} | and we are done. Suppose otherwise that k > 3.
Next, we observe that if u(Sg | and uég | share a non-empty suffix, then we have an
equation of the form x...sy = y...sx. However, this implies that (s, s) € Yg,,
and by Theorem 5.3, ¢, = 7k, meaning that E is not jumbled: a contradiction.

Consequently, there must exist 5,7 € X with s # 7 and 8] |, B1,. 85 1. B3, € X*
such that E3 has the form

/ / / . ! n! /
XYW 2122 - 2k Py 1SB1 21y = YV22kZk—1 - - - 21U By (1B 55X
22,8 21,t 2,2 u',zk—1
Then we have E3 =2 E4q SN E4 2 BLIAIN E43 —— E44 where
E41, Es2, E43, E4 4 are given as follows:

Ear:  xyudzisBiotza. . 2Bl Y = yYazazk—1 - .- 23520211 By 115 0%

E4o: xyu'tzy ... Zkﬁi,lzlsﬁi,zy = YV22kZk—1 - - .Z3szztﬂé’2zlu'ﬂé’1x

Esz:  xydtza. . zezisBypuBray = yvazi' By k21 - - - 2352215 X

Eiq:  XV12k—1218B) 22k By (U122 . . . Zk—2Y = YV2Z1Zh—12k—2 - - - 2352215 o1t By 12k X.
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Now, E4 4 has the required form with & = zk—121, m = sB| 2Py (U'tz2 ... 2k—2
and np = Zx—2 . Z3S221ﬂ2 U ;62 12k Moreover, we have that E O" Eq4 withn <
n2+n3+4<|E|+5€0(|E|)ascla1med O

We can now prove Theorem 7.5 with a simple induction based on Lemma 7.6.

Theorem 7.5. By Lemma 6.13, we have that E ="! E’ and E’ =" E where E isa
basic regular equation of the form xf;y = yByx such that x,y € X and By, B2 €
(X\{x, yD* with ny,n) € O(|E|%). By Theorem 5.3, since E is jumbled, E’ is also
jumbled. By a simple induction using Lemma 7.6 (starting with the case that y; =
y» = &) we can therefore infer that E’ ©"2 E for some E in normal form and n; €
O(E |2). It follows directly from the definitions that ©, is symmetric, so we also
have that E ©"2 E'. Thus, by Corollary 7.3 we have that E' =" E and E =" E’
for some n3, n’3 € O(|E|?), and therefore also that E =" E and E ="" E for some
n,n’ € O(|E|?) as claimed. O

The idea behind the first normal form is to divide the RWE into pairs («¢;, aiR )
which are regular-reversed word equations (although solutions to the full equation
E are not necessarily solutions to these smaller equations), and for which all but
one belong to a finite number of cases (i.e. three cases depending on the length of
«;). Forcing the sub-equations to be regular-reversed gives us the most control when
working with the invariant 7g. Some intuition behind this fact can be derived from
the observation that if we know that a (complete) basic RWE E is regular-reversed,
we can uniquely reconstruct it from the leftmost two variables on the LHS and 7%.
Indeed, any regular-reversed basic RWE E can be written in the form xjx>...x, =
XpXp—1 ...X1, meaning that g = {(x;j—1, xi+1) | 2 < i < n}U {(x,—-1, x2)}, and if
we know x1, then we may infer from 7g all the odd-index variables (x3, x5, ...) and
if we know x, then we may infer all the even-index variables (x4, x¢, . . .).

Rather than looking at the pairs («;, aiR ) in isolation, in order to take full advantage
of the invariant 7g, we actually need to consider pairs of the form

R R R
(@iiyr .- 0, 0 0 ...aj)

for well-chosen values i and j. We shall call such pairs blocks, which we define
formally below.

Definition 7.7 (Blocks) We define 3 variations of blocks which may each have up to
two types.

1. A standard block is a pair (aja5 .. oz],oefeoeée .. .af) such that j > 1, o; € X*

for1 <i < j,|a1| € {1,3},and foreachi, 1 <i < j, |o;| = 2. Itis Type A if
lar] = 1 and Type B if || = 3.

2. An initial block is a pair (xa;y ...aj, yotf .. .af) with j > 0, x,y € X with
x # y,and o; € (X\{x, yD*™ where |o;| = 2 for 1 < i < j. All initial blocks
are Type A.

3. Afinal block is a pair (y18y, y28%x) where x, y € X withx # y,and y1, 1,8 €
X* with |§] > 1 such that (y1, y2) is a block (initial or standard). It is Type A if
(y1, v2) is Type A, and Type B otherwise.
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Given an equation which is in normal form, we may decompose it uniquely into
blocks in the following manner. The intuition behind this decomposition is that if we
fix the invariant property Yg, then each block (with the exception of the final block)
is determined entirely by the block preceding it along with its first (leftmost in the
first element) variable. This gives us a crucial degree of control when considering
which equations in normal form may appear in g[?]

Definition 7.8 (Block Decomposition) Let E be a basic RWE in normal form. Then

E may be written as xajo ... 0,y = yafaf .. .otfx where x,y € X, a; € X for
1l <i<n,and |o;]| <3forl <i <n.Letl = {ij,io,....,0x}={i|1<i<

nand ;| 2} withl <i) <ip <...<ip <n.If I =0, let®B = (E). Otherwise,
let B = (Bo, By, ..., By) where for 0 < j <k, the B; are blocks such that:

1. By=(xoj...05_1, yc'cfe .. .ocilf_l),

2. By = (vj ...y, oziIZ .. .a,fx), and

. R R
3. forl <j<k Bj= (aij R PR 171).

Then ‘B is the block decomposition of E.

As an example, consider the basic RWE E given as follows:
o] o o3 oy o5 o6 alR (Xf ‘15 af O(§ alf
= —— I —t— . AN N S A ——
XZ122 Z3 Z4752627Z8 Z9 Z10Z11Z12213 Y = Y2221 Z3 262524 2827 29 ZI13Z12Z11210X

Note that E is in normal form. Then I = {2, 3, 5} and the block decomposition of E
is (By, B1, By, B3) where:

By = (xz1z2, yz221)

By = (z3, z3)

By = (2425262728, 2625242827)

B3 = (29210211212Y, 29Z12211210X)-

Another example illustrating the block decomposition of an equation in normal form
is given in Fig. 6. The next fact follows directly from the definitions.

Fact 7.9 For every basic RWE in normal form, there exists a unique block decompo-
sition (By, Bj, ..., By) where k < Card(var(E)), By is a final block, and if k > 0,
then By is an initial block.

Since the blocks are fixed by their first variable, it is natural to ask for which
variables we can find an equation in our graph %[?] such that the block begins with
that variable. In particular, can we find an equation in normal form in g[?] for which
the first variable of each block is lexicographically minimal when reading from left
to right? The answer to the question is “nearly”. In other words, if we relax the notion
slightly to account for some specific exceptions, then we can always guarantee the
existence of such an equation. This leads to the notion of Lex Normal Form defined
below.
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By B, B; B3
X.21 22 | 2324 2526 27 || 28129 2102111212 213 214 215
Y2221 || 2524 23.27 26 | 281210 9| 211: 215814 X13X12.X
Initial (A) Standard (B) Standard (A) End (A)

Fig. 6 A depiction of the equation E given by X212223242526272829210211212213214215Y =
V222125242327262821029211215214213212X where x, y and z; for 1 < i < 15 are variables. The LHS and
RHS of the equation are aligned vertically. The block decomposition 8 = (By, By, B2, B3) of E is shown
with solid rectangles and with the variety and type of the block written beneath. The additional divisions

into the factors «;, ozl.R required by the definition of normal form are indicated by dashed lines (so that,

ie. ap = 7122, @2 = 237475, 03 = 2677, 4 = 28,25, ®5 = 29210, A6 = Z11 and &7 = Z12213214215)-
In order for the equation to satisfy the definition of Lex Normal Form, the variables highlighted in bold
must be lexicographically minimal with respect to the appropriate sets I:E For i = 1, we have that

FIE ={z; | 3 <i < 15}\{z4}. In particular, FIE consists of the first variable in the block B; (x3) along
with (nearly) all variables on the LHS of the equation occurring to the right of z3, excluding the rightmost
variable (y), and since Bj is Type B, also excluding the second variable in the block B; (namely z4). On
the other hand, since B3 is Type A, for i = 2, we do not need to exclude the second variable in the block
By, s0 I 2E = {z; | 8 < i < 15}. Assuming an underlying lexicographic order for which z;; is greater
than z;, we can conclude that E is in Lex Normal Form

Definition 7.10 (Lex Normal Form) Let E be a basic RWE in normal form. Then
there exist x, y € X and o, 8 € (X\{x, y})* such that E has the form xay = yfx.
Let (Bo, By, - .., Bx) be the block decomposition of E. For each i, 0 < i < k, let
Yi» ¥/ € X* such that B; = (y;, ¥/), let S; = {y;[2], y} whenever B; is Type B and

S; = {y} otherwise, and let I'’* = | |U wvar(y;) | \Si. A block B; is lex-minimal
i<j<k

if y;[1] is lexicographically minimal in 1"lE . The equation E is in Lex Normal Form

(LNF) if, foreach i, 0 < i < k, B; is lex-minimal.

Lex Normal Form (see also Fig. 6 for an example) describes the class of equations
for which the first variable of each blocks is lexicographically minimal whenever
possible. We can, in general, guarantee the existence of an equation E’ in %[?] such
that the first variable of each block is lexicographically minimal with the following
exceptions. Firstly, we must exclude the first and last blocks (the first block is fixed
completely by 1%). Secondly, we must only compare the first variable to other vari-
ables occurring further right in the LHS of the equation, and excluding the rightmost
variable on the LHS of the equation (y in the definition above) and, for blocks of
Type B, the second variable in the block. The sets FlE in the definition account for
these exclusions.

The main result of this section is that every vertex in {4[?] is never more than a
polynomial distance away from a vertex corresponding to an equation in LNF.

Theorem 7.11 Let E be a jumbled basic RWE. Then there exists E' such that E’ is

in Lex Normal Form, and such that E =" E’ and E' =" E for some n{,n; €
O(IE[*.
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Although Theorem 7.11 does not provide as detailed a description of the graphs
%[?J in the jumbled case as Theorem 6.8 does in the non-jumbled case, it does allow
us to study them as the polynomial-distance neighbourhoods of the highly restricted
set of vertices corresponding to equations in Lex Normal Form. Section 8 gives a
strong example of the benefits of this approach, allowing us to show firstly that the
cardinality of the set of vertices in Lex Normal Form is bounded by a polynomial in
|E| (in contrast to the fact that the total number of vertices will typically be expo-
nential, as shown in Section 9), and consequently, that the diameter of %[?] is also
bounded by a polynomial in |E]|.

Proof of Theorem 7.11 The rest of this section is devoted to proving Theorem 7.11.
To do so, we essentially provide a strategy for rewriting any jumbled basic regu-
lar word equation E into an equation in Lex Normal Form. The overall structure is
similar to that of Theorem 7.5 in the sense that we transform the equation in steps
from left to right so that after each step, the prefixes of the LHS and RHS having the
desired form are longer. Since each side of the equation stays the same length under
the transformations, we eventually reach a state where the entire equation is in the
correct form.

The first step in this strategy is to first ensure that E is in normal form (which
we can do due to Theorem 7.5). We can then decompose E into blocks according to
Definition 7.8 (see also Fig. 6). In each subsequent step, we apply transformations
which increase the number of blocks satisfying the requirements for Lex Normal
Form. In particular, if the first j blocks satisfy the requirements for Lex Normal
Form, then we apply a sequence of transformations which either preserve the first
j — 1 blocks and turn the j** block into a final block, or which preserves the first j
blocks, and which result in an equation which is also in normal form, and for which
the j + 1/ block also satisfies the requirements for Lex Normal Form. Note that Lex
Normal Form does not impose any additional constraints on the initial or final blocks,
so we can start with j = 1 and we are done whenever we produce a final block.

There are two cases depending on whether the j + 1" block is Type A or Type B.
The case that it is Type A is substantially the easier of the two and is considered
directly in the proof of Lemma 7.17. Lemmas 7.12-7.16 focus on the case that the
block is Type B. In this case, there exist x, y,a, b, ¢, € X and 1, /L’l, ua, ,u/2 e X*
such that our equation may be written as

xprabepay = ypjchapusx

where var(u1) = var(u}) and var(uz) = var(u}), the prefixes xu1 and yu
constitute the first j blocks (the ones satisfying the requirements for LNF), and such
that the j + 1" block, which does not satisfy the requirements for LNF, has the form
(abcy, cbay') for prefixes y, y’ of uz, u), respectively. Our aim is to transform the
equation above into an equation either of the form:

xm By = yusBRx

in which case the j block becomes final (and all other blocks are preserved), or of
the form:

xpizbwny = yujwbzn'x
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where w, z € X and , n’ € X*, such that either ’ = n® (meaning (zbwny, whzn'x)
is a final block), or z is lexicographically minimal in I” jﬁ_ | = var(uz) Ua, c}.

In the case that ' = n&, then the new equation is in normal form and will have
a block decomposition with j + 1 blocks, such that the first j blocks are the same
as before, and thus satisfy the requirements for LNF. The j + 1" block is final, and
trivially satisfies the requirements for LNF, so the whole equation is in LNF. In the
second case, we can apply Lemma 7.6 to further transform our equation into one in
normal form without changing the prefixes x1zbw and yu|wbz. In the resulting
block decomposition, the first j blocks will remain unchanged, while the j + 1/

block will have the form (zbwy, wbzy') for some y, ¥y’ € FjEH*. Since FjE+1 will
also remain unchanged, z is lexicographically minimal in I” ﬁ] for our new equation

E', so the j + 1" block also satisfies the requirements for LNF as intended.

The following lemma shows us how, under the rewriting transformation ©, we can
replace the factors abc and cba with factors dbe and ebd, providing that d, e € X
occur in the appropriate positions (namely directly left of y and x on the LHS and
RHS respectively).

Lemma 7.12 Let E, E’ be basic RWEs given by

E: xpiabcprdusey = yucbapsepsdx
E":  xuiebduszcuray = yp/ldbe,u,gau/zcx
where x,y,a,b,c,d,e € X and i1, j12, 143, |1}, iy, 1y € X*. Then E O3 E.

Proof 1Tt follows from the definitions that:

E

x;uabcugdu3ey£yu/lcbau/zepf3dx
E) xmaebcuzd,u3yiy,u/lceu/3dbau/2x
LA x i aebd pz ¢ poy =y p) dba ph ce pf x
e

x w1 ebd pz ¢ po ay =y py dbe p apsex.
E’

Thus the statement follows by Lemma 7.2. O

Of course, the variable d occurring to the left of y on the RHS will in general
not be the lexicographically minimal element z of I” jE+]' In order to take advantage
of Lemma 7.12, we also need to find a sequence of transformations which, for any
z € {c} Uwvar(v), results in an equation of the form xua’bc'nzy = yu'c’ba’n'x
with @/, ¢’ € X and n,n’ € X*. To achieve this, we need Lemmas 7.13 and 7.14 as
follows.

Lemma 7.13 Let E be a basic RWE given by xpiapury = yuhafulx with
o, 1, o, Wy iy € X5, 2 < el < 3, |p2l = 1 and var(uy) = var(u}). Let
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v = a[|a| — 1]. Then for each z € var(apu2)\{v}, there existsn < 3 and n,n’ € X*
such that E O" xpu1nzy = yun'x.

Proof Let z € var(auz)\{v}. If z is a suffix of u, then the statement holds trivially.
Suppose that z is not a suffix of p>. We shall consider two cases separately. Firstly,
suppose that z € var(uz)U{a[|«|]}. Then there exists w € X such that zw is a factor
of arpi2. Moreover, w € var(uz) = var(u), so there exist vy, vz, v}, V) € X* such
that 1o = viwvy and w) = vjwv) where v| = ¢ if z = af|al], and v([|v(|]] = z
otherwise. Furthermore, there exists u € X and o’ € X* such that « = wuo’ and

R _ /R . / - / IR / /
ot = u. Thus we may write E as xpjua'viwvyy = yu e’ “uvjwv,x, and thus

u,w . . . .
E —— xpjwvyua’vyy = y,u’]a’vaéuv{x. Since z is a suffix of o’ vy, the statement

of the lemma follows.

Now suppose that z ¢ var () U{a[|a|]}. Then the only possibility is that |e| = 3
and z = «[1]. In this case, due to the fact that © is symmetric, the statement follows
directly from Lemma 7.12. O

Lemma 7.14 Let E be a basic RWE given by xjujvpay = ypvusbx withv € X and
W1, 2, Wy, wy € X* such that var(up) = var(u}). Then for every z € var(viua),
there exist v' € X and n, ' € X* andn < 1 such that E ©" xp1v'nzy = yujv'n'x.

Proof Let z € var(vuy). If z is a suffix of wo, then the statement holds trivially.
Otherwise, there exists w € X such that zw is a factor of vu,. Moreover, since
w # v, w € var(uz) = var(u,), so there exist vy, v2, vj, v5 € X* such that
vy = viwvy and v, = viwv). Thus we may write E as X vjwvay = yujvjwvix
such that v is a prefix of v; and v{, and such that z is a suffix of v{. Thus, E ke

XUiwwavy = yu/l wvévix, and since z is a suffix of vy, the statement of the lemma
follows. O

Recall that our strategy for transforming an equation of the form xujabcury =
yucbap)x into one of the form xjpizbwny = yujwbzv'x is first to ‘move’ the
lexicographically minimal variable z from I” .‘il into the correct position (to the left
of y on the LHS) and then to apply Lemma 7.14. We can consider three cases for z
separately. The first, that z = a is trivial, and we do not need to change our original
equation at all. The case that z = c is the most involved and is considered in the proof
of Lemma 7.16. All other choices of z (namely when z € var(u3)), are addressed in
Lemma 7.15 below.

Note that in the statement of Lemma 7.15, the factors j12, 1), are replaced by 1128
and 1158 R respectively. We may make this change w.l.o.g. since our equation is in
normal form, and since the case that o = p) = ¢ is trivial (the 7™ block will
be final in this case). Moreover, if |§] = 1, then (8,5) € 7%, so it follows from
the definitions that the equation is not jumbled. Since we are only interested in this
section in jumbled equations, we may therefore also assume that |6] > 2, which is
necessary for the proof of the lemma.
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Lemma 7.15 Let E be a basic RWE in normal form given by
xpiabepady = yucbauhs® x

with a,b,c € X and 8, wy, pa, iy, y € X* such that |8| > 2, and var () =
var(u}). Then at least one of the following two statements is true.

1. Thereexistn € O(|E|), a’,c’ € X, and B € X such that E ©" xua’bc’ By =
yuc'ba' BRx, or

2. for every z € var(us8), there exista',c’ € X, n,n € X*, andn € O(|E|?)
such that E ©" xp1a’bc’'nzy = yuc’ba’n'x.

Proof Suppose that the first statement does not hold and notice that this implies
|na| = 1. We shall now prove that the second statement holds. We divide our rea-
soning into three cases based on the prefixes of u and w. In particular, since E is
in normal form, there exists a prefix «; of uy such that aiR is a prefix of u1}, and such
that 1 < |o;| < 3. Firstly suppose that |o;| = 1, or in other words that p, and y/2
have a common prefix v € X. Then the statement follows directly from Lemma 7.14.

It remains to consider the cases that |«;| = 2 and |«;| = 3. Before we consider
these cases explicitly, it is convenient to define the following equation E’ such that
E " E; for some n’ € O(|E|). In particular, note that there exist u, v € X such that
8 = ud’v. It follows by Lemma 7.12 that there exist vi, v; € XT with var(v)) =
var (v}) such that E O3 xpvbuvyy = yujubvvix. Moreover, by Lemma 7.6, there

exist v, v, € X*, B € X andn’ € O(|E|) such that E " E’ where E' is given by
E':  xujvbupvyy = yu ubvB®vix

where 1 < |B| < 3 (recall by our assumption that the first statement of the lemma
does not hold, that v, # ¢). Note that since E ©* E’, we have E =* E’ and thus by
Theorem 5.3, Y =1 = 7.

We are now ready to consider the second case, that |o;| = 2. In this case, there
exist d, e € X such that o; = de, so de is a prefix of u, and ed is a prefix of M/z
If z € var(ura)\{d}, then the second statement of the lemma follows directly from
Lemma 7.13. Suppose instead that z = d. In this case, we shall show that the (second
statement of the) lemma holds for E’. Since E O" E', it follows that the lemma also
holds for E.

If |B] = 1, then the second statement of the lemma follows from Lemma 7.14
along with the fact that £ o" E. Similarly, if |8] € {2,3} and z # B[|B] — 1],
the statement follows from Lemma 7.13. Finally, we must consider the case that
B €{2,3}and z = B[|B| — 1]. If | B| = 2, then there exists 7' € X such that 8 = z7'.
It follows that zz’ is a factor of the LHS of E’ and v7’ is a factor of the RHS of E’,
so (z,v) € T. Furthermore, by our assumption that z = d, ze = de is a factor of
the LHS of E and ae is a factor of the RHS of E, so (z,a) € 7. However, since
a # v, this contradicts Remark 5.2. We can proceed similarly when || = 3. In
particular, if || = 3, then there exist z/, z” € X such that 8 = z'zz”. It follows that
(z,v), (u, z) € T. Furthermore, since z = d, we also have that (z, a) € T". However,
since v # a we again get a contradiction to Remark 5.2. Thus d # B[|8| — 1] and
we are done with the case that |o; | = 2.
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Suppose now that |«;| = 3, meaning there exist d, e, f € X such that o; = def
is a prefix of uy and fed is a prefix of ;/2 As before, if z € var(uaa)\{e}, the
second statement of the lemma follows from Lemma 7.13 (applied to E). Suppose
instead that z = e. We shall again proceed by showing that the second statement of
the lemma holds for E’. If |8| = 1, it follows directly from Lemma 7.14. Similarly,
if |B] € {2,3} and z # B[|B] — 1], the statement again follows from Lemma 7.13.
Finally, suppose for contradiction that 8 € {2, 3} and z = B[|8] — 1]. We again have
to consider two cases based on |B]. If |8] = 2, then there exists 77 € X such that
B = z7'. Tt follows that (z, v) € 7. Furthermore, since z = e, we also have that
(z,a) € T, a contradiction to Remark 5.2. Similarly, if |8| = 3, then there exist
7/, 7" € X such that 8 = 7'zz”. Tt follows that (z, v), (4, z) € 7. Furthermore, since
z = e, we also have that (z, a), (¢, z) € T. However, since u # ¢, v # a we again
get a contradiction to Remark 5.2. Thus d # B[|B8| — 1] and the statement holds as
required. O

We are now ready to prove the following lemma, which is the main technical step
in the proof of Theorem 7.11, showing that we can replace the factors abc and cha
at the start of the j + 1’ block (which occur whenever the block is Type B) with
factors zbw and wbz where z is any variable from I” jb:rl , and hence that we can do the
same for the lexicographically minimal choice of z. This, combined with Lemma 7.6,
allows us to transform the equation into one with the j + 1/ block satisfying the
requirements for Lex Normal Form.

It is also worth noting that the variable b and whether the block is Type A or Type B
remain unchanged (see Section 8 for more information on why we cannot change
them). Aside from these parameters, we can essentially produce all other possibili-
ties for the variable in the first position in the block. In other words, we do not use
anything about the lexicographic order other than it permits us to make some well-
defined choice at each stage which is consistent across all equations. Consequently,
there is a high degree of symmetry in the set of equations in normal form occurring
in the graph 97

Lemma 7.16 Let E be a basic RWE in normal form given by
xpiabepady = yucbaubs®x

with a,b,c € X and 8, 1, p2, iy, ty, € X* such that |8| > 2 and var(uz) =
var(u’z). Let I' = wvar(uz8) U {a,c}. Then at least one of the following two
statements is true.

1. Thereexistn € O(|E|), a’,c’ € X, and B € X such that E ®" xp1a’bc’ By =
yuc'ba' BRx, or

2. foreach z € I, there exist w € X, n,n € X* andn € 0(|E|2) such that
E O" xpzbwny = yu wbzn'x.

Proof Assume that the first statement does not hold and notice that this implies
|p2| = 1. We shall now prove that the second statement holds. The case that z = a is
trivial. Next, consider the case that z ¢ {a, c}. Then z € var(u>26). By Lemma 7.15,
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and by our assumption that Statement 1 of the lemma does not hold, we get that there
exista’,c’ € X v,v' € X* and n’ € O(|E|?) such that

E 0" xpa'bcvzy = yuyc'ba'v'x.

Since E is basic and regular, and since var(ui) = var(,u’l), we may conclude that
var (V') = var(vz). Thus, by Lemma 7.12, there exist , n” € X* such that

xpia'bc'vzy = ypc'ba'v'x ©F xpzbwny = yujwbzn'x

where w = V/'[|V'|]. Consequently, we have that E ©" xuizbwny = y,u/l wbzn'x for
some n € O(|E]) and the second statement holds as claimed.

It remains to consider the case that z = ¢. Then since |§] > 2, there exist u, v €
X\{a, b, ¢} such that § = ud’v for some §' € X*. Thus, by Lemma 7.12, there exist
v, V] € X*4 such that E O3 xpvbuvyy = yuubvv|x. Moreover, since E is
basic and regular, and since var (1) = var(,u/l), we may conclude that var(vy) =
var(v}). Thus, by Lemma 7.6, there exist v2, v, € X*and € X andn; € O(|E|)
such that E @"! E’ where E’ is given by xpivbuBvry = yujubvpRvjx and such
that 1 < |B] < 3 whenever v, # €. By our assumption that the first statement of the
lemma is not true, we must in fact have that v, # €.

Additionally, note that var(v;) = wvar(v}) and ¢ € wvar(Bv2). Thus, by
Lemma 7.15, along with our assumption that the first statement of the lemma does not
hold, it follows that there exist no € O(|E|?), d’,c’,d € X and n, ’ € X* such that
E’ ©" E" where E" is given by xu1a’bc’'ncy = yu'c’ba’n'dx. As before, since E
(and therefore also E”) is basic and regular, and since var(u;) = var(/ﬂl), we may
further conclude that var (nc) = var(n'd). Similarly, since E is jumbled and EQ*E”
(meaning also that E =* E”) it follows that E” is also jumbled and consequently
that d # c. Hence we may write E” as xuia’bc’'nidnacy = yp'c’ba'n|cn,dx
where 1, n/l, n2, 77’2 € X* and the second statement of the lemma follows from
Lemma 7.12. O

Having described the main technical elements to the proof of Theorem 7.11, we
are now ready to give the main intuitive statement as to why it holds, which also
constitutes the main induction step, forming the backbone of the proof.

Lemma 7.17 Let E be a jumbled basic RWE in normal form with block decomposi-
tion (Bg, By, ..., By). Let 1 € NwithQ < t < k. Then at least one of the following
two statements is true.

1. There exists a (final) block C,, Ec [El= andn € O(|E|) such that E O" E and
such that E has a block decomposition (By, B1, ..., B,_1, C)), or

2. there exist blocks C,, C\41, ... Cy, Ee [E]l= andn € 0(|E|2) such that E@"E
and such that E has a block decomposition (By, By, ..., B,—1,C,, C,41,...Cy)
and such that C, is lex-minimal.

Proof Let E be given by

xaja). .. apy = yafal aRx
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suchthatx,y € X, o; € Xt for1 <i <n,and |o;| <3forl <i <m.LetIg =
{it,ip, ...k} ={i |1 <i <mand|o;| #2}withl <i] <ir <... <ip <m.
If Ig = 0, then the statement holds trivially. Thus we may assume that /g # (J. Note
that the block decomposition 8 of E is given by (By, B, ..., Bx) where

R_R R
By = (xajay. .. 1, yoy o, --'O‘il—l)
S i R R R
B; = (a,j(x,jH Ol =1 O ...al-jH_l)
R R R
By = (o i1 - 0ny, o @ 4y .0 X)

for0 < j <k.

Now, let : € N with 0 < ¢ < k. If B, is lex-minimal, the second statement holds
trivially for £ = k and C; = Bj fort < j < k. Suppose instead that B, is not
lex-minimal. We shall consider the cases that B, is Type A and Type B separately.
Suppose firstly that B, is Type A. Then |o;, | = 1. Thus we can write E as

XUIVM2Y = YU UULX

where v = «;, € X, uy = ajon...0,_1, U] = ozfozf...ailf_l, Wy =
R

i+1
be the lexicographically minimal element of FLE . Then by our assumption that B, is

not lex-minimal, we have that z % v. Thus there exist vy, vy, vi, vé € X* such that

/
Qi +1Qi+2 - .-y and (= o

R R E _
@' o - - -y Moreover, I'™ = var(vus). Let z

w2 = vizvy and p), = v|zv). Consequently, E 25 Xp1zvavvry = yp)zvjuvix and
since var(j1z) = var(u}z), by Lemma 7.6, we have that E ©" E’ where E' is given
by:
X1 .. ~ait—1Z(¥,{t+1Ol;L+2 oy = yafak . af_lza;ﬁla;ﬁ_z . .a;,f,x

for some n € O(|E|*) and U s ¥ gy ees @y € Xt with 1 < |a;.| < 3 for
i1 <j<m Letlp =i} i} ...} ={i | | <i<i, and |oy| # 2}U{i,}U{i |
i <i<m'and|a)| #2}withl <i} <i) <...<i;, <m.

Let B’ = (B, By, ..., B)) be the block decomposition of E’. Then since /g N
{1,2,...,iy=1Ig N{1,2,...,i}, wehave B; = B.;’ for0 < j < — 1. Moreover,

since z is minimal in I'F = F[E,, B is lex-minimal and the second statement holds.
Now suppose that B, is Type B. Then |o;, | = 3, so there exist a, b, c € X such
that o;, = abc. Thus we can write E as

xuiabeprdy = yu/lcbau/ZBRx

’ R_,R R
where Ml =10 ... 01, /Ll = Oll Ot2 .. 'ait—l’ M2 = O 410,42 .. . O —1,

wh = aﬁlafﬂ ... a,ﬁ_l and § = «,,. Moreover, EE = var(u26) U {a, c}. Let z be
the lexicographically minimal element of I'F. Then by our assumption that B, is not
lex-minimal, z # a. Moreover, since E is jumbled, we may conclude that |§| # 1
(otherwise we would have (6, §) € Tg, a contradiction).

By Lemma 7.16, we have two cases. The first is that there exists n € O(|E|?),
a’,c¢’ € X and B € X7 such that E ® E’ where E’ is given by

xajoy . ..o —1a'bc’ By = yafaf .. .otilf_lc/ba/ﬂRx.
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Let Ip = {ij,i5,....ip;} = {i | 1 < i < i and|e;| # 2} U {i,}. Let B’ =
(B), Bj, ..., B)) be the block decomposition of E’. Then since Ir N {1,2,...,i} =
Igr N {1,2,...,i}, we have Bj = B} for 0 < j < ¢ — 1. Moreover, since [g does
not contain any elements greater than i,, B, is the final block, so the first statement
holds for C, = B,.

The second case is that there exist n’ € O(|E|?), w € X and 7, such that
E O" xuizbwny = yujwbzn'x. By Lemma 7.6, there exist n” € O(|E|?) and
“£L+1’°‘;L+2’ ca € XT with |oz;.| < 3fori, < j < m’ suchthat E ® E’ where
E' is given by
xaqoy . ..o 1zbwal o) .o,y = yafal el jwbzalR o, e
Let Igr = {i},i5,....ipy ={i | 1 <i <i and|og| #2}U{ijU{i |i,+1<i<
m’and |o| # 2} with 1 <i] <i) < ... <i, <m'.Let® = (B}, B|,..., B)) be
the block decomposition of E’. Then since Ig N {1,2,...,0,} =Ig N{1,2,...,i},
we have B; = B} for 0 < j < — 1. Moreover, since z is minimal in FLE = FIE/, B[
is lex-minimal and the second statement of the lemma statement holds for C; = B}
fort < j <4

Finally, for the sake of completeness, we provide a formal summary of the proof
of Theorem 7.11 based on Lemma 7.17 using the arguments which have so-far been
described informally.

Theorem 7.11 Let E be a jumbled basic RWE. By Theorem 7.5, we may assume
that E is in normal form. Let 8 = (By, By, ..., Bx) be its block decomposition.
If B; is lex-minimal for 0 < i < k, then E is in LNF and we are done (this also

covers the case that k < 1). Otherwise, suppose that k > 1 and let t = 0m‘ink{ Jl
<j<

Bj is not lex-minimal}. Then by Lemma 7.17, we have two possibilities. Either:

1. there exists ablock C,, n € O(|E]) and E such that E @" E and E has the block
decomposition (By, By, ..., Bi_1, C,), or

2. there exist blocks C,, Ct1, ..., Ce,n € O(|E|?) and E such that E ©" E and
such that E has the block decomposition (By, By, ..., B,—1,C,, Ci41, ..., Cp)
and such that C, is lex-minimal.

In the first case, by definition of ¢, B; is lex-minimal for 0 < j < (, meaning E isin
LNF and we are done. In the second case, we have an equation E such that E @”/ E
where n’ € O(|E|)? and such that the block decomposition of E has a longer initial
sequence of lex-minimal blocks than the block decomposition of E.

Furthermore, it follows from the definitions that any block decomposition cannot
have more blocks than the number of variables occurring in the equation. Recall that
the set of variables occurring in an equation is invariant under =* (and therefore also
®). Thus with at most O(|E|) applications of Lemma 7.17, we may conclude that
E o" E' for an equation E" and with block decomposition (B, B}, B, ..., B,’(,)
such that B} is lex-minimal for 0 < j < k’ (meaning E’ is in LNF) and such that

"

n” € O(|E]}). It follows directly from the definitions that ® is symmetric, and
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therefore we also have E’ " E. By Corollary 7.3, we may therefore conclude that
E' =™ E and E =" E’ for some ny,n € O(|E|*). O

8 Diameter

It was mentioned in the previous section that the choices for the blocks in a block
decomposition of an equation in normal form are restricted by the invariant 7. We
shall now make full use of that fact to show that the number of equations in Lex Nor-
mal Form in a single graph %“:5}] is bounded by a polynomial in |E| (Theorem 7.11),
and as a consequence that the diameter of 54“:5’] is also bounded by a polynomial in | E|
(Theorem 8.11). By combining this result with Theorems 6.8 and 4.8, we can extend
it from jumbled basic regular word equations to all regular word equations. Conse-
quently, we can conclude that satisfiability of regular word equations is NP-complete
(Theorem 8.12).

Since each equation in Lex Normal Form has a unique block decomposition, it
is sufficient to count the possible block decompositions satisfying the conditions for
Lex Normal Form for a given value of 7g. We shall focus on conditions which force
two blocks to be the same. We shall consider the cases of initial, standard and final
blocks separately, but first we need the following lemmas which take advantage of
the invariant 7% in order to limit the equations in normal form occurring in a single
equivalence class [E]=.

The first of these lemmas, and the resulting corollary provide some intuition
behind the definition of the block decomposition and to why the blocks are often
fixed by the invariant Yg (along with the leftmost variable which, aside from excep-
tional cases, is fixed by Lex Normal Form). Essentially, they show that the length-two
factors «; (and thus alR ) occurring as per the definition of normal form are fixed
exactly by the variables preceding them along with the invariant 1%.

Lemma 8.1 Let u,v,a,b € X and let a1, ay, B, P2, oy, o5, By, By, v € X* such
that 1 < |y| < 3. Let E| and E> be jumbled basic RWEs given by

Ei: oayuabay = Brvbap;
Ey: djuydy = BoyRB).

If Yg, = YE, then y = ab.

Proof Lety =cjcz...c, withe; € X, 1 <i < n.Suppose that 1, = 1, = 7.
Note that (a, v), (u,b) € T.If |y| = 1, then (u,v) € T, which by Remark 5.2,
implies a = u, a contradiction to the assumption that E is regular. Similarly, if
ly| = 3, then (c2, v), (4, c3) € T which by Remark 5.2 implies ¢c; = a = b, again
a contradiction to the assumption that £ is regular. Thus, it follows that |y| = 2. In
this case, we have that (c1, v), (4, c2) € T. By Remark 5.2, it follows that ¢; = a
and ¢ = b so y = ab as required. [
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Corollary 8.2 Letk € N. For 1 <i <4and1 < j <k, let u;, u;,aj, Bj € X*
such that |oj| = |Bj| = 2. Let Ey and E; be the jumbled basic RWEs given by

Ei: piuaiar...opuy = //,3voleoz§ .. .ot,f,u;;
Ey: phupiBy... By = whvBLBs . B ).

Suppose that Tg, = Tg,. Thenaj = Bj for1 < j < k.

Any initial block has the form (xaja2 . . . «;, yafaf .. .aiR) where x, y € X and
aj € X* with laj| = 2 for 1 < j < i.Since x, y are fixed by TE, it follows

from Corollary 8.2 that all the «; factors, for 1 < j < i are fixed exactly by the
invariant Y. With a little additional effort, we can conclude the slightly more general
statement that initial blocks occurring in the block decomposition of some equation
E in normal form are fixed exactly by 7g. Recall from the definitions that in a block
decomposition (By, Bi, ..., By) of an equation in normal form, By will be an initial
block provided k£ > 1 (if k = 0 then By = By will be a final block).

Lemma 8.3 Let Ey, E> be jumbled basic RWEs in normal form such that Tg, =

Tg,. Let (Bo, By, ..., By) and (Cy, Cy, ..., Cy) be the block decompositions of E;
and E; respectively. Suppose that k, £ > 1. Then By = Co.

Proof Since Ep is in normal form, we may write it as xojoz...0,y =

yafaf .. .a,lfx withx,y € Xand o; € X+ for 1 < i < n such that |o;| < 3 for
1 <i < n. Similarly, we may write E; as x'aat}y . .. o),y = y'oiRaSR .. o/Rx" with

x',y e Xand o] € X7 for 1 <i < m such that laf| <3 forl <i < m.Suppose
that g, = Yg, = 7 and note that this implies var(E1) = var(E,). Similarly, is
easily verified (either from the definition of =, or from Remark 5.2) that x = x’ and
y=y.

Since k, £ > 1, there must exist p = min{i | 1 <i < nand |o;| # 2} and ¢ = min{i |
1 <i < mand || # 2}. It follows that By = (xajaz...0p_1, yafaf...aﬁ_l)
and Co = (x| ..., _;, yoRalR .. .a;R_ 1)- By Corollary 8.2, it follows that o;; =
o) for 1 <i < min{p, q}.

Suppose for contradiction that p # g. W.l.o.g. suppose that p > g. Then we may
write E1 and E» as pjuabuy = psvbaps and wiuaby py = vy ® 1)) respectively
where j11, j2, (43, U4, (), Yy Wy iy, ¥ € X*, u,v,a,b € X, and |y| € (1,3} (in
particular, this is true for ab = oy and y = a;). Howeyver in this case, it follows from
Lemma 8.1 that ¢, # 71E,, a contradiction. Thus we must have that p = ¢, and the
fact that Byp = C follows immediately. O]

Similarly to initial blocks, we can use Corollary 8.2 to restrict standard blocks

which are Type A. These blocks will have the form (zajcos ... «;, zafaf .. .aiR)
where z € X and ; € X* with lejl = 2for 1 < j < i. Hence the factors a;,

1 < j < i are fixed completely by 7g and z. For Type B blocks, which instead have
the form (abcajas . .. o, chaafaX .. af) witha, b, c € X, we need the following
additional observation.
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Lemma8.4 Letu,v,a,b,c, € X andletay, az, B, B2, ), o, By, By, v € X* such
that 1 < |y| < 3. Let E| and E» be the basic regular word equations given by

E|: «ayuabcar = Bivchbaps
Ey: ouya, = ,Biv)/R,Bé.

If Y&, = g, then there exist a’, ¢’ € X such that y = a’bc’. Moreover, ifa’ = a,
then ¢’ = c.

Proof Lety = ejey...e, withe; € X, 1 <i < n. Suppose that ¥, = 1, = 7.
Note that (u, b), (a,c), (b,v) € Y. If |y| = 1, then (4, v) € T, and by Remark 5.2
we have that u = b, a contradiction to the assumption that E is regular. Thus we
assume n > 2. Then (u, e>), (e,_1,v) € T. Hence, we have ey = ¢,_1 = b, and
since E is regular, this implies that n = 3 so the statement holds with a’ = e, b’ =
e3. Finally, we note that since (a’, ¢’) € T, by Remark 5.2, if a = @’ then ¢ = ¢ as
claimed. O]

In what follows we shall show that for two jumbled basic regular equations E1, E;
in Lex Normal Form with g, = 7, and block decompositions of the same length,
all blocks except the final blocks must be identical (Corollary 8.7). We have already
shown in Lemma 8.3 that this is true for the initial blocks, The next step is to show
that if the previous blocks in both block decompositions are identical, then the next
blocks will have the same type.

Lemma 8.5 Let E1, E; be jumbled basic regular word equations in normal form
such that Yg, = Yg,. Let (By, By, ..., By) and (Co, Cq, ..., C¢) be block decom-
positions of E| and E» respectively. Suppose that i, j € No withi < k, j < £ such
that B; = Cj. Then Bjy and C | have the same type.

Proof Since there are two types, it is sufficient to prove that B4 is Type B if and
only if Cj41 is Type B. Suppose that B;y; is Type B and suppose for contradic-
tion that Cj4 is Type A. Then there exist y1, y2, ¥3, ¥4 € X* and a,b,c,d € X
such that B;y; = (abcyr, cbay;) and Cji1 = (dy3, dys). Note that there exist
u,v € X such that B; = C; = (8ju, 6v) where 81,8, € X*. Hence there exist
ay, a2, B, Po, af, af, B1, By € X* such that Ey is may be written as ajuabcay =
Bivcbaf; and E; may be written as ojuda), = Bivdp). However, by Lemma 8.4,
this implies Tg, # TE,, a contradiction. Consequently, C;; is Type B if B;;q is
Type B. The proof that B;; is Type B if C;4 is Type B is symmetric and can be
obtained by simply swapping £ and E>. O

We are now ready to show that standard blocks in a block decomposition are fixed
entirely by the preceding block, the invariant 1, and the leftmost letter of the block.
This is the primary motivation for the definition of Lex Normal Form, which restricts
the choice for the leftmost letter of the block where possible, and thus restricts the
possibilities for the standard blocks. In particular, it follows directly by a straightfor-
ward induction that for two jumbled basic RWEs in Lex Normal Form with the same
invariant Y%, if their block decompositions have the same length, then all but the final
blocks will be identical.
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Lemma 8.6 Let £y, E; be jumbled basic RWEs in normal form such that Tg, =
Tg,. Let (By, By, ..., By) and (Cy, Cy, ..., Cp) be their respective block decompo-
sitions and let k, £ > 0. Suppose that B; = Cj, for some i <k —1, j < £ — 1. Let
Biy1 = (y1, v2) and Cjy1 = (81, 82) with y1, y2, 81, 82 € X*. If y1[1] = 81[1], then
Biy1=Cjy1.

Proof Note that since 0 < i +1 < kand 0 < j + 1 < ¢, the blocks
Biy1 and Cjy1 are both standard blocks. Note also that by Lemma 8.5, B;yq

and C;;1 have the same type. Hence, by definition, there exist ay, az, ..., ay,
B1, B2, ..., Bm € X such that By = (alaz...an,afotf...af) and Cjpq =
(BiB2 - B BEBX ... BR), where |ai| = |Bi] € (1,3} and o, [B4] = 2
for2 < p < nand2 < g < m. Since B; = Cj, there exist u,v € X
and w1, (o, v1, v2, 1y, 1h, vy, V5,0, € X* with [n], [n'| € {1, 3} and such that

E| is given by piuaiar . ..ounuy = vivakaX . afyRv, and E; is given by

KyupBa . a1y = vivpfBF . B0 R;.

By the assumption that y[1] = §[1], we have that o1[1] = p;[1] meaning if
laer] = |B1] = 1 then @1 = B holds trivially. Similarly, if |o1| = |B1] = 3, then it
follows from Lemma 8.4 that «; = B;. In both cases, it follows from Corollary 8.2
that additionally, ), = B, for 2 < p < min{n, m}. It follows from Lemma 8.1 that
n = m. Hence we have B; | = Cj as required. O

Note that if the first i blocks are identical in the block decompositions of two
jumbled basic RWEs in Lex Normal Form with the same invariant set 1%, it follows
that the set Flil is also the same in both cases. Consequently, by definition of Lex
Normal Form, if the i + 1" blocks are not final blocks, the leftmost variable will
be the same in each case (namely the lexicographically minimal element of Fllj; Dl
Consequently, by Lemma 8.6, the i 4+ 1' blocks will also be identical. By a simple
induction, we can thus conclude the following.

Corollary 8.7 Let E|, Ey be jumbled basic RWEs in Lex Normal Form such that
Tg, = Tg,. Let (Bo, By, ..., By) and (Cyp, C1, ..., Cy¢) be their respective block
decompositions and suppose that k, £ > 0. Then B; = C; for 0 < i < min(k, £).

Consequently, two equations in Lex Normal Form in the graph %[?] with block
decompositions containing the same number of blocks may differ only in the
final block. Clearly, the number of blocks in a block decomposition is at most
Card(var(E)). Thus, in order to bound the number of equations in Lex Normal Form
in 54“:5’] it suffices to count the possibilities for the final block.

Recall from the definition of normal form that the last (rightmost) «; factor is the
only one which may have length greater than 3. Consequently, we need a counterpart
to Lemmas 8.1 and 8.4 for this case, given by the following.

Lemma 8.8 Letu,v,x,y,x',y € Xandleta, B,a’, B, y,y’ € X* suchthat |y| >

1. Let E1 and E; be the basic regular word equations given by xauyy = yfvyRx

and x'a'uy’y’ = y'B'vy'Rx respectively. If Y5, = Yi, and y[1] = y'[1] then
/

Yy=v.
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Proof Letzy, 22, ..., 20, W1, W2, ..., Wy, € X bevariablessuchthaty = z122...2,
and ¥’ = wjwy ... w;, and suppose that z; = w;. Suppose also that Tg, =715, =7.
Note that for 1 <i < min{n, m} — 2, we have (z;, zj+2), (w;, wi12) € T. Moreover,
if n,m > 2, we also have that (u, z2), (u, wy) € 7. Consequently, by Remark 5.2,
we have that w; = z; for 1 < i < min{n, m}. If n = m we are done. Otherwise,
suppose that n # m, and note in particular that since E1, E, are regular, this implies
Zn # wy,. However, (z,, 21), (wy, w1) € 7, and since w; = z1, by Remark 5.2
we have that z,, = wy,, a contradiction. Thus we must have n = m and y = y’ as
claimed. O]

The following lemma establishes conditions under which two final blocks must be
identical, forming the basis for our bound on the number of possible final blocks in a
block decomposition of an equation in Lex Normal Form, and consequently, a bound
on the number of equations in Lex Normal Form itself.

Lemma 8.9 Ler E, E» be jumbled basic RWEs in normal form such that
YE, = Tg,. Let (Bo, By, ..., Bi) and (Cyp, C1, ..., Cy) be their respective block

decompositions. Suppose that k,f > 0 and that Br—1 = Cy—1. Let By =
(051052...ozny,ozfeozée .. .ot,}fx) and C¢ = (B1B2...BmY, ,BIR,Bf...,ﬂSx), where
x,y € X, aj,02,....0, Bi.B2,....Bn € XT, laul = ||l € {1,3} and

leil, |Bjl =2 for2 <i <nand?2 < j < m. Then if a1[1] = B1[1], n = m, and
on[1] = Bml1], we have By = Cy.

Proof Suppose that all the conditions of the lemma are met. Note that By and C, are
both end blocks. Note also that by Lemma 8.5, By and C; have the same type.

Since By_1 = C¢_1, there exist u, v € X and w1, ua, pu}, u, € X* such that E;
and E; are given by:

. . R R R
Ei: xpiuoion...apy = yuavo oy ... 0, X

Ex: xpiuBiBa...Buy = yubvBipr ... pRx.

By the assumption that o [1] = B1[1], we have that if || = |81] = 1 then trivially
a1 = PBi, and if |ay| = |B1] = 3, then @y = B by Lemma 8.4. In both cases, it
follows from Corollary 8.2 that ; = B; for 1 < i < min{n, m}. It follows from
Lemma 8.1 that n = m, and from Lemma 8.8 that «r;; = ,,. Consequently, we have
By = Cy as claimed. ]

Lemma 8.9 reveals that the options for last block are dependent only on the choices
of three parameters: o[1], @,[1], and n. Since each of these can take at most |E]|
possible values, there are | E|? possibilities altogether. Thus for each possible number
of blocks, there are at most | E| possible block decompositions, and therefore only
|E|* possible block decompositions respecting the invariant 7% in total. Since every
equation in Lex Normal Form permits a unique block decomposition, this gives us
our desired polynomial bound.

Theorem 8.10 Let E be a jumbled basic RWE. Let S be the set of basic regular
equations E' in Lex Normal Form for which Tg = Yg. Then Card(S) < |E|*.
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Proof We shall count possible block decompositions of equations E’ for which
Tgr = Tg = 7. Since the block decomposition uniquely determines the equation,
this count is an upper bound on the number of equations in S. Note that 7z = 1,
implies var (E") = var(E).

It is straightforward from the definitions that any block decomposition of an equa-
tion E’ can have at most Card(var(E’)) = Card(var(E)) < |E| blocks, so it
is sufficient to count how many block decompositions with exactly N blocks are
possible for each N < Card(var(E)).

We start with the case that the block decomposition consists of exactly one block
(N = 1). Suppose we have two basic regular word equations E1, E> in Lex Nor-
mal Form, such that Tz, = Y, = 7 (and so additionally var(E) = var(Ez) =
var(E)). Suppose that (Bg) and (Cp) are the block decompositions of E; and
E, respectively. By definition By = E; and Cyp = Ej. It follows that By =
(xajay ...y, yotfeotée ...aRx) and Cy = (aja) . oay yay ah, o, x)
where x,x’, v,y € X and ai,a} e Xtforl <i <o,1 < j < m and such that
lei], lajl =2forl <i <oand1 < j < m.Itis easily verified (either from the defi-
nition of =, or from Remark 5.2) that x = x" and y = y’. Moreover, we clearly must
have o, m < Card(var(E)). Now suppose that o = m. Then by Corollary 8.2, we
may conclude that o; = oc; for 1 <i < n. Similarly, it follows from Lemma 8.9 that
on = a), and thus By = Cy. Hence, for each possible value of o, there is at most one
possible block decomposition, meaning there are fewer than Card(var(E)) < |E|
possible block decompositions containing only one block.

Now consider the cases that there is more than one block in the block decom-
position (1 < N < Card(var(E))). Suppose we have two basic regular word
equations Eq, E> in Lex Normal Form, such that T, = Yg, = 7. Suppose
that (Bo, B1, B2, ..., By) and (Co, Cy, ..., C,) are the block decompositions of
E| and E» respectively, and that they have the same number of blocks 1 < n <
Card(var(E)). By Corollary 8.7, we have that B; = C; for0 < i < n — 1. By
Lemma 8.9, there are at most |E|3 possibilities for the end block C,,. Thus there are
at most | E|? block decompositions overall with exactly n blocks for 1 < n < |E].
Thus at most |E|* possible block decompositions in total, and the statement of the
theorem follows. O

For a jumbled basic RWE E, since every vertex in 54[?] is a small (i.e. bounded by
a polynomial in | E|) distance from a vertex in Lex Normal Form, and since there are
only a small number of such vertices, it is straightforward to show that the diameter
of %[?] must also be small: indeed if we have a sufficiently long path between two
vertices, then we must have a long path between two vertices which are close to the
same vertex in Lex Normal Form. Since they are close to the same vertex, we can
find a shortcut between them, and the initial long path is not minimal. Knowing that
the diameter of %[23] is bounded by a polynomial in | E| when E is jumbled and basic,
it follows from Theorems 6.8 and 4.8 (see also Remark 4.6) and Proposition 3.5 that
the diameter of %[?]N T is bounded by a polynomial in | E| whenever E is regular.
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Theorem 8.11 Ler E be a basic RWE. Then diam (ff[?]) € 0(|E|10). Consequently,
for any RWE E, diam(47'") € O(IE|"?).

Proof We shall first consider the case of d iam(%[if]) when E is jumbled, basic and
regular. Let S = {E’ € [E]= | E’ is in Lex Normal Form}. By Theorem 5.3, 1g, =
T, for all Ey, E> € [E]s. Thus, by Theorem 8.10, we have that Card(S) < |E|4.
Moreover, by Theorem 7.11, for every E’ € [E]—, there exists some E’ € S such
that E’ is at most distance O(|E[*) from E’ and E’ is at distance at most 0(|E|4)
from E’ in the graph Ef (£l From this, we may conclude that dlam(% ) € O(E|®
as follows: suppose for contradiction that, for an appropriate constant c there exist
E1, E» € [E]- such that the minimal path between them in g has length at
least 2c|E|8 + 1. Let that path be Ey, E», ..., E, where E| = El, En = E,, and
Ei= Eiy1forl <i < n and such thatn > 2c|E|8+1 Now, toeach E,1<i<n,
we may associate some E; € S such that the distance from E; to E; is at most ¢|E 14,
Since Card(S) < |E|*and n > 2¢|E|®+1, we must have that there exists E € S such
that E = E; for at least 2c|E|* + 1 different values of i. 'This implies in particular
that there exist i, ip with i} — ip > 2c|E|4 such that E,1 = E,z. It follows that
the length of the path E; , E;, 11, ... E;, is at least 2c|E|4 + 1, and moreover, since
Ey, E, ..., E, is the shortest path between E| and E», E;,, E; 11, ... E;, must also
be the shortest path between E;, and E;,. However, we have that E;, is distance
at most c|E|* from E, and that E is at most distance E;, at most c|E|* from E;,.
Consequently, E ,-1 is distance at most 2¢|E |4 from E;,, a contradiction to the fact that
E;, Ei 41, ... Ej is the shortest possible path. Consequently, if E is jumbled basic
and regular, then dzam(%[?]) € O(E®).

Now we shall consider the case that E of dzam(% ) when FE is basu: and
regular, but not necessarily jumbled. Suppose that E is given by ¢ = B. Let
Y = var(E)\A(E) and let E’ be the equation 7y(a) = my(f). Clearly, E’
is basic, regular and |E’| < |E|. By Theorem 6.8, we have that diam(%z)) €
O(diam(¥4, i E,])|E |2) Moreover, by Lemma 6.3, E’ is jumbled. Thus by our previous
claim, it follows that diam(4,) € O(|E'|® |E| )y = O(JE|'9).

Finally, we consider the case of d lam(% ) for arbitrary regular equations E.
Let E be any regular word equation. Then by Proposmon 3.5, dmm(%{?{v <1+
(|E| 4+ 1)m where

m = max{diam(¥g) | E =7 E').

Now fix E’ be such that E =7}, E’ and dzam( 7)) = m. Then since E =731

E', E’ is also regular and |E’| < |E|. Moreover by Theorem 4.8, there exists a
basic regular equation E” such that |E”| < |E| and such that 47, (£ 1s isomor-

phic to an isolated path compression of order |E’| of ¢ Thus (cf. Remark 4.6),
we have m < |E' |dzam(gE,,]) Since E” is basic and regular, we have that
diam(4 7)) € O(|E"|'9). Since |E"|, |E'| < |E|, we therefore have m € O(|E|'")
anddzam(g?]”) € O(|E|"). O
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Due to Proposition 3.4, we may infer directly from Theorem 8.11 that the satisfi-
ability problem for regular word equations is in NP. It was already shown in [8] that
this problem is NP-hard, and thus we obtain matching upper and lower bounds for its
complexity.

Theorem 8.12 The satisfiability problem for RWEs is NP-complete.

Proof Directly from Theorem 8.11 and Proposition 3.4. [

9 Size

While the diameter of g“‘—g] is one important parameter, being directly related to the
complexity of the satisfiability problem, it is by no means the only interesting one.
The overall size of the graphs will also play a central role in the practical performance
of the algorithm described in Section 3.

For basic RWEs, we are able to give tight upper and lower bounds on the number
of vertices in the graphs g[;‘], as well as identifying the cases in which these bounds
are reached. Recalling Theorem 4.8, we are also able to translate these bounds into
the case of general (i.e. not basic) RWEs. In particular, when moving to a general
RWE from the corresponding basic one, the effect on the graph %[?] is that ‘isolated
paths’ of length linear in | E| are collapsed. In fact, an inspection of the proofs (in par-
ticular of Lemma 4.7) yields a tighter bound, namely that collapsed paths will have at
most max (77, T) internal vertices where 7 and T, are the number of occurrences of
terminal symbols and single-occurrence variables in the LHS and RHS respectively.

Corollary 9.1 Let E be an RWE given by a = B. Let Epgsic be the corresponding
basic equation as per Theorem 4.8. Let n = Card(qu(E)) and let M = max{|«| —
n, |B| —n}. Then

Card([Epasicl=) < Card([E]ls) < MCard([Epasicl=).

We begin with the upper bounds, which occur in the case of basic regular-rotated
word equations.

Lemma 9.2 Let E be a basic regular word equation. Let n = Card(var(E)) and
suppose thatn > 2. Let V be the number of vertices in g[:g] ThenV < ”7' Moreover,

V= "7' if and only if there exists E' € [El= such that E' is regular rotated.

Proof Let E be a basic regular word equation. Let n = Card(var(E)) and suppose
that n > 2. Let V = Card([E]- ) be the number of vertices in g[?]. We shall begin

with the claim that V < "7‘ To do this, we recall that from Theorem 5.3, the set
Sy = {E’ | E'is a basic regular equation such that Yz = g} is a (not necessarily
strict) superset of [ E]—. We shall show that the cardinality of Sy is at most "7' Let
T = T and let E’ be a regular basic equation such that Tz = 7. Now, it follows

from the definition of 7 that var(E’) = var(E) and that the rightmost variables the
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LHS (resp. RHS) of E and E’ are the same. More precisely, there exist x, y € var(E)
and a, ', B, B/ € X* such that E may be written ax = By and E’ may be written
as a’x = B’y. Clearly, there are at most (n — 1)! possibilities for a’. Moreover, since
Tr = 7T is fixed, we can, given &/, for each u € var(8)\{a'[1], 8'[1]}, determine
uniquely the predecessor of u in 8’y. More precisely, there exist factors vu and v'u
of o’x and B’y respectively where v, v’ € var(E). Thus (v, v’) € 7', so if v is fixed
(i.e.by a’) then v’ is also fixed by 7. It follows directly that for each choice of o/,
there exists a unique suffix y of 8’y having a'[1] as a prefix. Moreover, once the
variable occurring immediately to the left of y (i.e. the predecessor of y[1]in 8y) is
fixed, then B’y is fixed entirely, meaning that there are n — |y | possible choices for
B’y once ' is fixed.

Next, we shall show that for each k, 1 < k < n — 1, there are exactly (n — 2)!
choices of o’ such that the corresponding y has length exactly k. For other values of
k, there are no possible choices of o’ due to the fact that every equation in Sy is basic
and regular (note in particular that the case k = n would result in an equation which
is decomposable and therefore not basic). It follows from this that the cardinality of
Sy is at most ”7'

-1 -1
. i nn—1 n

Card(Sy) < ;k(n —Dl=(n-— 2)!k§k === =

To see why there are exactly (n — 2)! choices of @’ such that the corresponding y has
length k, we shall take a slightly different approach to constructing/selecting " and
B’. In particular, we shall first choose y and then see how many choices there are for
o' . Letk € Nsuchthat1 < k < n.

By definition of Yz, we must have that if y = vjvy...vg_1y, then there exist
Uy, u2,...,ug—1 € var(E) suchthat’[1] = vy and (u;, v;) € T for1 <i <k -2,
(ug—1,y) € T, and such that uy_,y is a factor of o’x and u;v; | are factors of a'x
for 1 <i < k — 2. Since E’ is regular, 1t follows thatv; # x forl <i <k —1.
Consequently, there are ( )(k —-D!'= m possible ways of choosing y. Once
y is fixed, then, since u;_1y is a factor of o’x and u;v;4+ are factors of o'x for
1 <i < k—2, we may infer that o’ is uniquely determined by the relative order of the
variables in var (E)\{x, y, v1, v2, ..., Vg—1}, and thus there are (n —k — 1)! possible
choices for o’ for each choice of y. Altogether we have (n—k—1)! (n(”k—z)l'), (n—2)!

possible choices for o’ as claimed, and it follows that V < "7‘

It remains to consider the claim that V = ”7' if and only if there exists E’ € [E]—
such that E’ is regular rotated. Note that since n > 1, and since E’ is basic (and
therefore indecomposable) for all E’ € [E]-,, E’ is not regular ordered for all E’ €
[Els.

We shall begin with the ‘if’ direction. Let V = Card([E]-) be the number of
vertices in 54[?] Then we may assume w.l.o.g. that E is regular rotated and thus
we can write £ as y1y2 ... YkX1YVk+1Vk+2 - - - YeX2 = Yk+1Vk42 - - - YeX2Y1Y2 - - - Yk X1
where x1, X2, 1, ¥2,...y¢ € X, £ =n—2andk < £.Then A(E) = {y1, y2, ..., Ye}.
Consequently, by Theorem 6.8, the set of equations

S = {ax1Bx2 = Bxrax; | |laBly =1if y € A(E) and |aB|, = 0 otherwise}
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is a subset of [E]—. Now, foreach i, 1 <i < ¢ = Card(A(E)), let the set S; C S be
the set

S; = {ax1Bxa=PBx20x1 | |a|=i A|af|y=1if y € A(E) and |aB|, = 0 otherwise}.
Clearly, we have S = |J S;. Moreover, we have that Card(S;) = ¢! = (n — 2)!

0<i<t

for each i, 0 < i < {. Finally, note that for each i,0 < i < £, if E' € S;, then for
Tg ={E" | E' =% E"}, we have that Card(Tg) = i 4 1 It is straightforward from
the definitions that for Ey, E> € S, if Ey # E», then Tg, N Tg, = ¥. Consequently,
we may conclude that

€+ 1) +2)

V=Y Card(Tp) = Y (i + DCard(S;) = 5

E'eS 0<i<t

n!
-2 =—.
(n—2) >

We have already shown that V < %, so V = ”7' as required.

Suppose now that E’ is not regular rotated for all E” € [E],. Tosee that V < "7!, it
suffices to notice that we can decrease the bound on Card(Sy) if not all the previously
considered possibilities for the left-hand-sides 'y are actually possible.

Recall from the Theorem 5.3 that A(E) = A(E’) for all E/ € [E]-,. More-
over, it follows from the definitions that the rightmost variables on each side of the
equation are not contained in (A(E)) and thus Card(A(E)) < n — 2. Next, suppose
(for contradiction) that Card(A(E)) = n — 2. Then there exist z1,22,...,2, € X
and i,1 < i < n such that z, is a suffix of the LHS of E and z; is a suffix
of the RHS of E, meaning that A(E) = {z; | 1 < j < n,j # i}. Con-
sequently, there exists j,i < j < n such that £ may be written z1z2...2, =
Zj+1-+-2n—12nZi+1 -+ 2j—12j21 - - - 2i—2Zi—1Zi- Thus E =>>£ E’ where E’ is given
by 2122...20n = Zi4l.--Zj—1ZjZj41---Zn—1ZnZ1 - - - Zi—2Zi—1Zi. However, E’ is
regular-rotated, a contradiction.

Hence, we may assume that Card(A(E)) < n — 2, and consequently, there exist
pairwise distinct variables u, v, x, y € var(E) such that (u, v), (x, y) € Yg. How-
ever, if this is the case, then the LHS of any equation in [E]-, cannot contain both
the factors uv and xy. Suppose for contradiction that both factors were present in the
LHS, then by definition of 7g, there must exist z € X such that either uz is a factor
of the LHS and vz is a factor of the RHS, or xz is a factor of the LHS and yz is a fac-
tor of the RHS. W.l.o.g. we may assume the first case that uz is a factor of the LHS
and vz is a factor of the RHS. However, by the assumption that uv is also a factor of
the LHS, we have z = v, and consequently vv is a factor of the RHS, a contradiction
to the fact that E is regular. It follows in this case that Card(Sy) < %, and thus that

2

V<3 O

We can use Corollary 9.1 to adapt Lemma 9.2 to general RWEs as follows. Let
E be a RWE given by ¢« = g, let n = Card(qv(E)), and let T = max{|c| —
n, |B| — n}. Let Epgsic be the corresponding basic RWE as per Theorem 4.8. Clearly
for Card([ E]= ) to be maximal, E should be indecomposable. Now, by Corollary 9.1,
we have that Card([E]=) < TCard([Epasic]s) < T4 < @D — (maxllaL DL

Note also that if E is not regular-rotated, then either Ejq;. is not regular-rotated,
or E is decomposable and Ep; is regular-rotated but with fewer variables. In either
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case it follows that the second inequality becomes strict. Similarly, if 7 # 0, then the
third inequality becomes strict. Hence we get the following.

Corollary 9.3 Let E be a RWE given by o = B. Let M = max{|«|, |B8]}. Let V be
the number of vertices in g[?]. Then V < MT' Moreover, V = % if and only if E is

basic and there exists E' € [E]= such that E' is regular rotated.

For upper bounds on the number of vertices in %[z"], we consider the class of
regular-reversed equations. We shall eventually prove a statement similar to that of
Lemma 9.2, but first we need some additional definitions and lemmas. Our reasoning
in this case revolves primarily around a particular binary-tree like structure arising
locally in the graphs {4[?]. The binary trees do not occur directly as subgraphs of
%[?], but rather can be obtained by treating certain short paths as edges. The relation
defining the ‘edges’ of the tree is given by >, introduced formally below. By showing
that these binary trees always occur in the graphs g[?], and by verifying that they are
balanced and have height proportional to the number of edges, we are able to produce
the lower bound on the number of vertices in g“:;] given in Lemma 9.11.

Definition 9.4 (—g, —rp, >, W(E)) Let E be a basic RWE such that
Card(var(E)) > 2. Then we may write E in the form

XY0ZIVIZ2Y2 - - - 2k VYA = YyOow18 w2y . . . wiSkxpP

with x,y,z1,22,..., 2k, W], W2, ..., W € X such that {z1,z2,...,2%x} =
{wy, wy, ..., w}, and o, B, Y1, V2 s Yi> 01,02, ..., Ok IS
(X\{x,y,21,22,...,2k})* such that for each i,j, 0 < i,j < k, we have
var(y;) N var(8;) = . Note that this decomposition is unique. We define
W(E) = {x,y,z1,22,...,2k}. Moreover, there exist i, j such that w; = z; and

zj = wg. We define the relations —; and — g such that
XY0ZIVIZ2V2 - - - Tk Vi YA = YSow181w2dy . . . wiSpxB
= LXY0Z1V122Y2- - -2k Yk YU =W;8; Wi +18i+1. . WSk ySow181w2d2 . .. wi—18;—1xP
and
XY0ZIV1Z2Y2 - - - Tk Vi Y = ySow 8 w2y . . . widkxp
= RZjViZj+1Vj+1 - ZkYEKXVOZ1V1Z22V2. - Zj—1Yj—1 YA =YSow181 w282 . . . wiSkxP

Additionally, for convenience, we define > =—; U —g.

The tree-structure we are interested in is the set § = {E’ | Ex*E’} for a given basic
RWE E with at least two variables (the one-variable case being trivial). An example
is given by Fig. 7. The following fact can be verified directly from the definition, and
confirms that the set S is indeed contained in 54[?]

Fact 9.5 Let E|, E> be basic RWEs with Card(var(E)), Card(var(E3)) > 2. Let

Z e {L,R}.If Ey —7 E», then E| =7, Ej. Conversely, if E1 =7 E», then either
E —)’2 E> or E; —>>'2 E;.
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Fig.7 Theset S = {E' | E»* E'} occurring as a subset of the vertices of the graph 47 in the case that
E is given by xjx2x3x4 = x4x2x3x1. In order to conserve space, for each vertex, the equation is arranged
vertically with the LHS above and the RHS below. The vertices belonging to S are highlighted in bold,
and E is shaded (blue). The tree structure induced by the relation & is given by the bold solid edges, while
the edges of ‘9[?] are dashed. Note that the edges due to > do not necessarily coincide with edges due to
=, but for every >-edge, there is a corresponding path using =-edges, guaranteeing that S C [E]=. In
this case we have that W(E) = var(E) = {x1, x2, X3, x4}, so S forms a tree of height 242 _ 1 =3, and
contains exactly 24~! — 1 = 7 equations

In what follows, in order to understand the number of equations occurring in S =
{E' | E v* E’}, we shall show that when combined with the relation >, it becomes
a balanced binary tree of height Card(W (E)) — 1. We proceed by noting two more
facts following directly from the definition. Fact 9.6 provides the first step towards
understanding why > induces a binary tree like structure on S: the leaf nodes are
equations for which Card(W(E)) = 2, while all other equations have exactly two
children w.r.t. .

Fact 9.6 Let E be a basic RWE with Card(var(E)) > 2. Then the following
statements are equivalent.

1. Card(W(E)) > 2,
2. there exists E’ such that E — E’,
3. there exists E’ such that E — ¢ E’.

>

o1t is worth noting that since basic RWEs are indecomposable, Card(W (E)) 2 whenever

Card(var(E)) > 2.
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Fact 9.7 allows us to infer exactly the height of the tree by establishing a natu-
ral ordering (namely the cardinality of W (E)) on equations. Note that by Fact 9.6,
whenever we move from a an equation to one of its children w.r.t. >, we decrease
Card(W (E)) by exactly one.

Fact 9.7 Let E{, E; be basic RWEs with Card(var(E;)), Card(var(E3)) > 2.
Let Z € {L, R} and suppose that E;y —z E;. Suppose that x,y € X and let
oy, a2, Bi, B2 € (X\{x, y})* such that E; may be written xojyay = yBixB;. If
Z = L,then W(E>) = W(E)\{y} and if Z = R, then W (E,) = W(E)\{x}.

Facts 9.7 and 9.6 are sufficient to observe that the set {E’ | Ex* E’} combined with
> forms a DAG of bounded height. However, this is not sufficient for our purposes of
providing a lower bound on the number of equations contained in {E’ | E~* E’}. The
following lemma shows that this DAG is in fact a tree by confirming that for each
equation (which is not a leaf node), the two ‘subtrees’ rooted at the two children of
that equation do not share any vertices.

Lemma 9.8 Let E, E|, E; be basic regular word equations such that E — E| and
E —pg Ey. Let Sy = {E| | E\p"E}} and let S» = (E), | Ex>* E}}. Then Si NSy =)
and E ¢ S1 U S,.

Proof The fact that E ¢ S; U §, follows from the fact that, by Fact 9.7, for
all E/ € S; U S,, we have Card(W(E")) < Card(W(E;)) = Card(W(Ey)) <
Card(W(E)). We shall next consider the claim that S N S = @. Notice
that it follows from the definitions of — and —; that if E’ > E” and
w € wvar(EN\W(E’), then firstly w € var(E")\W(E"), and secondly
QOp(w) = Qgr(w) where Qpg/, Qpr are the functions defined in accor-
dance with Definition 5.1. Now, if Card(W(E)) < 2, then the statement fol-
lows trivially. Otherwise let x, y, z1, 22, ..., 2k, W{, W2, ..., Wy € X such that
{z1,22, ..., 2k} = {wi,wa, ..., wi}, and a, B, Y1, V2, -+ V&, 01,82, ..., 8k €
(X\{x,y,z1,22,...,2k})* such that var(y;) Nvar(§;) = ¥ for 0 < i < k and such
that £ may be written as:

XY0ZIVIZ2V2 - - - Tk Vi YA = YOow18 w28y . . . wiSpxP.

From Fact 9.7, it follows that y ¢ W(E]), so we may conclude that Qg/(y) =
Qg,(y) for all E’ € ). Similarly, it follows from Fact 9.7 that x ¢ W(E,), and
we may hence conclude that Qp/(x) = Qg,(x) for all E/ € S,. Now, let u, v be
the rightmost variables in zxyx and widx respectively. Then Qg (y) = Qpf,(x) =
(u, v). However, since E’ is regular, x # y, so by properties of the functions Qg
(namely that by Remark 5.2 they are injective), we cannot have that Q g/ (x) = (u, v)
for any E’ € S; and likewise we cannot have Qp/(y) = (u,v) for any E’ € S;.
Consequently, S1 N Sy = @. O

Lemma 9.8, along with Facts 9.6 and 9.7, are sufficient to confirm our claim that

the set {E’ | E »* E’} forms a balanced binary tree of height Card(W (E)) — 2. Thus
we are now in a position to state the cardinality of {E’ | E* E'} precisely as follows.
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Lemma 9.9 Let E be a basic regular word equation such that Card(W (E)) > 2. Let
S = {E'| E* E'}. Then Card(S) = 2C@dWE)-1 _ 1,

Proof We shall prove the claim by induction on Card(W (E)). If Card(W (E)) = 2
then S = {E} and the statement is immediate. Now suppose that the claim holds
for all basic regular word equations E such that Card(W(E)) < n for some n >
2. Let E be a basic regular word equation such that Card(W(E)) = n + 1. Then
Card(W(E)) > 2, so by Fact 9.6, there exist E1, E» € [E]= such that E — E
and E — g E,. From the definitions, we have that § = {E} U S; U S, where S| =
{E{ | E1>" E{}and Sy = {E} | Ex>* E}}. By Lemma 9.8, it follows that Card(S) =
1 + Card(S;) + Card(S3). Moreover, since Card(W (E1)) = Card(W (E>)) = n, we
have from our induction hypothesis that Card(S7) = Card(S,) = 27=1 _ 1, Thus we
have Card(S) = 22" ! — 1) + 1 = 2@+D=1 _ 1 a5 required. O

Lemma 9.9 together with Fact 9.5 are sufficient to provide lower bounds on the
number of vertices of ¢~!£1, and we are nearly ready to provide the counterpart to
Lemma 9.2. The final step before we do so is the following lemma which charac-
terises the basic RWEs E for which the set of vertices of g[?] is exactly W(E). Since
by Fact 9.5, W(FE) is always a subset of the vertices of g[?], this naturally leads us to
the extremal case in which the lower bound is obtained.

Lemma 9.10 Let E be a basic regular word equation. Let S = {E' | E v* E'}. Then
S = [El= if and only if E is regular reversed.

Proof Let E be a basic regular word equation. If Card(var(E)) = 1 then E can be
written as x = x, for some x € X, meaning that E is regular reversed, and moreover,
that § = [E]= = {E}, so the statement holds trivially. Suppose henceforth that
Card(var(E)) > 2.

Consider first the case that E’ is not regular reversed for all E’ € [E],. Then by
Lemma 6.13, there exists E; € [E]- such that £ has the form xay = yBx where
x,y € X and a, B € (X\{x, yD)*. By our assumption, E; is not regular reversed.
Hence we may write E; as:

xajuarvazy = yBiuprvBsx

where x, y,u,v € X and «y, a2, a3, B1, B2, B3 € (X\{x,y,u, v})*. Thus, by
Lemma 7.2 we have that E; € [E]- where E; is given by xajvazuary =
yB1vB3uBrx. However, Card(W (E;)) = Card(W (E3)) = n. Since by Fact 9.7, E' >
E” implies Card(W (E")) < Card(W (E")), and hence Card(W (E")) < Card(W (E))
for all E’ € S\{E}, we may immediately conclude that at least one of E1, E; ¢ S,
and hence S # [E]=.

Now suppose that E is regular reversed. We have the following claim:

Claim 9.10.1 Let E' € S be given by @ = B. Then the equation my g (a) =
mw (e (B) is regular reversed.
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Proof We shall prove the claim by induction on Card(W (E’)). In particular note
that if Card(W(E’)) = Card(W(E)), then by Fact 9.7, we have E/ = E and
the statement holds trivially. Now suppose for some n that the claim holds for
all E' € S with Card(W(E’)) > n. Let E/ € S such that Card(W(E")) =
n — 1. By definition, since E’ # E, there exists E” € S such that E” > E’.
By Fact 9.7, we have also that Card(W(E”)) = n. Assume w.l.o.g. that E” —g
E’. Then by the induction hypothesis, there exist x, y, z1,22,...,2n—2 € X, and
& By Y05 V1s V2 -+ +» Yk 80,01, 62, ..., 8 € (X\{x,y, 21,22, ..., 2k})™ such that
var (y;) Nvar(8;) = ¥ for 0 < i < k and such that E” is given by

XY0ZIVIZ2 -+ - 2k ViV = Y802k012k—162 . . . 218k X

and E’ is given by
ZIV122 -+ - TR VX VOYO = Y802k 12k—102 . . . 216k XB.

Note that W(E") = W(E")\{x} = {y, z1, 22, - . ., 2k }. Erasing all the variables not
in W(E’) from E’ yields

2122 -+ - ZkY = YZkZhk—1 - - 21

which is regular reversed so the statement of the claim holds for E’. By induction, it
holds for all E” € § as required. O

Now suppose for contradiction that [E]— # S. This implies that there exists
E’' € [E]-= such that E/ ¢ S. Now, by Fact 9.5, this implies that there exists
a sequence Eq, E»,...E, such that £y = E, E, ¢ S and such that either
Eiv> Eiyy or Ej41 > E; foreach i,1 < i < n. Let us take the shortest such
sequence. Note that this implies that £; € S for all i;1 < i < n, and conse-
quently, that E; > E;4y for all i,1 < i < n — 1, and that E,,_; FE,, meaning
that E, > E,,_ instead. It follows from the fact that W (E) = Card(var(E)), and
by Fact 9.7 that there does not exist E/ € [E]- such that E’ > E. Hence we
may additionally conclude that n > 2. Moreover, since E,_» € S and E, ¢ S,
we have that E,_» # E,. Thus we must necessarily have that either E,,_» — [ E,_1
and E, —pr E,_1, or symmetrically E,_» —rp E,_1 and E, — E,_;.
W.l.o.g. we may assume the first case holds. Then it follows from the definitions that
there exist x1, X2, ¥1, Y2, 21, 22, &1, @2, &3, B1, B2, B3, V1, V2, V3, 61, 82, 83 such that
var(ajaz) S var(Bs), var(B1p2) S var(as), var(yry2) S var(83) and var(8182) C
var(y3), and such that E,,_» is given by xjo1zjoy13 = y1812182x183, Ej 18 given
by x2y122v2Y2¥3 = y2812282x283, and therefore that E,_| can be written both as

ziapxioy1o3 = y1B1z182x183  andas  x2y122¥22¥3 = 2202Y281X283.

It follows that x, = z1, zo = y1, and thus that y| = ax1a1, @3 = Y2213, 1 =
82y281, and 83 = Brx1B3. Consequently, we may write E,_» as:

X1012102Y1Y2Y2Y3 = y162y28121B2X183.

Now, let E/, | be the equation

X1012102Y1Y2Y2Y3 = ¥2012182Y182%183.
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Since var(8§2) € var(y3) C var(az), we have that var(8;) Nvar(aja2y2) = @, and
consequently, Er/z _1 —L En—2.However, since 71, y1 € W(E;l_ 1)» We can infer from
Claim 1.10.1 that E,,_; ¢ S. However, this contradicts our earlier assumption that the

sequence Ey, Es, ..., E, is minimal, since Ey, E3, ... E,_2, E,’H1 also satisfies that
E\=E,E, ¢SandE;vEijorEipi0Eiforl <i<n—-2andE, > E, ».
Thus, we must have that [E]— = § as required. O

We are now ready to give the tight lower bounds on the number of vertices in %[7;],
and to characterise those equations for which the lower bounds are achieved. The
final step is to move from the bounds depending on Card(W (E)) given by Lemma 9.9
to bounds depending on Card(var (E)) by noting that by Lemma 6.13, there is always
an equation in %[?] for which Card(var(E)) = Card(W (E)).

Lemma 9.11 Let E be a basic regular word equation. Let n = Card(var(E)) and
suppose that n > 2. Let V be the number of vertices in %[?]. Then V > 21 — 1.

Moreover, V.= 2"~V — 1 ifand only if E is regular reversed.

Proof Let E be a basic regular word equation and let n = Card(var(E)) > 2. Let
V = Card([ E]= ) be the number of vertices in 54[713] W.Lo.g. by Lemma 6.13, we may
assume that E has the form xay = yfBx for some x, y € X and «, B € (X\{x, y})*.
Thus Card(W(E)) = n. Let S = {E’ | E»* E’}. Then by Fact 9.5, S C [E]—. By
Lemma 9.9, Card(S) = 27=1 _ 1. Hence we have that V > 2"~! — 1. Moreover, by
Lemma 9.10, S = [E] if and only if E is regular reversed. Hence V = 2"~! — 1 if
and only if there exists E’ € [E]— such that E’ is regular reversed. O

It is worth noting that the lower bound given by Lemma 9.11 is already exponen-
tial in the number of variables, which, since we consider basic RWEs, is proportional
to the length of the equation. In order to interpret these bounds in the more general
(i.e. not basic) case we recall from Section 4 that for any RWE o = g, there exist
prefixes o/, B/ of & and B respectively such that E’ given by o’ = B’ is indecompos-

able, and such that {4“:5’] is isomorphic to %[7;, I In this case, the lower bound on the

number of vertices in 54[:5] becomes 2”1 — 1 where m = Card(qv(E")).
We conclude this section with the following theorem summarising the bounds on
the number of vertices in %[7:3]

Theorem 9.12 Let E be a basic RWE and let n = Card(var(a)). Suppose that
n > 1. Let V be the number of vertices in g[?] Then:

L2 l—1<v<t
2. V. = 2"\ — 1 if and only if there exists E' € [El— such that E' is regular
reversed,

3. V= "7' if and only if there exists E' € [El— such that E' is regular rotated.

Proof Directly from Lemmata 9.2 and 9.11. O
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10 DAG-Width

In addition to the size we are also able to give some insights about the connectedness
of the graphs, which, as discussed in Section 3.3, are of interest when solving RWEs
modulo additional constraints. We show firstly that there exist classes of equations E
for which dgw(g[?]’v ™) may be arbitrarily large.

Theorem 10.1 Let x, y, 20, 21, 22, - - - » Zn € X. Let E be the equation given by

XZ02122 - - -ZnY = Y20ZnZn—1 - - - Z1X.

Then dgw(%[?]m) > n.

To prove Theorem 10.1, we make use of the k-cops and robber games for directed
graphs as introduced by [5]. The following definition is taken directly from [5].

Definition 10.2 (Cops and robber game [5]) Given a directed graph G = (V, E),
the k-cops and robber game on G is played between two players, the cop and the
robber player. Positions of this game are pairs (X, r) where X € V= are the vertices
occupied by the cops and r € V is the vertex occupied by the robber. The game is
played as follows:

— At the beginning, the cop player chooses Xog € V=, and the robber player
chooses a vertex rg € V, giving position (Xo, ro).

— From position (X;, r;), if r; ¢ X;, then the cop player chooses X; 1 € V=K and
the robber player chooses a vertex r;1 € V such that there is a directed path
from r; to r;41 in the graph G\ (X; N X;41).

— A play in the game is a maximal (finite or infinite) sequence 7 =
(Xo, ro), (X1,r1), (X2,72), ... of positions given by the rules above.

— A play & is winning for the cop player if and only if it is finite. (Note that, by
the rules above, this implies that r,,, € X,, for the last position (X,,, ;) of this
play.) A play m is winning for the robber player if and only if it is infinite.

— A (k-cop) strategy for the cop player is a function f from V=K x V to V=K. A
play (Xo, ro), (X1, r1), ... is consistent with a strategy f if X;4+1 = f(Xi,ri)
for all i. The strategy f is called a winning strategy if every play consistent with
the strategy is winning for the cop player.

— The cop number of a directed graph G is the least k such that the cop player has
a strategy to win the k-cops and robber game on G.

It is shown in [5] (Theorem 16) that for any directed graph G, there is a DAG-
decomposition of G of width at most k only if the cop player has a winning strategy
in the k-cops and robber game on G. Thus, to show that a graph G has DAG-width
greater than n, it is sufficient to show that there is no n-cop winning strategy in the
n-cops and robber game on G. This equivalently amounts to providing a winning
strategy for the robber. We shall use this fact to prove Theorem 10.1 as follows.
Figure 8 provides an example and depicts how the winning strategy for the robber
works.
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Theorem 10.1. Note that it is sufficient to show that the DAG-width of ff[?] is greater
than 7, since g[?] is a subgraph of %[?]N T . For0 < i < n, let E; be the (basic regular)
equation given by:

XZiZi4l -+ - ZnZ02122 « - - Zim1Y = YZiZi—1 -+ - Z2120ZnZn—1 - - - Zi+1X

where x, y, 20, 21, .- -, 2n € X.Notethat E = Ey. Let V = [E]- . Before describing

a winning strategy for the robber in the n-cops and robber game on 54[?], we define

some useful subsets of vertices of %[?] as follows. For each i,0 < i < n and each

Jj,0<i<nwith j > i,let

Ti] = {ZiZi+1-.-2n2021 - - - Zi—1XY = YZiZi—1 - - - 20ZnZn—1 - - - Zi4+1X,
Zitl---2n2021 - - - Zi—1XZiY = YZiZi—1 - - - 20ZnZn—1 - - - Zi41%X,

ZjZj41 -+ ZnZ0Z1 -+ - Zi—1XZiZit1 - - - Zj—1Y = YZiZi—1 - - - 20ZnZn—1 - - - Zi+1X}
ULZZj+1 - - 202021 - - - Zim1XZiZit1 -+ - Zj—1) =
ZiZiel - 20ZnZn—1 - - - Zj41YZjZj—1 - - - Zi41 X}
U{Zj42 -+ - 202021 « - - Zi—1X 22 j412iZi41 - - - Zj—1Y =
ZiZi—1---20Znn—1---2j+1YZjZj—1 -+ - Zi+1X,

Zi—1XZjZj41 - - ZnZ0Z1 + - - Zi—2ZiZit] -+ - Zj—1Y =
ZiZi—1---20Zn2n—1 - - Zj41YZjZj—1 -+ Zi+1X}.

Similarly, for eachi,0 <i <mandeach j,0 < j <nwith j < i, let:

J .
T ={ ZiZi+1..-2n2021 - Zi—1XY = YZiZi—1 -+ - 20ZnZn—1 - - - Zi+1X,
Zitl - -2n2021 - - Zi—1XZiY = YZiZi—1 - - - 20ZnZn—1 - - - Zi+1X,

241 - e Zie1XZiZigl -+ - ZnZ0Z1 + - - Zj—1Y =YZiZi—1- - -20ZnZn—1 - - - Ti+1X}
U{ 2jZj+1-+-Zi—1XZiZi+1 - - - ZnZ021 -+ - Tj—1Y =
ZiZiel -+ 20ZnZn—1 - - - Zjp1 YZjZj—1 - - - Zi1X}
U{ Zj42...2ic1XZjZj41ZiZi+1 - - - ZnZ0Z1 - - - Zj—1) =
ZiZi—1++-Zj+1YZjZj—1++-20ZnZn—1 - - - Zi+1X,

Zi1XZjZj41 - Zim2ZiZig] -+ - 202021 -+ - Zj—1Y =

ZiZi—1 -+ -Zj41YZjZj—1 -+ -20ZnZn—1 - - - Zit+1X}.

Foreachi,0 <i <n,let S = |J Tl.j and let
0<j<n,i#j

an ={ XZiZit1---2n2021 -+-Zi—1Y = ZjZj—1---20ZnZn—1 -+ - Zi+1YZiZi—1 ---Zj41X | j <1}
U{ XZiZit1..-20n2021 -+ Zi—1Y = ZjZj—1 -+ Zi+1YZiZi—1 - +-20ZnZn—1 - - - Zj41X | j > 1}.
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Note that Sf” = (E’ | E' =7 E;}\{E;}. Moreover, we shall now show that for each
E;, E; withi # j, there exist F, I, ..., Fy € S;’”’ and G, G,,...Gy € Sj.” such
that

EE=F=>mnR=..FF=>G6=06=...2G=E,. @)

Indeed, observe that

Ei = ZiZit1...2n2021 -+ - Zi—1XY = YZiZi—1 - +-20ZnZn—1 - - - Zi+1X
= Zi41.--2n2021 - - - Zi—1XZ;Y = YZiZi—1 ---20ZnZn—1 - - - Zi41X

= ZjZj41 - ZnZ021 - - Zi—1XZiZig1 - 2j—1Y = YZiZi—1 - --20ZnZn—1 - - - Zi+1X
= 224l - ZnZ0Z0 + - Li—1XZiZig] - Tj—1Y =

ZiZi—1.--20Zn%n—1 -+ - Zj+1Y3jZj—1 - - Zi41X
= Zj42 - Tn2020 - - - Li—1XZjTjH1ZiZit] - - Zjm1Y =

ZiZi—1-+-202n2n—1 - - Zj41YZjZj—1 - - Zit1X

= Zi—1XZjZj+1 -+ -ZnZ021 + - - Zi—2ZiZi+1 - - - Zj—1Y =
ZiZi—1++--20Znin—1 -+ - Zj+1YZjZTj—1 -+ - Zi41X
= XZjZj41---Zn2021 - - Zi—1ZiZit1 - - Zj—1Y =

ZiZio1+--20ZnZn—1-+-Zj41YZj%j—1 -+ -Zit1X € S}".

Thus, there exist Fi, Fa, ..., Fy € S/ and G| € Sj.” suchthat E; = F; = F, =
... = Fy = G. By definition, S}" ={E" | E' =7 E;}\{E}}, so it follows directly
that there exist G, ..., Gy € S;-” such that G| = G2 = ... = E; as claimed.
Consequently, we may conclude that Sf" U Sf’”’{E,-} C[E]= foralli,0 <i <n.
Clearly, each E;, 0 < i < n is not contained in any S].Z for0 < j <nand Z €
{in, out}. Furthermore, since the RHS of every equation in Si(”” has either yz; or
zi as a prefix, S N S;?’” = () whenever i # j. Similarly since the LHS of every
equation in S} has xz; as a prefix, $;" N §" = ¢ whenever i # ;. Since the LHS
of all equations in Sf" has x as a prefix, and since the LHS all equations in S;?”t does

not have x as a prefix, we may conclude further that Sl.Z ns jZ/ = foralli # j and
Z,Z7Z e {in,out}.

We are now ready to give the strategy for the robber in the n-cops and robber game
on %[?] We shall say that E; is a ‘safe’ vertex if Sf” U Sl.”’” U {E;} contains no vertex
with a cop on it. Since there are only n cops, it follows from the fact that the sets
Sf " U 8" U{E;} are pairwise disjoint that, at any given time, there must be at least
one i, 0 < i < n such that E; is safe. By definition, if the robber is on a safe vertex,
then there is no cop also on that vertex, so the play continues.

Clearly, if the cop player chooses an initial placement X € [E ]g”, then the robber
may be placed on a safe vertex ro = E;; for some i1,0 < iy < n. Now, suppose
after k steps in the game the position is (X, ry) where ry is a safe vertex. Then we
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Fig.8 A depiction of the graph ‘f[?] in the case that E = xz0z122y = yz0z2z1x. Thus this is an example
of Theorem 10.1 for the case n = 2. The graph is divided into sections corresponding to the (disjoint)
sets {E;} U S;" U 874" for 0 < i < 2. The vertices E; are highlighted in bold while vertices from S;” are
coloured blue and vertices from S are coloured red. In order to conserve space, vertices belonging to
one of these sets are displayed with the LHS and RHS of the equation arranged vertically while for other
vertices the equations are omitted. Since there are three values for i, if there are two cops, there will always
be at least one i such that no vertex in {E;} U S}"‘ U $7* has a cop on it. The strategy of the robber is to
always be on E; for such a choice of i. This is due to the fact that for each i and j, there is an path from
E; to E; visiting only vertices from S and S which can be used as an escape-route (an example for
i = l and j = 3 is highlighted in bold in the figure). Thus, if at any given stage in the game, a cop moves
to a vertex in {E;} U Sf” U 87", the robber can use the escape route to safely move to some E; for which
no vertex in {E;}U S;.” u S;.’“’ has a cop on it. The edges making up the escape-route paths needed for this
strategy are given by solid arrows, while the other edges which are not used by the robber are dashed

shall show that, whatever the cop player chooses for X1, the robber may choose
k41 such that g4 is safe. Indeed, if ry = E;; for some iy, 0 < iy < n is safe, then
™ Z( “U{Ek, })N Xy = ¥. Moreover, since there are only n cops, whatever the choice of
X1, there exists rgq1 = Ej, for some ixy1,0 < ixq1 < n such that E;,_, is safe,
meaning that X1 N(S;"  U{Ej,}) = 0. It follows that SZC”’ US U, Ei} C

[E]s\(Xk+1 N Xi). We have already shown (Equation 4) that there is a directed
path in g[:E}] using only vertices from S,fi”t U S,‘{:‘H U{E;, Ej.,,} from rp(= E;) to
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re+1(= Ej,), and hence (X1, rr+1) is a valid next position satisfying the rules of
the game. Since r4 1 is also safe, this proves our claim, and by a simple induction,
it follows that for any n-cop strategy, there is an infinite play (i.e. robber wins). It
follows that there is no winning n-cop strategy, so the DAG-width of %[75}] is greater
than » as required. O

Since high connectivity can be seen as an obstacle to deciding the satisfiability
problem with additional constraints, it is also worth noting classes for which the
DAG-width is bounded by a small constant. If all variables occur at most once in
an equation E, then it is not difficult to see that the graph g[if]N " will be a DAG.
However, when variables may occur more than once, the graphs of even very simple
equations such as xab = bax will contain cycles, and will therefore have DAG-
width at least two. The following theorem describes an infinite class of equations
for which the DAG-width of Sf[?]’v T is at most two. It is worth pointing out that the
NP-hardness result for the satisfiability problem for regular word equations from [8]
applies to this class, and so, by Theorem 8.12, this class also has an NP-complete
satisfiability problem.

Theorem 10.3 Let ay, an, ..., o, B1, B2, ..., By € X™ such that

1. ai| =18il € {1,2,3} for 1 <i <n, and

2. wvar(a;) = var(B;) for 1 <i <n, and

3. war(aj) Nvar(aj) =@ forl <i,j <nwithi # j.

Let E be the RWE a1ty ...y = P12 ... Bu. Then dgw (7" < 2.

Proof Let E be of the form described in the theorem. By Proposition 3.5,
dgw(@Z") = max{m | E =} E andm = dgw(¥47,))}.

Let % be the subclass of RWEs of the form oo . ..o = B182 ... Bx where k € Ny
such that:

1. «;, B € X*with |o;| = |Bi| € {1,2,3}for 1 <i <k, and
2. var(a;) =var(B;) forl <i <k,and
3. war(aj)Nvar(aj) =P foralli # j,1<1i,j<k.

Clearly, we have E € ¥. Since k is not restricted, we may also assume w.l.o.g.
that for any word equation in %, the ‘sub-equations’ «; = f; are indecomposable.
Moreover, if E’ is not the equation ¢ = &, we may also assume that |«;| > 1. Under
these assumptions, it follows from Corollary 4.4 that for any E’ € &, the graph 54“:;,]
is isomorphic to the graph %[jl p There are four possibilities for ¢y = 81 (upto a

renaming of the variables, which does not alter the structure of the graph %[z - /31])’
namely x = x, xy = yx, xyz = zyx, xyz = yzx and xyz = zxy. It is easily verified
by hand that in all cases the DAG-width is at most two (it is exactly two in the cases
where |a1| = | 81| = 3). Moreover, it follows from the definitions that if E; € ¥ and

E| = N1 E> for some E;, then E; € €. Consequently, we have that
dgw(%[?]”) =max{m | E =}, E' andm = dgw(g[?,])} <2.
O
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11 Extension to Systems of Equations

So far, we have considered individual equations. However, it is often the case that
there is not just one equation to be solved, but a system of several equations which
should be satisfied concurrently. However, while constructions exist which transform
a system of equations into a single equation (see e.g. [17]), the resulting equation will
generally not be quadratic/regular. We extend the definition of regular equations to
regular systems as follows.

Definition 11.1 (Regular systems) Let ® = {«¢] = B1, 00 = B2,..., 0, = B,} be
a system of word equations. An orientation of ® is any element of {«] = B1, 1 =
a1} X {ay = B2, B2 = ap} x ... X {a, = B, B = @, }. We say that @ is regular if
it has an orientation for which each variable occurs at most once across all LHSs and
at most once across all RHSs.

We can easily adapt the algorithm from Section 3 to work more generally for
systems of word equations, and with careful application, still make use of Theo-
rem 8.11 in order to obtain (non-deterministic) polynomial running time. To do this,
we need to extend the rewriting transformations (Nielsen transformations) underpin-
ning the relation = 7 which we have thus far defined for single equations only.
Note that each possible rewriting of a single equation can be achieved by firstly
applying a morphism to both sides of the equation then followed, if applicable, by
cancelling the longest identical prefixes of the new LHS and RHS. For example, the
rewriting xayzba = ybwbza =y7 axyzba = ybwbza consists of applying the
morphism ., (cf. Section 3) to both sides of the first equation in order to get
xaxyzba = xybwbza and then cancelling the resulting leftmost occurrences of x.

The generalisation of the Nielsen Transformations to systems of equations is
straightforward: we select one of the word equations E from the system, and apply
any of the possible transformations to it as before. Then we simply need to apply the
associated morphism to both sides of all the other equations in the system, followed
by any further resulting cancellations. We shall say that such a transformation is
rooted on the chosen equation E, and we shall write ® = f,T ®'if ©, © are systems
of word equations such that ®’ is the result of applying a transformation rooted on E
to ®. So if, for example, we have the system {xayzba = ybwbza, wba = abx},
then one possible transformation of the first equation is xayzba = ybwbza =n7
xayzba = bwbza obtained by applying the morphism ., and cancelling the
resulting leftmost occurrences of y. To extend this transformation to the whole sys-
tem, we just need to apply ¥, to the other equation (no further cancellation is
required in this case) so we have {rxayzba = ybwbza,wba = abx} :>5T
{xayzba = bwbza, wba = abyx} where E is the equation xayzba = ybwbza.

Taking the length |®| of a system ® of word equations to be the sum of the lengths
of all the individual word equations, it is easily seen that the important properties of
this rewriting carry over to the case of systems. Specifically, it is easily verified that
for any regular system @ of word equations each of the following holds:

1. IfE € ®and® :>§,T ®’, then @’ is also regular,
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2. IfE€®and® =%, 0 then |0'| < |6,

3. for any solution % to ®, and for any E € & with |E| > 0 there exists a system
©’ with a solution h’ such that ® =%, ©’ and either /' is smaller than / or
1O < |O)|.

With this in mind, we are now able to extend our main result that solving regular
word equations is in NP to include regular systems of equations.

Theorem 11.2 The satisfiability problem for regular systems of equations is NP-
complete. Moreover, whether a system of word equations is regular can be decided
in polynomial time.

Proof Since the satisfiability problem is NP-hard for regular word equations, it is
also NP-hard for regular systems of word equations. Next we shall show inclusion in
NP. Let ® = {E1, E», ..., E,} be a regular system of equations. From Observations
1-3 above, there is a solution to ® if and only if there exists a finite sequence of
transformations

O0 = ap Ol N - = O
satisfying ® = 0y, ©,, = {¢ = ¢} and Ei € ®;_1 for 1 < i < m. In fact, by
Observation 3, we may freely choose each E; tobe any equation from ®;_1, and such
a finite sequence must still exist whenever there is a solution. Consequently, we may
decide whether or not a solution exists with the following procedure (Algorithm 1)
which searches for such a sequence by applying firstly transformations rooted on the
first equation, followed transformations rooted on the second equation, then the third,

etc. For convenience, we shall represent @ as an ordered list [Eq, E3, ..., E,] rather
than a set.

Algorithm 1 Deciding if regular system of word equations has a solution.

Input: A regular system of word equations given as an (ordered) list
[El, Ea, ..., Ey]
Output: “Yes” if the system {Ej, Eo, ..., E,;} has a solution and ‘“No”
otherwise
I: ® < [Ey, Ey, ..., Ey]
2: fori,1 <i <ndo
3 counter < 0
4 while O[i] # ¢ = ¢ A counter < Cp do
5: Choose ®’ such that © :>%[T’] e’
6 O «— 6
7 if ©[i] # ¢ = ¢ then
8 Return “No”
9: Return “Yes”

We begin by non-deterministically applying a sequence of Nielsen transforma-
tions (generalised for systems of word equations) rooted on the first equation in the

@ Springer



Theory of Computing Systems

list until we reach a system of the form [¢ = ¢, E), ..., E;,]. If we are not able to
transform E7 into ¢ = ¢, then no solution to E; exists and the system has no solution.

Otherwise, once we have transformed E; into the ¢ = &, we repeat the process
of applying the generalised Nielsen transformations to the (new) second equation E,
until it has also been transformed into & = ¢ (note that none of the transformations
will change the trivial equation ¢ = ¢). Continue to repeat this process for each
equation, in increasing order, until either an equation is reached which cannot be
transformed into & = &, or until we have transformed all equations into this form. In
the former case, there is no solution, while in the latter case, a solution exists.

It remains to be seen that we can implement the procedure just described such that
it runs in non-deterministic polynomial time. For this, we need a few further observa-
tions. The first is that when applying transformations rooted on the i’” equation, we
are essentially traversing the same graph g[ z’]" T as if we were to consider in isolation

the equation E; obtained after transforming the first i — 1 equations into ¢ = ¢. The
only difference is that we are potentially changing the other equations as we go. The
second important observation is that any transformation rooted on the i’ equation
which changes any of the other (non-root) equations must necessarily decrease the
length of the i"" equation. Finally, the equation on which a transformation is rooted
never increases in length as a result of that transformation. Thus, by applying the
transformations in the order specified, we never increase the length of i’ equation
once it becomes the current root.

Consequently, when applying transformations which preserve the length of the
i"" equation, we may, without affecting the outcome, take the shortest path through
the graph. Moreover, since we can only decrease the length of an equation a linear
number of times, the maximum number of transformations rooted on the i’ equation
needed in order to find a solution when one exists is bounded above by

Ci = |E| max{diam(43)) | E; =1 E}.

By Theorem 8.11, we can easily compute an upper bound Cg > max{C; | 1 <i <
n} on the number of transformations needed which allows us to restrict the above
procedure such that it works in non-deterministic polynomial time without affecting
the correctness.

Finally, we describe the following procedure (Algorithm 2) for determining if a
system @ = {Ey, E,, ..., E,} is regular. First we check that each individual equa-
tion is regular and that no variable occurs more than twice across the whole system.
We then initialise two sets L and R to the empty set. The sets L and R will keep
track of variables occurring across the LHS’s and RHS’s of an orientation of ®. We
remove equations ¢ = f from ® one-by-one, deciding each time whether « = 8 or
B = « should be included in the orientation and updating L and R accordingly.

While there are still equations left in the system, there are two cases to consider.
The first is that there exists an equation « = B € ©@ which contains at least one
variable x which is already in L or R. In this case, we can rule out at least one choice
of @ = B or B = o when constructing an orientation satisfying the definition for
regular systems. In particular, if x € L, then whichever of «, 8 contains x should be
the RHS in the orientation (so, if x occurs in «, we include 8 = « in the orientation
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instead of o« = B). Likewise if x € R then whichever of «, 8 contains x should be
the LHS. Once we have decided which of « = 8 and 8 = « is a bad choice (in that it
would lead to two occurrences of x in either the LHS’s or RHS’s), we need to check
that the remaining “oriented” equation does not lead to a similar conflict (possibly
for one of the other variables). To do this, we simply need to check that the LHS does
not share any variables with L and likewise that the RHS does not share any variables
with R. If this test is failed then our system is not regular and we can stop and return
“No”. Otherwise we add all the variables from the LHS of the oriented equation to L
and all the variables from the RHS to R. Then we remove the equation « = g from
the system @ and continue.

Algorithm 2 Deciding if a system of word equations is regular.

Input: A system of word equations {E1, E3, ..., E,}
QOutput: “Yes” if the system {E, Ea, ..., E,} is regular and “No” otherwise
I: L,R<0
2: S« {E\,Er, ..., E;}
if Any variable occurs more than twice across all the E;s, or any variable occurs
twice on the same side of a single equation E; then

(98]

4: Return “No”

5. while S # () do

6: if Jo = B € S.var(aB) N (L U R) # ¢ then

7: S < S\{x = B}

8: if var(¢) N L # @ v var(B) N R # ¢ then
9: LHSoriented < .3

10: RHSoriented < o

11: else

12: LHSoriented < @

13: RHSOriented < :3

14: if var (LHSoriented) N L = var(RH Soriented) N R = ¢ then
15: L < LUvar(LHSoriented)

16: R < RUwvar(RHSoriented)

17: else

18: Return “No”

19: else
20: Choose any o = 8 from S

21: S <« S\{x = B}

22: L < LUvar(x)

23: R < R Uvar(pB)

24: Return “Yes”

The second case is when none of the variables occurring in the remaining equa-
tions are contained in either L or R. In this case, how we construct the rest of the
orientation is not dependant on the previous choices. Moreover, for any orientation
satisfying the definition, we can find another by simply swapping the LHS’s and
RHS’s of all equations. Thus by symmetry, we may include any single one of the
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remaining equations in the orientation without exchanging the LHS and RHS, and
without affecting the possibility of constructing a valid orientation in the end. Thus,
we then pick any of the remaining equations o = f at random and add the variables
from o to L and all the variables from S to R, before removing ¢ = g from ® and
continuing. If we are able to iterate through and discard all equations in the system
like this without returning “No”, then the system is regular and we may return “Yes”.
The correctness, along with the fact that the procedure runs in polynomial time are
easily verified. O

12 Conclusions

A famous algorithm for solving quadratic word equations can be used to produce
a (directed) graph containing all solutions to the equation. In the case of regular
equations, we have described some underlying structures of these graphs with the
intention of better understanding their solution sets. We give bounds on their diameter
and number of vertices, as well as provide classes with bounded (resp. unbounded)
DAG-width. Probably the most significant result arising from our analysis is that the
satisfiability problem for regular word equations is in NP (and thus NP-complete),
which we also extend to regular systems of equations.

We leave open many interesting problems, the most obvious of which is to gen-
eralise our results to the (full) quadratic case. We also believe that our analysis and
techniques open up the possibility to investigate in far more detail the graphs g[=E>]’
both in the case of regular equations and more generally. For example, in light of
our results, it seems reasonable to suggest that determining whether £y =* E; for
two regular equations E; and E> may be done in polynomial time. A particularly
nice characterisation of E| and E, such that E; =* E; might yield a much quicker
algorithm than the one resulting from our bound on the diameter of g[?]N " by signif-
icantly reducing the degree of the polynomial. We also expect that a detailed analysis
of the length-reducing transformations and symmetries which may be found there
would be particularly helpful in understanding further the structure of solution sets
and the performance of algorithms solving regular equations in practice.

Finally, we mention the task of investigating the decidability of the satisfiability prob-
lem for regular equations with additional constraints, in particular length constraints,
with the hope that having identified cases where the DAG-width is particularly high/low,
along with improved means to describe precisely the structure of the solution-graphs,
might provide some useful hints with how to proceed in this direction.
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