
Theory of Computing Systems
https://doi.org/10.1007/s00224-021-10058-5

On the structure of solution-sets to regular word
equations

Joel D. Day1 ·Florin Manea2

Accepted: 4 August 2021
© The Author(s) 2021

Abstract
For quadratic word equations, there exists an algorithm based on rewriting rules
which generates a directed graph describing all solutions to the equation. For regu-
lar word equations – those for which each variable occurs at most once on each side
of the equation – we investigate the properties of this graph, such as bounds on its
diameter, size, and DAG-width, as well as providing some insights into symmetries
in its structure. As a consequence, we obtain a combinatorial proof that the problem
of deciding whether a regular word equation has a solution is in NP.

Keywords Quadratic word equations · Regular word equations · String solving · NP

1 Introduction

A word equation is a tuple (α, β), which we shall usually write as α
.= β, such that α

and β are words comprised of letters from a terminal alphabet Σ = {a,b, . . .} and
variables from a set X = {x, y, z, . . .}. Solutions are substitutions of the variables
for words in Σ∗ making both sides identical. For example, one solution to the word
equation xaby

.= ybax is given by x → b and y → bab. A system of equations
is a set of equations, and a solution to the system is a substitution for the variables
which is a solution to all the equations in the system.

This article belongs to the Topical Collection: Special Issue on International Colloquium on
Automata, Languages and Programming (ICALP 2020)
Guest Editors: Artur Czumaj and Anuj Dawar

� Joel D. Day
J.Day@lboro.ac.uk

Florin Manea
florin.manea@informatik.uni-goettingen.de

1 Loughborough University, Loughborough, UK

2 Georg-August-Universität Göttingen, Göttingen, DE, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s00224-021-10058-5&domain=pdf
http://orcid.org/0000-0002-3660-7766
mailto: J.Day@lboro.ac.uk
mailto: florin.manea@informatik.uni-goettingen.de

Theory of Computing Systems

One of the most fundamental questions concerning word equations is the satis-
fiability problem: determining whether or not a word equation has a solution. The
first general algorithm for the satisfiability problem was presented by Makanin [22]
in 1977. Since then, several further algorithms have been presented. Most notable
among these are the algorithm given by Plandowski [25] which demonstrated that
the problem is included in the complexity class PSPACE, the algorithm based on
Lempel-Ziv encodings by Plandowksi and Rytter [26], and the method of recom-
pression by Jeż, which has since been shown to require only non-deterministic linear
space [15, 16]. On the other hand, it is easily seen that solving word equations is
NP-hard due to fact that the subcase when one side of the equation consists only of
terminals is exactly the pattern matching problem which is NP-complete [3, 12]. It
remains a long-standing open problem whether or not the satisfiability problem for
word equations is contained in NP.

Recently, there has been elevated interest in solving more general versions of the
satisfiability problem, originating from practical applications in e.g. software verifi-
cation where several string solving tools capable of solving word equations are being
developed [1, 2, 4, 6, 18] and database theory [13, 14], where one asks whether a
given (system of) word equation(s) has a solution which satisfies some additional
constraints. Prominent examples include requiring that the substitution for a variable
x belongs to some regular language Lx (regular constraints), or that the lengths of
the substitutions of the variables satisfy a set of given linear diophantine equations.
Adding regular constraints makes the problem PSPACE complete (see [10, 25, 27]),
while it is another long standing open problem whether the satisfiability problem
with length constraints is decidable. There are also many other kinds of constraints,
however many lead to undecidable variants of the satisfiability problem [7, 19]. The
main difficulty in dealing with additional constraints is that the solution-sets to word
equations are often infinite sets with complex structures. For example, they are not
parametrisable [24], and the set of lengths of solutions is generally not definable in
Presburger arithmetic [20]. Thus, a better understanding of the solution-sets and their
structures is a key aspect of improving our ability to solve problems relating to word
equations both in theory and practice.

Quadratic word equations (QWEs) are equations in which each variable occurs
at most twice. For QWEs, a conceptually simple and easily implemented algorithm
exists which produces a representation of the set of all solutions as a graph. Despite
this, however, the satisfiability problem for quadratic equations remains NP-hard,
even for severely restricted subclasses [8, 11], while inclusion in NP, and whether the
satisfiability problem with length constraints is decidable, have remained open for a
long time, just as for the general case.

The algorithm solving QWEs is based on iteratively rewriting the equation(s)
according to some simple rules called Nielsen transformations. If there exists a
sequence of transformations from the original equation to the trivial equation ε

.= ε,
then the equation has a solution. Otherwise, there is no solution. Hence the sat-
isfiability problem becomes a reachability problem for the underlying rewriting
transformation relation, which we denote ⇒NT . It is natural to represent this relation
as a directed graph G ⇒NT in which the vertices are word equations and the edges are
the rewriting transformations. This has the advantage that the set of all solutions to

Theory of Computing Systems

an equation E corresponds exactly to the set of walks in the graph starting at E and
finishing at the trivial equation ε

.= ε.1 Consequently, the properties of the subgraph
of G ⇒NT containing all vertices reachable from E (denoted G ⇒NT[E]) are also infor-
mative about the set of solutions to the equation. For example, in [24] a connection
is made between the non-parametrisability of the solution set of E and the occur-
rence of combinations of cycles in the graph. Since equations with a paramtrisable
solution set are much easier to work with when dealing with additional constraints,
this also establishes a connection between the structure of G ⇒NT[E] and the potential
(un)decidability of variants of the satisfiability problem. Moreover, new insights into
the structure and symmetries of these graphs are necessary for better understanding
and optimising the practical performance of the algorithm.

Our contribution We consider a subclass of QWEs called regular equations (RWEs)
introduced in [23]. A word equation is regular if each variable occurs at most once
on each side of the equation. Thus, for example, xaby

.= ybax is regular while
xabx

.= ybay is not. Understanding RWEs is a vital step towards understanding the
quadratic case, not only because they constitute a significant and general subclass, but
also because many non-regular quadratic equations can exhibit the same behaviour
as regular ones (consider, e.g. zz

.= xabyybax for which all solutions must satisfy
z = xaby = ybax). The satisfiability problem was shown in [8] to be NP-hard
for RWEs, and shown to be in NP in [9] for some restricted subclasses including the
classes of regular-reversed and regular-ordered equations.

For RWEs E, we investigate the structure of the graphs G ⇒NT[E] , and as a conse-
quence, are able to describe some of their most important properties. We achieve this
by first noting that G ⇒NT[E] can be divided into strongly connected components G ⇒

[E′]
for which all the vertices are equations of the same length (⇒ shall be used to denote
the restriction of ⇒NT to length preserving transformations only). The ‘full’ graph
G ⇒NT[E] is comprised of these individual components G ⇒

[E′] arranged in a DAG-like
structure of linear depth (see Section 3) and therefore many properties and parameters
of the ‘full’ graph G ⇒NT[E] are determined by the equivalent properties and parameters
of the individual components G ⇒

[E′]. We then focus on the structure of the subgraphs
G ⇒

[E′], and as a result are able to give bounds on certain parameters such as diameter,
size, and DAG-width.

Our structural results come in two stages, based on whether the equation belongs
to a the class of ‘jumbled’ equations introduced in Section 6. In the first stage, we
consider equations which are not jumbled, and we show that for all such equations E,
there exists a jumbled equation Ê such that G ⇒[E] is comprised mainly of several well-

1Each choice of edge in a walk can be seen as a decision about the corresponding solution. It is not
necessarily true that different walks will result in different solutions. However, all possible decisions are
accounted for, so it is guaranteed that for every solution there is a walk from E to ε

.= ε which corresponds
to that solution.

Theory of Computing Systems

connected near-copies of G ⇒
[Ê]. For jumbled equations Ê, we show in Section 7 that

every vertex in G ⇒
[Ê] is close to a vertex in a certain normal form. We show that the

vertices in this normal form are determined to a large extent by a property invariant
under ⇒ introduced in Section 5.

With regards to the diameter of G ⇒
[E′], we give upper bounds which are polynomial

in the length of the equation. It follows that the diameter of the full graph G ⇒NT[E]
is also polynomial, and consequently, that the satisfiability problem for RWEs is
NP-complete. This can be generalised to systems of equations satisfying a natural
extension of the regularity property (see Section 11). We also give exact upper and
lower bounds on the number of vertices2 in G ⇒

[E′] for a subclass of RWEs called basic
RWEs (see Section 4), as well as describing exactly for which equations these bounds
are achieved. For RWEs which are not basic, we can infer similar bounds, at the cost
of a small (linear in the length of the equation) degree of imprecision. Since in the
worst case (e.g. for equations without a solution), running the algorithm will perform
a full ‘search’ of the graph, the number of vertices is integral to the running time
of the algorithm, and is potentially a better indicator of difficult instances than the
complexity class alone. An example of this, comes from comparing two subclasses
of RWEs called regular-ordered and regular rotated equations. It follows from our
results that while both classes have an NP-complete satisfiability problem, if E′ is
regular-ordered, then G ⇒

[E′] will contain at most n vertices, where n is the length of the
equation, while if E′ is regular rotated, but not regular-ordered, then G ⇒

[E′] will contain
n!
2 vertices, indicating a vast difference in the number of vertices the algorithm would
have to visit.

Motivated by generalisations of the satisfiability problem permitting additional
constraints, we also consider the connectivity of the graphs G ⇒NT[E] . To do this, we
use DAG-width, a measure for directed graphs which is in several ways analogous
to treewidth for undirected graphs. Intuitively, equations for which G ⇒NT[E] has low
DAG-width are likely to be more amenable when considering additional constraints
such as length constraints (see Section 3.3). We give an example class of equations for
which the DAG-width is unbounded, as well as a class for which the DAG-width is at
most two. The latter includes the class of regular-ordered equations which is the most
general subclass of QWEs for which it is known that the satisfiability problem with
length constraints is decidable [20], and we expect that both cases will be interesting
classes to consider in the context of this problem.

2 Preliminaries

For a set S, we denote the cardinality of S by Card(S). Let Σ be an alphabet. By
Σ∗, we denote the set of all words over Σ , and by ε the empty word. By Σ+,

2We consider the number of vertices, rather than edges, because it is the number of vertices which is
relevant to the performance of the algorithm, and by definition of ⇒NT , the out-degree of the graph is
bounded by a constant so the the number of edges is linear in the number of vertices.

Theory of Computing Systems

we denote the free semigroup Σ∗\{ε}. A word u is a prefix (resp. suffix) of a word
w if there exists v such that w = uv (resp. w = vu). Similarly, u is a factor of w

if there exist v, v′ such that w = vuv′. A prefix/suffix/factor is proper if is neither
the whole word w, nor ε. The length of a word w is denoted |w|, while for a ∈ Σ ,
|w|a denotes the number of occurrences of a in w. For a word w = a1a2 . . .an

with ai ∈ Σ for 1 ≤ i ≤ n, the notation w[i] refers to the letter ai in the ith

position. By wR , we denote the reversal anan−1 . . .a1 of the word w. Two words
w1, w2 are conjugate (written w1 ∼ w2) if there exist u, v such that w1 = uv

and w2 = vu.
We shall generally distinguish between two types of alphabet: an infinite set

X = {x1, x2, . . .} of variables, and a set Σ = {a,b, . . .} of terminal symbols.
We shall assume that Card(Σ) ≥ 2, and that there exists an order on X lead-
ing to a lexicographic order on X∗. For a word α ∈ (X ∪ Σ)∗, we shall denote
by var(α) the set {x ∈ X | x is a factor of α}. We shall denote by qv(α) the set
{x ∈ var(α) | |α|x = 2}. A word equation is a tuple (α, β) ∈ (X ∪ Σ)∗ × (X ∪ Σ)∗,
usually written α

.= β. Solutions are morphisms h : (X ∪Σ)∗ → Σ∗ with h(a) = a
for all a ∈ Σ such that h(α) = h(β). The satisfiability problem is the problem of
deciding algorithmically whether a given word equation has a solution. For equations
E given by α

.= β, we shall often extend notations regarding words in (X∪Σ)∗ to E

for convenience, so that, e.g. |E| = |αβ|, var(E) = var(αβ) and qv(E) = qv(αβ).
An equation α

.= β is quadratic if |αβ|x ≤ 2 for all x ∈ X. It is regular if |α|x ≤ 1
and |β|x ≤ 1 hold for all x ∈ X. Thus all regular equations are quadratic, but not all
quadratic equations are regular. We shall usually abbreviate regular (resp. quadratic)
word equation to RWE (resp. QWE). For Y ⊆ X, let πY : (X ∪ Σ∗) → Y ∗ be the
morphism such that πY (x) = x if x ∈ Y and πY (x) = ε otherwise; i.e. πY is a
projection from (X ∪ Σ)∗ onto Y ∗. A regular equation E given by α

.= β is regular-
ordered if πqv(E)(α) = πqv(E)(β), it is regular rotated if πqv(E)(α) ∼ πqv(E)(β) and
it is regular reversed if πqv(E)(α) = πqv(E)(β)R .

Given a set S and binary relation R ⊆ S × S, we denote the reflexive-transitive
closure of R as R∗. For each s ∈ S, we denote by [s]R the set {s′ | (s, s′) ∈ R∗}.
The relation R may be represented as a directed graph, which we denote G R , with
vertices from S and edges from R. Usually, we will be interested in the subgraph
of G R containing vertices belonging to [s]R for some s ∈ S. Thus, for a subset T

of S we shall denote by G R
T the subgraph of G R containing vertices from T . Given

a (directed) graph G , with vertices V (G) and edges E(G), a root vertex is some
v ∈ V (G) such that there does not exist (u, v) ∈ E(G). We denote by diam(G)

the diameter of the graph G , by which we mean the maximum length of a shortest
(directed) path between two vertices. For our purposes, we are really interested in the
maximum length of shortest paths only when they exist, meaning that we shall not
adopt the convention that diam(G) = ∞ when G is a directed graph which is not
strongly connected.

For W, V ′ ⊆ V (G), we say that W guards V ′ if for all (u, v) ∈ E(G) with
u ∈ V ′, we have v ∈ V ′ ∪W . If G is acyclic, we write v1 ≤G v2 if there is a directed
path from v1 to v2 in G or v1 = v2. Following [5], A DAG-decomposition of G is a
pair (D, χ) such that D is a directed acyclic graph (DAG) with vertices V (D), and
χ = {Xd | d ∈ V (D)} is a family of subsets of V (G) satisfying:

Theory of Computing Systems

(D1) V (G) = ⋃

d∈V (D)

Xd ,

(D2) if d, d ′, d ′′ ∈ V (D) such that d ≤D d ′ ≤D d ′′, then Xd ∩ Xd ′′ ⊆ Xd ′ ,
(D3) For all edges (d, d ′) of D, Xd ∩ Xd ′ guards X≥d ′ \Xd , where X≥d ′ =⋃

d ′′≥Dd ′
Xd ′′ , and for all root vertices d , X≥d is guarded by ∅.

The width of the DAG-decomposition is max{Card(Xd) | d ∈ V (D)}. The DAG-
width of G is the minimum width of any possible DAG-decomposition of G and is
denoted dgw(G).

3 An Algorithm for Solving Regular Word Equations

In this section we present the algorithm for solving QWEs as a rewriting system
defined by a relation ⇒NT . The rewriting relation is derived from morphisms called
Nielsen transformations, and we shall abuse this terminology slightly and generally
also refer to the rewriting transformations themselves as Nielsen transformations.
The Nielsen transformations never introduce new variables or terminal symbols, and
never increase the length of the equation. They also preserve the properties of being
quadratic (resp. regular). Thus, given a quadratic (resp. regular) word equation E,
the set {E′ | E ⇒∗

NT E′} of equations reachable via Nielsen transformations is
finite. Moreover, given an equation which has a solution h, there is always a Nielsen
transformation which produces an equation which has a solution, such that at least
one of the new equation or the new solution is strictly shorter than the previous one. It
follows that, given an equation which possesses a solution, it is possible to reach the
equation ε

.= ε after finitely many rewriting steps. For a more detailed description of
the algorithm, we refer the reader to e.g. Chapter 12 of [21].

3.1 Nielsen Transformations

The Nielsen transformations (morphisms) are defined as follows: for x ∈ X ∪ Σ and
y ∈ X, let ψx<y : (X ∪ Σ)∗ → (X ∪ Σ)∗ be the morphism given by ψx<y(y) = xy

and ψx<y(z) = z whenever z �= y. We define the rewriting transformations via the
relations ⇒L, ⇒R, ⇒> as follows. Suppose we have a QWE E of the form xα

.= yβ

where x, y ∈ X ∪ Σ and α, β ∈ (X ∪ Σ)∗. Then:

1. if x ∈ qv(E) and x �= y, then xα
.= yβ ⇒L xψy<x(α)

.= ψy<x(β), and
2. if y ∈ qv(E) and x �= y, then xα

.= yβ ⇒R ψx<y(α)
.= yψx<y(β), and

3. if x ∈ X\qv(E), then xα
.= yβ ⇒> xα

.= β, and
4. if y ∈ X\qv(E), then xα

.= yβ ⇒> α
.= yβ, and

5. if x = y, then xα
.= yβ ⇒> α

.= β.

Moreover, for a QWE E of the form α
.= β with α, β ∈ (X ∪ Σ)∗, and for each Y ⊆

var(E), we have the additional transformations α
.= β ⇒> πX\{Y }(α)

.= πX\{Y }(β).

Theory of Computing Systems

Now, our full rewriting relation, ⇒NT , is given by ⇒L ∪ ⇒R ∪ ⇒>.3 For
convenience, we shall define ⇒ to be ⇒L ∪ ⇒R . We shall call the rewriting trans-
formations from ⇒ length-preserving, since they are exactly those for which the
resulting equation has the same length as the original. The following observation
follows directly from the definition of ⇒NT .

Remark 3.1 Let E, E′ be QWEs such that E ⇒NT E′. If E is regular, then E′ is
regular. Moreover, if E ⇒ E′, then var(E) = var(E′), qv(E) = qv(E′), and
|E| = |E′|. Similarly, if E ⇒> E′, then var(E′) ⊆ var(E), qv(E′) ⊆ qv(E), and
|E′| < |E|. Hence the set {E′′ | E ⇒∗

NT E′′} is finite.

If E1, E2 are RWEs such that E1 ⇒L E2, then it follows from the definitions
that there exist x, y ∈ X and α1, α2, β1, β2 ∈ (X\{x, y})∗ such that E1 is given by
xα1yα2

.= yβ1xβ2 and E2 is given by xα1yα2
.= β1yxβ2. Extending this observation

to multiple applications of ⇒L, we may conclude that the set {E2 | E1 ⇒∗
L E′

2} is
exactly the set {xα1yα2

.= β3xβ2 | β3 ∼ yβ1}. A similar statement can be made
for ⇒∗

R . Consequently, the reflexive transitive closures ⇒∗
L and ⇒∗

R are symmetric.
Hence, we may also observe the following.

Remark 3.2 Let E be a RWE and Z ∈ {L, R}. Then Card({E′ | E ⇒∗
Z E′}) < |E|

and ⇒∗
Z is an equivalence relation. It follows that ⇒∗ is also an equivalence relation.

The following well-known result forms the basis for the algorithm for solving
QWEs.

Theorem 3.3 [21] Let E be a QWE. Then E has a solution if and only if
E ⇒∗

NT ε
.= ε.

3.2 Representing the Set of Solutions as a Graph

Theorem 3.3 provides the basis for treating the satisfiability of QWEs as a reach-
ability problem for the rewriting relation ⇒NT . Since any relation R is naturally
represented as a (directed) graph G R , it is also natural to interpret the resulting algo-
rithm as a search in the graph G ⇒NT[E] : it suffices to to determine whether there exists
a path in the graph from the original equation E to the trivial equation ε

.= ε. In fact,
the graph G ⇒NT[E] can tell us significantly more than simply whether a solution to E

exists: every walk from E to ε
.= ε in G ⇒NT[E] corresponds to a solution to E and like-

wise, every solution to E is represented by a walk in G ⇒NT[E] from E to ε
.= ε. Thus

the graphs G ⇒[E] contain a full description of all solutions to E, and as such, their

3There are several possible variations on the definition of the length-reducing rewriting transformations
⇒> for which the algorithm remains correct and is guaranteed to terminate. However, for our results, the
exact choice is not important as we concentrate our investigations on the length preserving part ⇒ of the
rewriting relation for reasons described in Section 3.2.

Theory of Computing Systems

properties and structure are of inherent interest to the study of QWEs and their
solutions. An immediate example of this is the diameter, which is strongly related
to the complexity of the satisfiability problem, as demonstrated in the following
proposition.

Proposition 3.4 Let C be a class of QWEs. Suppose there exists a constant k ∈ N

such that for each E ∈ C , we have diam(G ⇒NT[E]) ∈ O(|E|k). Then the satisfiability
problem for C is in NP.

Proof Let C be a class of quadratic word equations and let k ∈ N such that for each
E ∈ C , diam(G ⇒NT[E]) ∈ O(|E|k). By Theorem 3.3, to check whether an equation
E ∈ C has a solution, we have to check whether there is a path from E to ε

.= ε

in G ⇒NT[E] . If such a path exists, then due to our assumptions about the diameter, one

exists of length at most O(|E|k). Moreover, for each edge E1 ⇒NT E2 in the path,
we have that |E2| ≤ |E1| ≤ |E|, so verifying that E1 ⇒NT E2 can be achieved
in linear time. Hence, subject to appropriate non-deterministic choices, we may find
such a path whenever it exists in O(|E|k+1) time and the satisfiability problem for C
is in NP.

Many properties will be determined mostly (i.e. up to some small imprecision)
on the subgraphs obtained by restricting our rewriting relation to length-preserving
transformations only (i.e. to ⇒). Since the rewriting relation ⇒NT allows us to pre-
serve or decrease the length, but never increase it again, any walk in the graph will
visit a subgraph containing equations of each length only once, and in order of
decreasing length. The following proposition confirms how we may infer a global
property of G ⇒NT[E] from its ‘local’ values in the individual subgraphs G ⇒

[E′] in the case
of two properties we are particularly interested in: diameter and DAG-width.

Proposition 3.5 Let E be a QWE. Then

1. diam(G ⇒NT[E]) ≤ (|E| + 1)(1 + max{diam(G ⇒
[E′]) | E ⇒∗

NT E′}) − 1, and
2. dgw(G ⇒NT[E]) = max{dgw(G ⇒

[E′]) | E ⇒∗
NT E′}.

Proof The second statement is a direct consequence of Theorem 6 in [5]. We shall
consider the first statement. Let E be a quadratic word equation. Let

m = max{diam(G ⇒
[E′] | E ⇒∗

NT E′)}.
Let E1, E2, . . . En be the shortest path in G ⇒NT[E] between E1 and En. Then Ei ⇒NT

Ei+1 for 1 ≤ i < n. Consequently, for each i, 1 ≤ i < n either |Ei | = |Ei+1|
or |Ei | > |Ei+1|. Let j1, j2, . . . , jk be all the indices i for which the latter holds.
Then, since the length of an equation cannot be negative, we necessarily have that
k ≤ |E|. Moreover, we have that E1 ⇒∗ Ej1 , Ejk+1 ⇒∗ En, and for each i, 1 ≤
i < k, Eji+1 ⇒∗ Eji+1 . Since, for each Ei , G ⇒[Ei] is a subgraph of G ⇒NT[E] , and by our
assumption that the path E1, E2, . . . En is minimal in G ⇒NT[E] , it follows that the path
E1, E2, . . . , Ej1 is minimal in G ⇒[E1], and thus j1 − 1 ≤ m. By the same argument,
the path Ejk+1, Ejk+2, . . . , En is minimal in G ⇒[Ejk+1] so we get that n − jk − 1 ≤ m

Theory of Computing Systems

and similarly, for each i, 1 ≤ i < k, we may conclude that ji+1 − ji − 1 ≤ m. It
follows that

n = (n − jk) + (jk − jk−1) + . . . + (j2 − j1) + j1 ≤ (k + 1)(m + 1)

meaning the length of the path E1, E2, . . . En is at most (|E| + 1)(m + 1). Since this
holds for all choices of E1, En, we have that diam(G ⇒NT[E]) ≤ (|E| + 1)(m + 1) − 1
as claimed.

In what follows, we shall focus predominantly on the structure of the (sub)graphs
G ⇒

[E′] corresponding to the length-preserving transformations belonging to ⇒ (see
Fig. 1). This has the advantage of allowing us to apply further restrictions, in par-
ticular a reduction to the case of basic equations introduced in Section 4, without
significantly altering the structure of the graph. It is worth pointing out that due to
Remark 3.2, the graph G ⇒[E] is strongly connected whenever E is a RWE. The same
is generally not true in the case of arbitrary QWEs E, or for the full graph G ⇒NT[E] .

Fig. 1 The graph G ⇒[E] in the case that E is the equation xayazbw
.= wbyxaza with variables x, y, z,w

and terminal symbols a,b. Generated in python using the PyDot graph drawing package

Theory of Computing Systems

3.3 Solving Equations Modulo Constraints

Often, it is important to determine whether a given equation has a solution which
satisfies some additional constraints. For some types of constraints, it is possible
to adapt the algorithm by finding, for each Nielsen transformation, an appropriate
corresponding transformation of the constraints. For example, if x, y, z ∈ X and
we have the length constraint |x| = |z|, when we apply the Nielsen transformation
associated with ψy<x to our equation, we replace each occurrence of x with yx. Thus,
the updated constraint would be |x| + |y| = |z|. Unfortunately, as is the case for
length constraints, the resulting set of possible equation/constraint combinations can
become infinite, meaning that the modified version of the algorithm is not guaranteed
to terminate.

A possible solution to this is to find finite descriptions of the potentially infinite
sets of constraints which may occur alongside each equation. The task of finding
such descriptions, and consequently the potential decidability of the correspond-
ing extended satisfiability problems, is dependent on the structural properties of the
graph, as can be seen e.g. in [20, 24].

One case in which computing finite descriptions is straightforward is when the
graph G ⇒NT[E] is acyclic (i.e. a DAG). Unfortunately, inspection of the definition of
⇒NT reveals that this is not true for the majority of RWEs (or QWEs). Hence, when
considering the existence of algorithms for solving word equations with length con-
straints (or constraints of other types), it is natural to specifically consider classes of
equations E where the graphs G ⇒NT[E] have particularly DAG-like (or un-DAG-like)
structures, which we can measure using parameters such as DAG-width.

3.4 Properties of the Graphs G ⇒NT
[E] for Regular Equations E

In order to understand the full graphs G ⇒NT[E] , we mostly need to understand the
(strongly connected) components corresponding to the length-preserving transforma-
tions, as we can easily see that these components will be connected in a DAG-like
structure whose depth is at most |E|. Hence, our main goal is to describe the struc-
ture of the graphs G ⇒[E] for RWEs E. This is done in several steps, with each one
accounting for a particular structural feature or aspect as follows.

(1) In the first step (Section 4), we describe the effect of terminal symbols, single
occurrence variables, and ‘decomposability’ on the structure of G ⇒[E], essentially
reducing the structure of G ⇒[E] to G ⇒

[E′] for a ‘basic’ equation E′ which does not
contain any of these features.

(2) Building on an important technical tool developed in Section 5, the second step
(Section 6) introduces the class of jumbled equations. For equations E′ which
are not jumbled, but which have nevertheless been simplified as per the first
step, there exists a specific repetitive structure allowing us to express G ⇒

[E′] as
a combination of (near) copies of some smaller graph G ⇒

[E′′] where E′′ is a
jumbled equation obtained by deleting the appropriate variables from E′.

Theory of Computing Systems

(3) In the third step (Section 7), we show that for jumbled equations E′′, all ver-
tices in G ⇒

[E′′] are ‘close’ to a vertex from a small subset conforming to a very
particular structure called Lex Normal Form.

(4) Finally, in Sections 8, 9 and 10, we exploit our structural results to investi-
gate the diameter, number of vertices and connectivity (DAG-width) of G ⇒[E]
respectively. In Section 11 we note a generalisation of our results to systems of
equations.

4 Basic Equations: A Convenient Abstraction

The current section is devoted to reducing the study of the graphs G ⇒[E] to the case
of basic equations. This has several advantages, including a significant reduction in
the size of the graphs which is useful for working with examples, as well as allowing
for the simpler formulation of precise results, e.g. regarding the size of the graphs in
Section 9, as well as avoiding unnecessary repetition in the formal statements and
their proofs.

Definition 4.1 (Basic Equations) Let E be a QWE given by α
.= β. Then E is

decomposable if there exist proper prefixes α′, β ′ of α and β such that var(α′) ∩
qv(E) = var(β ′) ∩ qv(E). Otherwise, E is indecomposable. E is basic if it is
indecomposable and α, β ∈ qv(E)∗.

For a basic RWE, both sides of the equation are permutations of the same set of
variables, for example x1x2x3

.= x3x1x2 and xywz
.= wzxy are both basic RWEs.

On the other hand, xyzw
.= yxzw, axby

.= ybax and xy
.= yz are not – the first

being decomposable and the latter two containing terminal symbols and variables
occurring on one side only.

We firstly consider decomposable equations E, showing that in this case the graph
G ⇒[E] is isomorphic to G ⇒

[E′] for some shorter equation E′. The main step in this respect
is the following observation.

Lemma 4.2 LetE be a RWE given by α1α2
.= β1β2 where α1, α2, β1, β2 ∈ (X∪Σ)∗

such that α1, β1 �= ε and var(α1) ∩ qv(E) = var(β1) ∩ qv(E). Let E′ be a RWE.
Then E ⇒ E′ if and only if there exist α3, β3 ∈ (X ∪ Σ)∗ such that E′ is given by
α3α2

.= β3β2 and α1
.= β1 ⇒ α3

.= β3.

Proof Suppose E is a RWE given by α1α2
.= β1β2 where α1, α2, β1, β2 ∈ (X ∪Σ)∗

with α1, β1 �= ε such that var(α1) ∩ qv(E) = var(β1) ∩ qv(E). Let E′ be a RWE.
Suppose firstly that α3, β3 ∈ (X∪Σ)∗ such that α1

.= β1 ⇒L α3
.= β3 (the case that

α1
.= β1 ⇒R α3

.= β3 is symmetric). Then it follows from the definition of ⇒L that
α1 has a prefix y ∈ qv(E). Hence, there exist x ∈ X ∪ Σ and γ, δ1, δ2 ∈ (X ∪ Σ)∗
such that α1 = yγ , β1 = xδ1yδ2, α3 = α1 and β3 = δ1xyδ2. By the definition of
⇒L, it follows that α1α2

.= β1β2 ⇒L α3α2
.= β3β2 and thus E ⇒ E′.

Now suppose instead that E ⇒L E′ (again, the case that E ⇒R E′ is symmetric).
Then by definition of ⇒L, there exists a variable y ∈ qv(E) in the leftmost position

Theory of Computing Systems

of α1 which also occurs in β1β2. Moreover, it follows from the definition of ⇒L

and the fact that E ⇒L E′ that y �= β1[1]. Furthermore, since var(α1) ∩ qv(E) =
var(β1)∩qv(E), y must in fact occur somewhere in β1, so there exist x ∈ X∪Σ and
γ, δ1, δ2 ∈ (X ∪ Σ)∗ such that α1 = yγ and β1 = xδ1yδ2, and such that E′ is given
by α3α2

.= β3β2 where α3 = α1 and β3 = δ1xyδ2. It follows from the definition of
⇒L that α1

.= β1 ⇒L α3
.= β3 and thus the statement holds.

It follows immediately from Lemma 4.2 that the relation ⇒ preserves the
properties of being (in)decomposable and basic.

Corollary 4.3 Let E1, E2 be RWEs such that E1 ⇒ E2. Then E1 is indecomposable
if and only if E2 is indecomposable. Consequently E1 is basic if and only if E2 is
basic.

Moreover, a straightforward induction yields the following description of the
graphs G ⇒[E] in the case that E is decomposable.

Corollary 4.4 Let E be a decomposable RWE given by α1α2
.= β1β2 where α1, α2,

β1, β2 ∈ (X ∪ Σ)∗ such that α1, β1 �= ε and var(α1) ∩ qv(E) = var(β1) ∩ qv(E).
Then G ⇒[E] is isomorphic to G ⇒

[α1
.=β1] and can be obtained from G ⇒

[α1
.=β1] by replacing

each vertex α3
.= β3 ∈ [α1

.= β1]⇒ with α3α2
.= β3β2.

Corollary 4.4 accounts for decomposable equations. It remains to consider the case
of equations containing terminal symbols and variables occurring on only one side
(and therefore once overall). For this case, we need the following notion for relating
the structure of two graphs.

Definition 4.5 (Isolated path compression) Let G1, G2 be (directed) graphs.
We say that G1 is an isolated path compression of order n of G2 if G2
may be obtained from G1 by replacing each edge (e, e′) in G1 by a path
(e, e1), (e1, e2), . . . (ek−1, ek), (ek, e

′) such that k ≤ n and e1, e2, e3, . . . , ek are new
vertices unique to the edge (e, e′).

Informally, an isolated path compression of a graph is obtained simply by replac-
ing ‘isolated paths’ (paths whose internal vertices are not adjacent to to any vertices
outside the path) of a bounded length with single edges. Therefore, the overall
structure is generally preserved, and most properties will be preserved, or change
proportionally to the order n (Fig. 2).

Remark 4.6 Consider graphs G1, G2 such that G1 is an isolated path compression of
order n of G2. If dgw(G1) = 1, then dgw(G2) ∈ {1, 2}.4

4The case that dgw(G1) = 1 and dgw(G2) = 2 is a special case arising from the possibility of ‘isolated
cycles’ being compressed into singleton self-loops.

Theory of Computing Systems

Fig. 2 The graph G1 is an isolated path compression of order two of the graph G2

If dgw(G1) ≥ 2, then the dgw(G1) = dgw(G2). Moreover, diam(G2) ≤ (n +
1)diam(G1), and the number of vertices (resp. edges) in G2 is at most the number
of vertices in G1 plus n times the number of edges of G1.

Using isolated path compressions, it is possible to describe the structure of the
graph G ⇒[E] for any RWE E in terms of the graph G ⇒

[E′] for the RWE E′ obtained
from E by erasing all terminal symbols and single-occurrence variables from E (i.e.
projecting onto qv(E)).

Lemma 4.7 Let E be an indecomposable RWE given by α
.= β. Then the graph

G ⇒
[πqv(E)(α)

.=πqv(E)(β)] is isomorphic to an isolated path compression of order |E| of
G ⇒[E].

Proof Let E be an indecomposable RWE given by α
.= β. Note that by Corollary 4.4,

it follows that E′ is indecomposable for every E′ ∈ [E]⇒. We begin by considering
the simple cases arising when Card(qv(E)) < 2. If Card(qv(E)) = 0, then G ⇒[E] is a
single vertex with no edges. Moreover, πqv(E)(α)

.= πqv(E)(β) is the trivial equation
ε

.= ε, so G ⇒
[πqv(E)(α)

.=πqv(E)(β)] is also a single vertex with no edges. The two graphs

are clearly isomorphic, so the lemma holds trivially.
Now suppose that Card(qv(E)) = 1. Then E has the form w1xw2

.= w3xw4
where qv(E) = {x} and w1, w2, w3, w4 ∈ ((X ∪ Σ)\{x})∗. It necessarily fol-
lows that the equation πqv(E)(α)

.= πqv(E)(β) has the form x
.= x, meaning

that G ⇒
[πqv(E)(α)

.=πqv(E)(β)] is again a single vertex with no edges. If w1, w2 �= ε,

then E is decomposable, a contradiction. Otherwise, G ⇒[E] is a cycle of length
max{|w1|, |w2|} < |E|, so again the statement of the lemma follows directly. Thus,
for the remainder of the proof, we shall suppose that Card(qv(E)) ≥ 2.

Before proceeding, we remark that for any equation E′ given by α′ .= β ′, if
α′[1], β ′[1] /∈ qv(E′), then either E′ is decomposable, or |α′|, |β ′| ∈ {0, 1}. Both
are contradictions to previous assumptions (the former to the fact that E is inde-
composable, and hence E′ is indecomposable for all E′ ∈ [E]⇒, and the latter to
the assumption that Card(qv(E)) ≥ 2 which is only possible if |α|, |β| ≥ 2). Con-
sequently, we may partition [E]⇒ into two sets S1 and S2 where S1 contains all
equations E′ given by α′ .= β ′ such that α′[1] and β ′[1] are both in qv(E′), and S2

Theory of Computing Systems

contains all equations E′ given by α′ .= β ′ such that exactly one of α′[1], β ′[1] is
in qv(E′). Intuitively, S1 will be the set of ‘surviving’ vertices in the isolated path
compression while S2 consists of those vertices which belong only to the ‘isolated
paths’ which are contracted/compressed. Supporting this, we show the following two
claims regarding elements of S2.

Claim 4.7.1 Suppose that E′ ∈ S2. Then the in-degree and out-degree of E′ in G ⇒[E]
are both exactly one.

Proof W.l.o.g. suppose that E′ is given by xα′
1yα′

2
.= yβ ′ with y ∈ qv(E′) and

x /∈ qv(E′). It follows from the definitions of ⇒L and ⇒R that there is no E′′ such
that E′ ⇒R E′′, and exactly one E′′ such that E′ ⇒L E′′. Thus the out-degree is
one as claimed. Now consider the in-degree and let E′′ ∈ [E]⇒ such that E′′ ⇒ E′.
Note that by the definition of ⇒R , we cannot have that E′′ ⇒R E′, so we must have
that E′′ ⇒L E′. It follows from the fact that the Nielsen transformation morphisms
ψy<x are injective that there is exactly one such E′′, and thus we also have that the
in-degree of E′ is one as claimed.

Claim 4.7.2 Let E′ ∈ S2. Then there exists k ≤ |E| − 2 and E0, E1, . . . , Ek+1 ∈
[E]⇒ and Z ∈ {L, R} such that all the following statements hold:

1. E0, Ek+1 ∈ S1,
2. Ei ∈ S2 for 1 ≤ i ≤ k,
3. Ei ⇒Z Ei+1 for 0 ≤ i ≤ k,
4. there exists i, 1 ≤ i ≤ k such that E′ = Ei .

Proof W.l.o.g. suppose that the RHS of E′ has a prefix contained in qv(E′). Then
since Card(qv(E′)) ≥ 2 and since E′ is regular, the LHS also contains at least one
variable in qv(E′) and we may either write E′ as

(1) aiai+1 . . . akxα′
1x

′a1a2 . . . ai−1yα′
2

.= yβ ′, or
(2) aiai+1 . . . akxa1a2 . . . ai−1yα′

2
.= yβ ′

where k ≤ |E| − 2, aj ∈ (X\qv(E)) ∪ Σ for 1 ≤ j ≤ k, x, x′, y ∈ qv(E) with
x, x′ �= y, and α′

1, α
′
2, β

′ ∈ (X ∪Σ)∗. Consider the first case. Let E0 be the equation
given by

x′a1a2 . . . akxα′
1yα′

2
.= yβ ′,

let Ek+1 be the equation given by

xα′
1x

′a1a2 . . . akyα′
2

.= yβ ′,
and for 1 ≤ j ≤ k, let Ej be the equation given by

ajaj+1 . . . akxα′
1x

′a1a2 . . . aj−1yα′
2

.= yβ ′.
Then clearly, Ei = E′, E0, Ek+1 ∈ S1, Ej ∈ S2 for 1 ≤ j ≤ k, and Ej ⇒R Ej+1
for 0 ≤ j ≤ k as claimed.

Now consider the second case. Let E0 = Ek+1 be the equation given by

xa1a2 . . . akyα′
2

.= yβ ′

Theory of Computing Systems

and for 1 ≤ j ≤ k, let Ej be the equation given by

ajaj+1 . . . akxa1a2 . . . aj−1yα′
2

.= yβ ′.

Then clearly, Ei = E′, E0, Ek+1 ∈ S1, Ej ∈ S2 for 1 ≤ j ≤ k, and Ej ⇒R Ej+1
for 0 ≤ j ≤ k as claimed.

Claims 4.7.1 and 4.7.2 are sufficient to show that the equations/vertices in S1 are
exactly those which survive in an isolated path compression of order |E| of G ⇒[E].
To state this more formally, we define a relation � on the equations in S1 such that
E′ � E′′ if E′, E′′ ∈ S1 and either E′ ⇒ E′′, or there exist E1, E2, . . . Ek ∈ S2 and
Z ∈ {L, R} such that E′ ⇒Z E1 ⇒Z E2 ⇒Z . . . ⇒Z Ek ⇒Z E′′. Then we get the
following.

Claim 4.7.3 The graph G �
S1

is an isolated path compression of order |E| of
G ⇒[E].

Proof Directly from Claims 4.7.1 and 4.7.2.

It remains to show that G �
S1

is isomorphic to G ⇒
[Ê] where Ê is given by πqv(E)(α)

.=
πqv(E)(β). In other words, we must show that there is an isomorphism f : S1 →
[Ê]⇒ such that for any E′, E′′ ∈ S1, f (E1) ⇒ F(E2) if and only if E1 � E2. Before
we can define f , we must firstly show that there exists Ẽ ∈ S1 given by α̃

.= β̃

such that π
qv(Ẽ)

(α̃) = πqv(E)(α) and π
qv(Ẽ)

(β̃) = πqv(E)(β). If E ∈ S1 then we

may simply take Ẽ = E. Otherwise, E ∈ S2, meaning exactly one of α[1], β[1] is in
qv(E). W.l.o.g. suppose that α[1] /∈ qv(E). Then we may write α = γ xα1yα2 and
β = yβ1 where γ ∈ ((X\qv(E)) ∪ Σ)+, x, y ∈ qv(E), and α1, α2, β1 ∈ (X ∪ Σ)∗.
Furthermore, we have E ⇒∗

R Ẽ where Ẽ ∈ S1 is given by xα1γ2yα2
.= yβ1, in which

case we have that πqv(E)(α) = π
qv(Ẽ)

(xα1γ2yα2) and πqv(E)(β) = π
qv(Ẽ)

(yβ1)

(note that we have that qv(E) = qv(Ẽ) since Ẽ ∈ [E]⇒).
Since Ẽ ∈ S1, we may write Ẽ as

y1γ1y2γ2 . . . ynγn
.= y′

1δ1y
′
2δ2 . . . y′

nδn

where yi, y
′
i ∈ qv(Ẽ) and γi, δi ∈ ((X\qv(Ẽ)) ∪ Σ)∗ for 1 ≤ i ≤ n. Consequently,

by our assumptions about Ẽ, it follows that Ê may be written as y1y2, . . . yn
.=

y′
1y

′
2 . . . y′

n. With this information, we are now ready to define our isomorphism f :
S1 → [Ê]⇒ via two morphisms σLHS and σRHS . In particular, let σLHS : qv(Ẽ)∗ →
(X ∪ Σ)∗ be the morphism such that σLHS(yi) = yiγi for 1 ≤ i ≤ n and σRHS :
qv(Ẽ)∗ → (X ∪ Σ)∗ be the morphism such that σRHS(y′

j) = y′
j δi for 1 ≤ j ≤ n.

Then we define f such that f (α′ .= β ′) is σLHS(α′) .= σRHS(β ′) for all α′ .= β ′ ∈
S1. In order to show that f is indeed an isomorphism with the desired property that
f (E1) ⇒ F(E2) if and only if E1 � E2, we need the following claim.

Theory of Computing Systems

Claim 4.7.4 Let α̂1, α̂2, β̂1, β̂2 ∈ qv(E)∗ such that α̂1
.= β̂1 ∈ [Ê]⇒, and

σLHS(α̂1)
.= σRHS(β̂1) ∈ [E]⇒. Then α̂1

.= β̂1 ⇒ α̂2
.= β̂2 if and only if

σLHS(α̂1)
.= σRHS(β̂1) � σLHS(α̂2)

.= σRHS(β̂2).

Proof Suppose firstly that α̂1
.= β̂1 ⇒ α̂2

.= β̂2, and w.l.o.g. suppose that α̂1
.= β̂1 ⇒L

α̂2
.= β̂2. Then there exist z1, z2, . . . , zn ∈ qv(E), μ ∈ qv(E)∗ such that α̂1 = ziμ

for some i, 1 ≤ i ≤ n, β̂1 = z1z2 . . . zn, α̂2 = α̂1 and β̂2 = z2 . . . zi−1z1zi . . . zn.
Let a1, a2, . . . ak ∈ (X\qv(E)) ∪ Σ such that σRHS(z1) = z1a1a2 . . . ak . Let E0
be given by σLHS(ziμ)

.= σRHS(z1z2 . . . zn), and for 1 ≤ j ≤ k, let Ej be given
by σLHS(ziμ)

.= ajaj+1 . . . akσRHS(z2 . . . zi−1)z1a1a2 . . . aj−1σRHS(zi . . . zn), and
let Ek+1 be given by σLHS(ziμ)

.= σRHS(z2 . . . zi−1)z1a1a2 . . . akσRHS(zi . . . zn).
Then we have E0 ⇒L E1 ⇒L . . . ⇒L Ek+1. Moreover, we have that E0 ∈ S1 is
given by σLHS(α̂1)

.= σRHS(β̂1), Ek+1 ∈ S1 is given by σLHS(α̂2)
.= σRHS(β̂2), and

Ej ∈ S2 for 1 ≤ j ≤ k so E0 � Ek+1 as required.
Now suppose that σLHS(α̂1)

.= σRHS(β̂1) � σLHS(α̂2)
.= σRHS(β̂2). Then by

the definition of �, there exist E0, E1, . . . , Ek+1 ∈ [E]⇒ such that E0 ∈ S1 is
given by σLHS(α̂1)

.= σRHS(β̂1), Ek+1 ∈ S1 is given by σLHS(α̂2)
.= σRHS(β̂2),

E0 ⇒Z E1 ⇒Z . . . ⇒Z Ek+1 for some Z ∈ {L, R}, and Ej ∈ S2 for 1 ≤ j ≤ k.
W.l.o.g. suppose that Z = L. Then there exist z1, z2, . . . , zn ∈ qv(E), μ ∈

qv(E)∗, and a1, a2, . . . , a� ∈ (X\qv(E)) ∪ Σ such that α̂1 = ziμ for some
i, 1 ≤ i ≤ n, β̂ = z1z2 . . . zn, and σRHS(z1) = z1a1a2 . . . a�. Hence E0 can be
written as

σLHS(ziμ)
.= z1a1a2 . . . a�σRHS(z2z3 . . . zn).

Moreover, we have that E0 ⇒L E′
1 ⇒L E′

2 ⇒L . . . ⇒ E′
� ⇒L E′

�+1 where E′
j is

given by

σLHS(ziμ)
.= ajaj+1 . . . a�σRHS(z2 . . . zi−1)z1a1 . . . aj−1σRHS(zizi+1 . . . zn)

for 1 ≤ j ≤ k, and E′
�+1 is given by

σLHS(ziμ)
.= σRHS(z2 . . . zi−1)z1a1 . . . a�σRHS(zizi+1 . . . zn).

Note that E�+1 may also be written

σLHS(ziμ)
.= σRHS(z2z3 . . . zi−1z1zizi+1 . . . zn).

Now, since ⇒L is deterministic, and since E�+1, Ek+1 ∈ S1 while E′
j1

, Ej2 ∈ S2
for each j1, 1 ≤ j1 ≤ � and j2, 1 ≤ j2 ≤ k, we must necessarily have that
k = �. Since σLHS and σRHS are injective, we must have α̂2 = α̂1 and β̂2 =
z2z3 . . . zi−1z1zizi+1 . . . zn. It follows from the definitions that α̂1

.= β̂1 ⇒L α̂2
.=

β̂2.

It follows from Claim 4.7.4 by a simple induction with Ẽ as the base case that
S1 = {σLHS(α̂′) .= σRHS(β̂ ′) | α̂′ .= β̂ ′ ∈ [Ê]⇒}, or equivalently that f (S1) =
[Ê]⇒. The claim also states explicitly that σLHS(α̂′) .= σRHS(β̂ ′) � σLHS(α̂′′) .=
σRHS(β̂ ′′) if and only if α̂′ .= β̂ ′ ⇒ α̂′′ .= β̂ ′′ and thus f is an isomorphism such
that f (E1) ⇒ f (E2) if and only if E1 � E2 for all E1, E2 ∈ S1. We may therefore
conclude that G �

S1
is indeed isomorphic to G ⇒

[Ê] as required.

Theory of Computing Systems

Combining Corollary 4.4 and Lemma 4.7, it is now possible to formulate the main
result of this section, describing the graphs G ⇒[E] for arbitrary RWEs E in terms of
graphs G ⇒

[E′] for basic RWEs E′. An example of the theorem is given in Fig. 3.

Theorem 4.8 Let E be a RWE given by α
.= β. Let α′, β ′ be the shortest non-empty

prefixes of α, β respectively such that var(α′) ∩ qv(E) = var(β ′) ∩ qv(E). Let E′
be the equation given by πqv(E)(α

′) .= πqv(E)(β
′). Then E′ is basic, and G ⇒

[E′] is
isomorphic to an isolated path compression of order |E| of G ⇒[E].

Proof Let S = qv(α′ .= β ′). Firstly, we shall show that α′ .= β ′ is indecomposable.
Suppose for contradiction that α′ .= β ′ is decomposable. Then there exist proper
prefixes α′′, β ′′ of α′ and β ′ respectively such that var(α′′) ∩ S = var(β ′′) ∩ S.
Then α′′ and β ′′ are proper prefixes of α and β, and since they are shorter than α′
and β ′, by our assumptions about α′ and β ′, we cannot have that var(α′′)∩ qv(E) =
var(β ′′) ∩ qv(E). Consequently, either there exists x ∈ var(α′′) ∩ qv(E) such that
x /∈ var(β ′′) ∩ qv(E) or there exists x ∈ var(β ′′) ∩ qv(E) such that x /∈ var(α′′) ∩
qv(E). W.l.o.g. suppose the former is true. Then x /∈ var(β ′′), but since x ∈ qv(E),
it follows from var(α′) ∩ qv(E) = var(β ′) ∩ qv(E) that x ∈ var(β ′). However,
this implies that x ∈ S, and since x ∈ var(α′′) but x /∈ var(β ′′), we arrive at a
contradiction to our assumption that var(α′′) ∩ S = var(β ′′) ∩ S.

Fig. 3 An example of Theorem 4.8. On the left is the graph G ⇒[E] in the case that E is given by xayzabw
.=

yazaxw with variables x, y, z,w and terminal symbols a,b. On the right is G ⇒
[E′] for the corresponding

basic equation E′, which in this case is given by xyz
.= yzx. The graph on the right is isomorphic to an

isolated path compression of order 2 of the graph on the right. Vertices internal to the isolated paths (i.e.
those which are removed by the compression are shown in grey

Theory of Computing Systems

Now, let E′′ be the equation given by πS(α′) .= πS(β ′). By the assumption that
var(α′) ∩ qv(E) = var(β ′) ∩ qv(E), there is no variable x ∈ qv(E)\S occurring in
α′ or β ′. Consequently, E′′ = E′, and by Lemma 4.7, we have that G ⇒

[E′] is isomorphic
to an isolated path compression of order |E| of G ⇒

[α′ .=β ′], which by Corollary 4.4 is
isomorphic to G ⇒[E].

5 A Useful Invariant

When reasoning about the graphs G ⇒[E], we need a way to help determine whether or
not, for two equations E1, E2, we have E1 ⇒∗ E2. Showing the positive case that
E1 ⇒∗ E2 can be achieved by simply finding an appropriate sequence of length-
preserving Nielsen transformations from E1 to E2. However, showing that E1 �⇒∗
E2 presents more of a challenge: the naive way would be to enumerate all vertices in
G ⇒[E1] and show that E2 is not among them. However, this is not suitable for abstract
reasoning, and, even in concrete cases, is inelegant and time-consuming.

The contribution of this section is a property of basic RWEs, defined as ΥE below,
which is preserved under the relation ⇒ and thus provides a concise and more general
means for showing that E1 �⇒∗ E2. It is an indispensable component of the proofs
of our main results.

Definition 5.1 (The invariant ΥE) Let E be a basic RWE such that Card(var(E)) >

1. Let # be a new symbol not in X. Then we may write E as xα1yα2
.= yβ1xβ2

with x, y ∈ X and α1, α2, β1, β2 ∈ (X\{x, y})∗. Let ZE = var(α1α2β1β2) ∪ {#}.
Let the function QE : ZE → X2 be defined as follows: for each z ∈ ZE\{#}, let
QE(z) = (u, v) where uz is a factor of xα1yα2 and vz is a factor of yβ1xβ2. Let
QE(#) = (u, v) where uy is a factor of xα1yα2 and vx is a factor of yβ1xβ2. Let
ΥE = {QE(z) | z ∈ ZE}. If Card(var(E)) ≤ 1, then ΥE = ∅.

Intuitively, given a basic RWE E of the form α
.= β, we construct ΥE by taking,

for each variable x ∈ var(E), the pair (u, v) of predecessors of x in E, i.e. such
that ux is a factor of α and vx is a factor of β. It follows directly from the definition
of basic RWEs that this pair is unique, and it exists whenever x is not the leftmost
variable in either α or β. The special case that x is the leftmost variable of α or β

is handled by the special symbol #. The following observations follow directly from
the definitions, but are central to the use of ΥE in later proofs.

Remark 5.2 Let E be a basic regular word equation given by αy
.= βx with x, y ∈ X

and α, β ∈ X∗. Then for each z ∈ var(α), there is exactly one element (u, v) ∈ ΥE

such that u = z. For each z /∈ var(α), there is no element (u, v) ∈ ΥE such that
u=z. Similarly, for each w ∈ var(β), there is exactly one element (u, v) ∈ ΥE such that
v = w and for each w /∈ var(β), there is no element (u, v) ∈ ΥE such that v = w.

The usefulness of ΥE as a property of basic RWEs arises from the fact that it is invariant
under the length-preserving Nielsen transformations. Consequently for a given basic
RWE E, we can use the set {E′ | ΥE′ =ΥE} as an over-approximation of the set [E]⇒.

Theory of Computing Systems

Theorem 5.3 Let E1, E2 be basic RWEs such that E1 ⇒∗ E2. Then ΥE1 = ΥE2 .

Proof It is sufficient to prove the same statement for the case that E1 ⇒ E2. W.l.o.g.
we may assume that E1 ⇒L E2. The case that E1 ⇒R E2 is symmetric. Moreover, if
E1 = E2, then the statement holds trivially, thus we may assume that E1 �= E2. The
statement trivially holds for equations of the form xy

.= yx, since [xy
.= yx]⇒ =

{xy
.= yx}. Otherwise, taking into account the fact that E1 and E2 are basic and

therefore indecomposable, we have two cases: we may write E1 and E2 as either

1. xα1wα2yα3
.= ywβ1xβ2 and xα1wα2yα3

.= wβ1yxβ2, or
2. xα1yα2wα3

.= ywβ1xβ2 and xα1yα2wα3
.= wβ1yxβ2

respectively, where w, x, y ∈ X with x �= y and α1, α2, α3, β1, β2 ∈ (X\{x, y, w})∗
such that var(α1α2α3) = var(β1β2).

Suppose that we have the first case, then ZE1 = var(α1α2α3)∪{#, w} and ZE2 =
var(α1α2α3)∪{#, y}. Moreover, for each z ∈ var(α1α2α3), there exist u, v ∈ X such
that uz (resp. vz) is a factor of the LHS (resp. RHS) of both E1 and E2, so QE1(z) =
QE2(z). Now, let a, b, c be the rightmost variables in xα1, wα2 and wβ1 respectively
(i.e. their length-1 suffixes). Then we have that QE1(w) = (a, y), QE1(#) = (b, c),
QE2(y) = (b, c), and QE2(#) = (a, y). Thus ΥE1 = ΥE2 .

Now suppose instead that we have the second case. Similarly to the first case, we
have that ZE1 = var(α1α2α3) ∪ {#, w}, ZE2 = var(α1α2α3) ∪ {#, y} and for each
z ∈ var(α1α2α3), QE1(z) = QE2(z). Now, let a, b, c be the rightmost variables
in xα1, wβ1 and yα2 respectively. Then we have that QE1(w) = (c, y), QE1(#) =
(a, b), QE2(y) = (c, y), and QE2(#) = (a, b). Thus ΥE1 = ΥE2 in both cases as
required.

As an example, let E1 be the basic RWE given by xuzwy
.= ywuxz. Then

ZE1 = {u, z, w, #} and QE1 is the function with QE1(u) = (x, w), QE1(z) = (u, x),
QE1(w) = (z, y) and QE1(#) = (w, u). Thus, ΥE1 = {(w, u), (x, w), (u, x), (z, y)}.
Similarly, if E2 is the basic RWE given by xuwzy

.= yuxwz, then ΥE2 =
{(x, y), (u, x), (w, w), (z, u)}. Consequently, we may conclude that E1 �⇒∗ E2 (and
symmetrically that E2 �⇒∗ E1).

Since the invariant ΥE provides a necessary condition on when two basic RWEs
belong to the same equivalence class under ⇒∗, we might also ask whether it is
also sufficient, and hence characteristic. However, this is not the case. For instance,
if E3 is given by xuvwy

.= ywvux and E4 is given by xwvuy
.= yuvwx,

then ΥE3 = ΥE4 = {(x, v), (u, w), (v, y), (w, u)} but it can be verified (e.g. by
enumerating [E3]⇒ and [E4]⇒) that E3 �⇒∗ E4.

6 Jumbled Equations and a Special Case of Symmetry

The invariant property ΥE introduced in the Section 5 consists of pairs of variables.
The case that (x, x) ∈ ΥE for some x ∈ var(E) is special in the sense that it leads to
a particular repetitive structure in the graph G ⇒[E], described in the current section. We
shall call basic RWEs E for which no pair of the form (x, x) occurs in ΥE jumbled.

Theory of Computing Systems

Definition 6.1 (Jumbled Equations and Δ(E)) Let E be a basic RWE and let
Δ(E) = {x ∈ var(E) | (x, x) ∈ ΥE}. If Card(Δ(E)) = 0, then E is jumbled.

For example, if we consider the equation E given by xyzw
.= wyzx, then ΥE =

{(x, w), (y, y), (z, z)} so Δ(E) = {y, z} and E is not jumbled. On the other hand,
for E′ given by xyzw

.= wzyx, we have ΥE′ = {(x, z), (y, w), (z, y)}, so Δ(E′) = ∅
and E′ is jumbled.

Note that since ΥE is invariant under ⇒∗, so is the property of being jumbled.
Furthermore, it follows from the definitions that (x, x) ∈ ΥE for some basic RWE E

and x ∈ X if and only if there exists y ∈ X such that one of the following holds:5

1. xy occurs as a factor of both the LHS and RHS of E, or
2. there exists E′ with E ⇒ E′ such that xy occurs as a factor of both the LHS and

RHS of E′.

The cardinality of Δ(E) can be interpreted as a measure of the similarity of the two
sides of the equation. If Card(Δ(E)) is large in comparison to Card(E), then the
orders in which the variables occur on the LHS and RHS of E will be similar. On the
other hand, when Δ(E) = ∅, there will be no common order in the variables on each
side, and hence the equation is ‘jumbled’. In general, we may observe the following
bounds on Card(Δ(E)) as follows.

Remark 6.2 Let E be a basic RWE. It follows directly from Definition 5.1 that if
Card(var(E)) < 2, then Card(Δ(E)) = 0. Otherwise, E can be written as αx

.= βy

for some x, y ∈ X, α ∈ (X\{x})∗ and β ∈ (X\{y})∗. Since E is basic, it is indecom-
posable, so we may additionally conclude that x �= y. By Remark 5.2, neither (x, x)

nor (y, y) can be contained in ΥE , so we must have Card(Δ(E)) ≤ Card(var(E))−2.

The rest of this section is devoted to describing the structure of the graphs G ⇒[E] in
the general case in terms of the graphs G ⇒

[E′] where E′ is jumbled. The first step is to
notice that we can easily transform any basic RWE E into one which is jumbled by
simply removing all variables x such that (x, x) ∈ Δ(E).

Lemma 6.3 Let E be a basic RWE given by α
.= β and let Y = var(E)\Δ(E).

Then the equation EY given by πY (α)
.= πY (β) is a jumbled basic RWE.

Proof If Δ(E) = ∅, then the lemma holds trivially. Assume that Δ(E) �= ∅. We shall
prove the following statement, from which the lemma follows by a simple induction.

Claim 6.3.1 Suppose that E is a basic RWE given by α
.= β, and that x ∈ Δ(E).

Let E′ be the equation πvar(E)\{x}(α)
.= πvar(E)\{x}(β). Then E′ is a basic RWE and

ΥE′ = ΥE\{(x, x)}.

5The first case corresponds to the possibility that QE(y) = (x, x) for some variable y. The second case
corresponds to the possibility that QE(#) = (x, x), meaning that E has the form yα1xzα2

.= zβ1xyβ2,
with x, y, z ∈ X and α1, α2, β1, β2 ∈ X∗, in which case E ⇒ α1xyzα2

.= zβ1xyβ2.

Theory of Computing Systems

Proof Let QE,ZE be defined as per Definition 5.1. We shall consider two cases
depending on whether QE(#) = (x, x). Suppose firstly that QE(#) �= (x, x). Then
there exist α1, α2, β1, β2 such that α = α1xyα2, β = β1xyβ2, πvar(E)\{x}(α) =
α1yα2 and πvar(E)\{x}(β) = β1yβ2. Suppose for contradiction that E′ is not basic.
Clearly both sides of E′ belong to qv(E′), so we may infer that E′ is decomposable,
and thus that there exist proper prefixes α′ and β ′ of α1yα2 and β1yβ2 respectively
such that var(α′)∩qv(E′) = var(β ′)∩qv(E′). Clearly, either y occurs in both α′ and
β ′, or in neither. Let τ : var(E′)∗ → var(E)∗ be the morphism such that τ(y) = xy

and τ(z) = z for z ∈ var(E′)\{y}. Then α′′ = τ(α′) and β ′′ = τ(β ′) are proper
prefixes of α and β respectively which satisfy var(α′′)∩qv(E) = var(β ′′)∩qv(E).
Thus E is decomposable and therefore not basic, a contradiction.

To see that ΥE′ = ΥE\{(x, x)}, suppose firstly that x is not a prefix of α or β,
and thus that α1 �= ε and β1 �= ε. Then ZE = (var(E)\{α1[1], β1[1]}) ∪ {#},
and ZE′ = (var(E)\{α1[1], β1[1], x}) ∪ {#}. It follows from the definitions that
QE′(y) = QE(x) = (α1[|α1|], β1[|β1|]). Since α1, β1 �= ε, α1[1] /∈ {x, y} and
β1[1] /∈ {x, y}. Consequently there exist u#, v# ∈ var(E)\{x} such that u#α1[1] is
a factor of both α and πvar(E)\{x}(α) and such that v#β1[1] is a factor of both β and
πvar(E)\{x}(β). It follows that QE(#) = QE′(#) = (u#, v#). Likewise, for any z /∈
{x, y, α1[1], β1[1]}, there exist u, v ∈ var(E)\{x} such that uz is a factor of both α

and πvar(E)\{x}(α) and such that vz is a factor of both β and πvar(E)\{x}(β). It follows
that QE(z) = QE′(z) = (u, v). Thus we may conclude that ΥE′ = ΥE\{(x, x)}.

Next, suppose that α1 = ε and β1 �= ε (the case that β1 = ε and α1 �= ε is symmet-
ric). Then ZE = (var(E)\{x, β1[1]})∪{#} and ZE′ = (var(E)\{y, x, β1[1]})∪{#}.
Then QE(#) = (u#, β1[|β1|]) where u#β1[1] is a factor of xyα2. Since E is regu-
lar, each variable occurs once per side, so we may infer that β1[1] �= y, and hence
that u# �= x. It follows that u#β1[1] is also a factor of yα2, so we may further
conclude that QE′(#) = (u#, β1[|β1|]) = QE(#). Note that QE(y) = (x, x). Let
z ∈ var(E)\{x, y, β1[1]}. Then there exist u, v ∈ var(E)\{x} such that uz is a fac-
tor of both xyα2 and yα2, and such that vz is a factor of both β1xyβ2 and β1yβ2. It
follows that QE(z) = QE′(z) = (u, v). Again we have ΥE′ = ΥE\{(x, x)}. Finally,
note that if α1 = β1 = ε, then E is decomposable, which is a contradiction to the
assumption that E is basic.

It remains to consider the case that QE(#) = (x, x). This implies that there exist
u, v ∈ var(E)\{x} and α1, α2, β1, β2 ∈ var(E)∗ such that α = uα1xvα2, β2 =
vβ1xuβ2, meaning E′ is given by uα1vα2

.= vβ1uβ2. Suppose for contradiction that
E′ is not basic. Then as in the previous case, it must be decomposable, and there exist
proper prefixes α′, β ′ of uα1vα2 and vβ1uβ2 respectively which satisfy var(α′) ∩
qv(E′) = var(β ′)∩ qv(E′). Then we must have that α′ = uα1vα3 and β ′ = vβ1uβ3
for some α3, β3 ∈ X∗. However, it follows that α′′ = uα1xvα3 and β ′′ = vβ1xuβ3
are proper prefixes of α and β satisfying var(α′′) ∩ qv(E) = var(β ′′) ∩ qv(E), so
E is decomposable which is a contradiction to the assumption that E is basic.

To see that ΥE′ = ΥE\{(x, x)}, note that in this case ZE = (var(E)\{u, v}) ∪ {#}
and ZE′ = (var(E)\{u, v, x}) ∪ #. It follows from the definitions that QE′(#) =
QE(x) = (w1, w2), where w1 is the leftmost variable in uα1 and w2 is the left-
most variable in vβ1. Moreover, for any z ∈ var(E)\{u, v, x}, there exist w′

1, w
′
2 ∈

Theory of Computing Systems

var(E)\{x} such that w′
1z is a factor of both uα1xvα2 and uα1vα2, and such that w′

2z

is a factor of both vβ1xuβ2 and vβ1uβ2, meaning that QE′(z) = QE(z) = (w′
1, w

′
2).

It follows that ΥE′ = ΥE\{(x, x)} as required.

We conclude the proof by noting that if Δ(E) = {x1, x2, . . . , xk}, then there exist
equations Ei for 0 ≤ i ≤ k given by αi

.= βi such that

1. E0 = E and Ek = EY , and
2. for 1 ≤ i ≤ k, αi = πvar(Ei−1)\{xi }(αi−1) and βi = πvar(Ei−1)\{xi }(βi−1).

Since E is basic, it follows by Claim 6.3.1 that Ei is basic for 1 ≤ i ≤ k, and
moreover by the same claim that ΥEY

= ΥE\{(xi, xi) | 1 ≤ i ≤ k} meaning that EY

is both basic and jumbled.

There is a strong relation between the graph G ⇒[E] for a basic RWE E and G ⇒[EY]
where EY is the jumbled basic RWE obtained from E by deleting the variables in
Δ(E). The relation is described formally in Theorem 6.8. Before presenting the the-
orem, it is useful to first introduce some additional notions. Essentially, G ⇒[E] is made

up of approximate copies of G ⇒[EY]. Each copy is a subgraph H E
ϕ of G ⇒[E] which is

associated with a certain morphism ϕ : Y ∗ → var(E)∗ from a set ΦE defined below.
Intuitively, ϕ can be seen as a way of assigning variables in Δ(E) to variables in
Y = var(E)\Δ(E).

Definition 6.4 (The set ΦE) Let E be a basic RWE. Let Y = var(E)\Δ(E). Let
ΦE be the set of morphisms ϕ : Y ∗ → var(E)∗ satisfying ϕ(y) ∈ Δ(E)∗y for all
y ∈ Y , and

∑

y∈Y

|ϕ(y)|x = 1 for all x ∈ Δ(E).

The subgraphs H E
ϕ are obtained by restricting G ⇒[E] to subsets HE

ϕ defined below.

More precisely, H E
ϕ consists of vertices HE

ϕ and edges (E1, E2) whenever E1, E2 ∈
HE

ϕ and E1 ⇒ E2 (i.e. whenever (E1, E2) is an edge of G ⇒[E]). We shall say that H E
ϕ

is the subgraph of G ⇒[E] induced by HE
ϕ .

Definition 6.5 (V E
ϕ , UE

ϕ and HE
ϕ) Let E be a basic RWE given by α

.= β and let
Y = var(E)\Δ(E). Let EY be the equation πY (α)

.= πY (β). Let ϕ ∈ ΦE . Then we
define the sets V E

ϕ , UE
ϕ and HE

ϕ as follows:

1. V E
ϕ = {ϕ(α̂)

.= ϕ(β̂) | α̂
.= β̂ ∈ [EY]⇒},

2. HE
ϕ = {E′ | ∃E′′ ∈ V E

ϕ , Z ∈ {L, R}. E′′ ⇒∗
Z E′},

3. UE
ϕ = HE

ϕ \V E
ϕ .

For each ϕ ∈ ΦE , the subgraph H E
ϕ is an approximate copy of G ⇒[EY] in the sense

that G ⇒[EY] is isomorphic to an isolated path contraction of H E
ϕ . The intuition behind

the sets V E
ϕ and UE

ϕ is that they provide a decomposition of the set HE
ϕ of vertices

of H E
ϕ into those which survive after the isolated path compression (V E

ϕ) and those

Theory of Computing Systems

which are compressed/removed (UE
ϕ). The underlying isomorphism is the function

which maps equations α̂
.= β̂ ∈ [EY]⇒ to ϕ(α̂)

.= ϕ(β̂).
The structure of each subgraph H E

ϕ is therefore essentially the same as the struc-
ture of G ⇒[EY]. In order to fully understand the structure of G ⇒[E] however, we also need
to know how the individual subgraphs are connected, or in other words, when two of
subgraphs H E

ϕ1
, H E

ϕ2
share a common vertex. We shall later see (Lemma 6.14) that

H E
ϕ1

and H E
ϕ2

share a vertex if and only if the corresponding morphisms ϕ1, ϕ2 sat-
isfy a ‘closeness’ condition defined as follows. See Fig. 4 for a complete example of
the resulting relation.

Definition 6.6 (Close morphisms ϕ1, ϕ2 ∈ ΦE) Let E be a basic RWE and let Y =
var(E)\Δ(E). Let ϕ1, ϕ2 ∈ ΦE . Then ϕ1, ϕ2 are close if there exist y1, y2 ∈ Y with
y1 �= y2 and γ1, γ2 ∈ Δ(E)∗ such that:

1. For all y ∈ Y\{y1, y2}, ϕ1(y) = ϕ2(y), and
2. ϕ1(y1) = γ1γ2y1, ϕ2(y1) = γ2y1, and ϕ2(y2) = γ1ϕ1(y2).

Fig. 4 A graph representing the closeness relation for morphisms in ΦE for a basic RWE E with var(E) =
{x1, x2, x3, x4} and Δ(E) = {x3, x4}, meaning that Y = {x1, x2}. In this case, ΦE contains six morphisms,
ϕi, 1 ≤ i ≤ 6, which make up the vertices of the graph. Vertices connected by an edge are close in the
sense of Definition 6.6

Theory of Computing Systems

Informally, two morphisms ϕ1, ϕ2 ∈ ΦE are close if we can obtain one from the
other by removing some prefix of the image of a variable y1 and appending it to
the left of the image of another variable y2. For example, suppose that var(E) =
{x1, x2, x3, x4, x5, x6} and Δ(E) = {x3, x4, x5, x6}, and consider the two morphisms
ϕ1, ϕ2 : {x1, x2}∗ → {x1, x2, x3, x4, x5, x6}∗ given by ϕ1(x1) = x4x3x5x1, ϕ1(x2) =
x6x2, ϕ2(x1) = x5x1 and ϕ2(x2) = x4x3x6x2. Then ϕ1, ϕ2 both belong to ΦE and
are close, since we can get one from the other simply by moving the the prefix x4x3
from the image of x1 to the image of x2.

The following lemma shows that even when ϕ1 and ϕ2 are not close, we can find
a sequence of intermediate morphisms in ΦE starting with ϕ1 and ending with ϕ2,
such that each morphism in the sequence and its successor are close, and such that
this sequence is ‘short’. This will form the basis of our claim that the subgraphs H E

ϕ

which make up the graph G ⇒[E] are well-connected, and in particular means that there
is a (short) path in G ⇒[E] between any two of the subgraphs.

Lemma 6.7 LetE be a basic RWE and suppose that ϕ′, ϕ′′ ∈ ΦE with ϕ′ �= ϕ′′. Then
there exist k ≤ 4Card(Δ(E)) + 1 and ϕ1, ϕ2, ϕ3, . . . , ϕk ∈ ΦE such that ϕ′ = ϕ1,
ϕ′′ = ϕk , and ϕi , ϕi+1 are close for all i, 1 ≤ i < k.

Proof Let Y = var(E)\Δ(E). If Δ(E) = ∅, then ΦE contains only the identity
morphism. Thus we may assume that Δ(E) �= ∅ and consequently by Remark 6.2
that Card(Y) ≥ 2. Note the following claim.

Claim 6.7.1 Let ϕ1, ϕ2 ∈ ΦE , y1, y2 ∈ Y , z ∈ Δ(E) and γ1, γ2 ∈ Δ(E)∗ such that
y1 �= y2 and

1. ϕ1(y1) = γ1zγ2y1, ϕ2(y1) = γ1γ2y1 and ϕ2(y2) = zϕ1(y2), and
2. ϕ1(y) = ϕ2(y) for all y ∈ Y\{y1, y2}.
Then there exists ϕ3 ∈ ΦE such that ϕ1, ϕ3 are close, and ϕ3, ϕ2 are close.

Proof Let ϕ3 be the morphism such that ϕ3(y1) = γ2y1, ϕ3(y2) = γ1zϕ1(y2), and
ϕ3(y) = ϕ1(y) for all y ∈ Y\{y1, y2}. Then it follows directly from the definitions
that ϕ1, ϕ3 are close. Moreover, since ϕ2(y) = ϕ1(y) for all y ∈ Y\{y1, y2}, it also
follows from the definitions that ϕ2, ϕ3 are also close.

Claim 6.7.1 shows us that with two successors in a sequence, we can ‘move’ any
variable z ∈ Δ(E) from ϕ(y1) to the prefix of ϕ(y2) where y1, y2 ∈ Y with y1 �= y2
(leaving the rest of the morphism unchanged). Given any ϕ′ ∈ ΦE we can reach any
other morphism ϕ′′ ∈ ΦE by moving each variable z ∈ Δ(E) twice in this manner
according to the following strategy: firstly, we move each variable z ∈ Δ(E) to the
prefix of the image of a variable y ∈ Y such that z /∈ var(ϕ′′(y)). Note that this is
possible due to the assumption that Card(Y) ≥ 2 and requires moving each variable
in Δ(E) at most once. Then, we move the variables z ∈ Δ(E) back to the images of
the ‘correct’ y ∈ Y in the appropriate order. For example, if ϕ′′(y) = z1z2 . . . zny,
then we would first move zn to the prefix of the image of y, then zn−1, and so on.
Again this requires moving each variable at most once, and once we have done this
for all variables, then we will be left with exactly the morphism ϕ′′. Overall we have

Theory of Computing Systems

moved each variable at most twice. Since each move requires two successors in the
underlying sequence, we need at most 4Δ(E) successors in total and the statement
of the lemma follows.

We are now ready to give the full statement relating G ⇒[E] and G ⇒[EY] formally as
follows. An example demonstrating the theorem is given in Fig. 5.

Theorem 6.8 Let E be a basic RWE given by α
.= β. Let Y = var(E)\Δ(E). Let

EY be the equation πY (α)
.= πY (β). Let d = max{1, diam(G ⇒[EY])}. Then:

1. for each ϕ ∈ ΦE , HE
ϕ ⊆ [E]⇒ and G ⇒[EY] is isomorphic to an isolated path

contraction of order Card(Δ(E)) of the subgraph H E
ϕ of G ⇒[E] induced by HE

ϕ .

2. G ⇒[E] = ⋃

ϕ∈ΦE

H E
ϕ .

3. diam(G ⇒[E]) ∈ O(d|E|2).

Fig. 5 Example illustrating Theorem 6.8. On the left is G ⇒[E] for the equation E given by y1xy2y3y4
.=

y4y3xy2y1. Note that Δ(E) = {x}, so Y = {y1, y2, y3, y4} and EY is given by y1y2y3y4
.=

y4y3y2y1. The graph G ⇒[EY] is shown on the top-right, where the equations in [EY]⇒ have been labelled
A,B,C,D,E, F,G. The set ΦE contains four morphisms ϕi , 1 ≤ i ≤ 4, such that ϕi(yi) = xyi

and ϕi(yj) = yj for j �= i. In this case, all morphisms in ΦE are close to each other so the close-
ness relation (depicted as the graph G Close

ΦE
on the bottom-right) is a complete graph. The graph G ⇒[E]

is comprised of four subgraphs H E
ϕi

, 1 ≤ i ≤ 4. Each subgraph and morphism from ΦE is depicted
with a distinct colour in the figure. For each Z ∈ {A,B,C,D,E, F,G} given by αZ

.= βZ , Zi

denotes the equation ϕi(αZ)
.= ϕi(βZ). Thus the set of vertices unique to the subgraph H E

ϕi
is given by

V E
ϕi

= {Ai, Bi , Ci ,Di, Ei, Fi ,Gi}. The vertices shared between two subgraphs (i.e. those belonging to

UE
ϕi

) are labelled u1, u2, . . . , u6. Since any two morphisms from ΦE are close, each pair of subgraphs have
at least one vertex in common. Each subgraph can be made isomorphic to G ⇒[E] by contracting the paths

(dashed) passing through the shared vertices i1, i2, . . . , i6. For example, the subgraph H E
ϕ1

containing the
vertices A1, B1, C1,D1, E1, F1,G1, u1, u4, u5 can be made isomorphic to G ⇒[EY] by contracting the paths
(A1, u4, E1), (B1, u5,D1), and (C1, u1, C1) into single edges (A1, E1), (B1,D1) and (C1, C1)

Theory of Computing Systems

Before we proceed with proving Theorem 6.8, it deserves a few further comments.
Firstly, we note that since each morphism ϕ ∈ ΦE is clearly injective, the subsets
V E

ϕ of vertices of each subgraph H E
ϕ are pairwise disjoint. Consequently, while the

subgraphs H E
ϕ do overlap (and it is precisely these overlaps which mean they are all

connected), each one contains a unique copy of the vertices of G ⇒[EY].
Secondly, note that the number of morphisms in the set ΦE will grow expo-

nentially with respect to Card(Δ(E)). More precisely, we may assume some order
Y = {y1, y2, . . . , yn} on the variables in Y and represent each morphism ϕ ∈ ΦE as
a word ϕ(y1)ϕ(y2) . . . ϕ(yn). This representation is clearly unique to ϕ. Furthermore,
a word over var(E)∗ is a representation of this form for some ϕ ∈ ΦE if and only if
each variable occurs exactly once, the variables yi occur in order from left to right,
and yn occurs as a suffix. Thus, the number of morphisms in total is given by

Card(ΦE) = (Card(var(E)) − 1)!
(Card(var(E)) − Card(Δ(E)))! .

Since each subgraph contains a subset of vertices not shared with any other, it
follows that the number of vertices in G ⇒[E] will also be (at least) exponential in
Card(Δ(E)). We shall see later in Section 9 that this is essentially the worst case for
the size of G ⇒[E] for RWEs E, with the largest graphs corresponding exactly to the
case that Card(Δ(E)) is maximal. Nevertheless, it is worth pointing out that in the
same case, the graph G ⇒[EY] will be consist of a single vertex and two self-loops and
thus the diam(G ⇒[E]) will be (at most) quadratic in |E|. This is significantly better
than our upper bound in the general case.

Proof of Theorem 6.8 The rest of the section focuses on the proof of Theorem 6.8.
The main technical content is presented in the following series of lemmas. State-
ment 1 is given by Lemmas 6.15 and 6.16, while Statements 2 and 3 are given by
Lemmas 6.17 and 6.18 respectively. Throughout the remainder of this section, for a
basic RWE E given by α

.= β and a morphism ϕ, we shall use the notation ϕ(E)

as shorthand for ϕ(α)
.= ϕ(β). We begin by noting some properties of equations

belonging to the sets HE
ϕ . The first deals with equations belonging to V E

ϕ and follows
directly from the definitions.

Fact 6.9 Let E be a basic RWE. Let Y = var(E)\Δ(E), n = Card(Δ(E)) and
let EY = πY (E). Suppose that ϕ ∈ ΦE . Then E′ ∈ V E

ϕ if and only if there
exists a permutation σ : {1, 2, . . . , n} → {1, 2, . . . , n} and y1, y2, . . . , yn with
Y = {y1, y2, . . . , yn} such that y1y2 . . . yn

.= yσ(1)yσ(2) . . . yσ(n) ∈ [EY]⇒ and such
that E′ can be written as

ϕ(y1)ϕ(y2) . . . ϕ(yn)
.= ϕ(yσ(1))ϕ(yσ(2)) . . . ϕ(yσ(n)).

With a little additional reasoning, we can give a similar characterisation of
equations contained in UE

ϕ .

Lemma 6.10 Let E be a basic RWE. Let Y = var(E)\Δ(E), n = Card(Δ(E))

and let EY = πY (E). Suppose that ϕ ∈ ΦE . Then E′ ∈ UE
ϕ if and only if there

Theory of Computing Systems

exist a permutation σ : {1, 2, . . . , n} → {1, 2, . . . , n} and y1, y2, . . . , yn with Y =
{y1, y2, . . . , yn} such that one of the following holds:

1. y1y2 . . . yn
.= yσ(1)yσ(2) . . . yσ(n) ∈ [EY]⇒ and E′ may be written as:

ϕ(y1)ϕ(y2) . . . ϕ(yn)
.= δ2ϕ(yσ(2)) . . . ϕ(yσ(ι−1))δ1ϕ(yσ(ι)) . . . ϕ(yσ(n))

2. yσ(1)yσ(2) . . . yσ(n)
.= y1y2 . . . yn ∈ [EY]⇒ and E′ may be written as:

δ2ϕ(yσ(2)) . . . ϕ(yσ(ι−1))δ1ϕ(yσ(ι)) . . . ϕ(yσ(n))
.= ϕ(y1)ϕ(y2) . . . ϕ(yn)

where σ(ι) = 1, δ1δ2 = ϕ(yσ(1)), and δ1, δ2 �= ε.

Proof Suppose that E′ satisfies the conditions of the lemma. We shall consider the
case that Statement 1 holds. The case that Statement 2 holds is symmetric. Then
E′′ ⇒∗

L E′ where E′′ is the equation given by

ϕ(y1)ϕ(y2) . . . ϕ(yn)
.=

ϕ(yσ(1))
︷︸︸︷
δ1δ2 ϕ(yσ(2)) . . . ϕ(yσ(ι−1))ϕ(yσ(ι)) . . . ϕ(yσ(n)).

Consequently, E′′ = ϕ(Ê) for some Ê ∈ [EY]⇒, so E′′ ∈ V E
ϕ and thus E′ ∈ HE

ϕ .
Note however, that since E′ is a basic RWE, each variable occurs exactly once on
each side of the equation. We may therefore conclude that δ1δ2 = ϕ(yσ(1)) is not a
factor of the RHS of E′, and consequently, by Fact 6.9, E′ /∈ V E

ϕ . Thus E′ ∈ UE
ϕ .

Now suppose instead that E′ ∈ UE
ϕ . Then there exists some E′′ ∈ V E

ϕ , k ∈ N

and Z ∈ {L, R} such that E′′ ⇒k
Z E′. Suppose we choose E′′, Z and k such that

k is minimal. Suppose additionally that Z = L. We shall show that Statement 1 of
the lemma is satisfied. The case that Z = R is symmetric and results in Statement 2
being satisfied.

Since we have E′′ ∈ V E
ϕ , it follows from Fact 6.9 that there exists a permutation

σ : {1, 2, . . . , n} → {1, 2, . . . , n} and y1, y2, . . . , yn with Y = {y1, y2, . . . , yn} such
that y1y2 . . . yn

.= yσ(1)yσ(2) . . . yσ(n) ∈ [EY]⇒ and such that E′′ can be written as

ϕ(y1)ϕ(y2) . . . ϕ(yn)
.= ϕ(yσ(1))ϕ(yσ(2)) . . . ϕ(yσ(n)).

Let � = |ϕ(yσ(1))| and let E′′′ be the equation given by

ϕ(y1)ϕ(y2) . . . ϕ(yn)
.= ϕ(yσ(2)) . . . ϕ(yσ(ι−1))ϕ(yσ(1))ϕ(yσ(ι)) . . . ϕ(yσ(n))

where σ(ι) = 1. Then E′′ ⇒�
Z E′′′. However, since y1y2 . . . yn

.= yσ(1)yσ(2) . . . yσ(n) ∈
[EY]⇒ and

y1y2 . . . yn
.=yσ(1)yσ(2) . . . yσ(n) ⇒y1y2 . . . yn

.=yσ(2) . . . yσ(ι−1)yσ(1)yσ(ι) . . . yσ(n),

we may conclude that y1y2 . . . yn
.= yσ(2) . . . yσ(ι−1)yσ(1)yσ(ι) . . . yσ(n) ∈ [EY]⇒.

Thus, by Fact 6.9, E′′′ ∈ V E
ϕ . Consequently, since V E

ϕ and UE
ϕ are by definition

disjoint, we must have that k /∈ {0, �}. Moreover, by our assumption that k is as
minimal, we must have that k < � (otherwise we could choose E′′′ in place of E′
and get a smaller value of k). This directly implies that there exist δ1, δ1 �= ε with
δ1δ2 = ϕ(yσ(1)) such that E′ may be written as

ϕ(y1)ϕ(y2) . . . ϕ(yn)
.= δ2ϕ(yσ(2)) . . . ϕ(yσ(ι−1))δ1ϕ(yσ(ι)) . . . ϕ(yσ(n))

Theory of Computing Systems

and thus Statement 1 of the lemma is satisfied. The case that Z = R is symmetrical,
leading instead to the satisfaction of Statement 2.

We shall now focus on the claim that HE
ϕ ⊆ [E]⇒ for each ϕ ∈ Φ. The first step

is to show that for at least one ϕ ∈ ΦE , the equation ϕ(EY) is contained in [E]⇒.

Lemma 6.11 Let E be a basic RWE. Let Y = var(E)\Δ(E) and let EY = πY (E).
Then there exists ϕ ∈ ΦE such that ϕ(EY) ∈ [E]⇒.

Proof Note that if Δ(E) = ∅, then EY = E and ΦE contains only the identity
morphism, so the lemma holds trivially. Suppose that Δ(E) �= ∅. By Remark 6.2, we
may therefore assume that E is a basic RWE with at least two variables, so may write
it as xα1u1u2 . . . unyα2

.= yβ1u1u2 . . . unxβ2 where x, y, u1, u2, . . . , un ∈ X are
pairwise distinct variables and α1, α2, β1, β2 ∈ (var(E)\{x, y, u1, u2, . . . , un})∗,
and such that α1 and β1 do not share a common non-empty suffix. Then E ⇒∗

R E′
where E′ is given by u1u2 . . . unxα1yα2

.= yβ1u1u2 . . . unxβ2.
Now, consider the function QE′ as defined in Definition 5.1. Note in particular

that QE′(#) = (v, w) where v, w ∈ X are the length-1 suffixes of xα1 and yβ1, and
hence v �= w. By Theorem 5.3, ΥE = ΥE′ (and hence Δ(E) = Δ(E′)). Thus, for
every z ∈ Δ(E), there exists z′ ∈ var(E) such that QE′(z′) = (z, z), meaning that z

occurs directly to the left of z′ on both the LHS and RHS of E′. It follows that each
z ∈ Δ(E) has a unique ‘successor’ variable z′ occurring to the right of z on both
sides of the equation, and therefore that there exists some morphism ϕ ∈ ΦE such
that E′ = ϕ(πY (E′)). Finally, notice that ui ∈ Δ(E′) = Δ(E) for 1 ≤ i ≤ n, and
consequently, πY (E′) = πY (E) = EY .

The following lemma shows a correspondence between edges in G ⇒[EY] and paths

in the subgraphs H E
ϕ of G ⇒[E] which start and end with vertices from V E

ϕ and whose

internal vertices (if there are any) belong to UE
ϕ .

Lemma 6.12 Let E be a basic RWE. Let Y = var(E)\Δ(E) and let EY = πY (E).
LetZ ∈ {L, R} and suppose thatE′, E′′ ∈ [EY]⇒ such thatE′ ⇒Z E′′. Let ϕ ∈ ΦE .
Then there exist k ≤ Card(Δ(E)) and E0, E1, E2, . . . , Ek+1 such that

1. ϕ(E′) = E0 and ϕ(E′′) = Ek+1, and
2. Ei ∈ UE

ϕ for 1 ≤ i ≤ k, and
3. E0 ⇒Z E1 ⇒Z E2 ⇒Z . . . ⇒Z Ek ⇒Z Ek+1.

Proof Note that if Card(Y) < 2, then [EY]⇒ is a singleton and the lemma holds
trivially. We may therefore assume that Card(Y) ≥ 2. Suppose that Z = R. The case
that Z = L is symmetric. Then there exist x, y ∈ Y and α1, α2, β1, β2 ∈ Y ∗ such that
E′ may be written as xα1yα2

.= yβ1xβ2 and E′′ may be written as α1xyα2
.= yβ1xβ2.

Let E0 = ϕ(E′) and Ek+1 = ϕ(E′′). If ϕ(x) = x, then E0 ⇒R Ek+1 so the lemma
holds for k = 0. Suppose that ϕ(x) �= x.

Then there exists k, 1 ≤ k ≤ Card(Δ(E)) and z1, z2, . . . , zk ∈ Δ(E) such that
ϕ(x) = z1z2 . . . zkx. For each i, 1 ≤ i ≤ k, let Ei be the equation given by:

zi+1 . . . zkxϕ(α1)z1z2 . . . ziϕ(y)ϕ(α2)
.= ϕ(y)ϕ(β1)ϕ(x)ϕ(β2).

Theory of Computing Systems

Then it follows directly from Lemma 6.10 that Ei ∈ UE
ϕ for 1 ≤ i ≤ k. Moreover,

E0 ⇒R E1 ⇒R E2 ⇒R . . . ⇒R Ek ⇒R Ek+1

as required.

A straightforward induction on Lemma 6.12 allows us to conclude that if, for some
ϕ ∈ ΦE , ϕ(EY) ∈ [E]⇒, then HE

ϕ ⊆ [E]⇒. We have already shown (Lemma 6.11
that this is true for at least one choice of ϕ. The next step is to show that ϕ(EY) ∈
[E]⇒ for all ϕ ∈ ΦE , which we obtain as a consequence of Lemmas 6.7 and 6.14
below. Before proving Lemma 6.14, we need the following result, which we shall
reuse later and is therefore stated separately.

Lemma 6.13 Let E be a basic RWE. Then there exist n1, n2 < |E|2 and Ê such
that E ⇒n1 Ê and Ê ⇒n2 E where Ê can be written as xαy

.= yβx where x, y ∈
var(E) and α, β ∈ (var(E)\{x, y})∗

Proof We shall prove the case that E ⇒n1 Ê. The case that Ê ⇒n2 E is easily
adapted. Recall that we may write any basic RWE as xα1yα2

.= yβ1xβ2 where x, y ∈
X and α1, α2, β1, β2 ∈ (X\{x, y})∗. We have the following claim:

Claim 6.13.1 For every basic, regular equation E given by xα1yα2
.= yβ1xβ2, either

α2 = β2 = ε, or there exists n < |E| and E′ such that E ⇒n E′ and E′ may be
written as x′α′

1y
′α′

2
.= y′β ′

1x
′β ′

2 where x′, y′ ∈ X, α′
1, α

′
2, β

′
1, β

′
2 ∈ (X\{x′, y′})∗,

and such that |α′
1| + |β ′

1| > |α1| + |β1|.
Proof Let E be given by xα1yα2

.= yβ1xβ2 where x, y ∈ var(E) and α1, α2, β1, β2 ∈
(var(E)\{x, y})∗. We have two cases, either var(α1) = var(β1), in which case,
due to the fact that E is basic and therefore indecomposable, we must have that
α2 = β2 = ε, so the claim holds. Otherwise, there exists z ∈ (var(α1)\var(β1)) ∪
(var(β1)\var(α1)). W.l.o.g. suppose that z ∈ var(α1)\var(β1). Then since E is
regular, z ∈ var(β2) and we can write E as xγ1zγ2yα2

.= yβ1xδ1zδ2 where
γ1, γ2, δ1, δ2 ∈ (var(E)\{x, y, z})∗. Consequently, we have that E ⇒∗

R E′ where E′
is given by zγ2xγ1yα2

.= yβ1xδ1zδ2. By Remark 3.2, we have that E ⇒n E′ where
n < |E|. Moreover, E′ clearly has the form described in the claim as witnessed by
x′ = z, y′ = y, α′

1 = γ2xγ1, α′
2 = α2, β ′

1 = β1xδ1 and β ′
2 = δ2.

Since for any equation E of the form xα1yα2
.= yβ1xβ2, we must clearly have that

|α1| + |β1| < |E|, it follows from a simple induction on Claim 6.13.1 that E ⇒n Ê

for some n < |E|2 and Ê of the form x′αy′ .= y′βx′ as claimed.

Lemma 6.14 Let E be a basic RWE. Let Y = var(E)\Δ(E) and let EY = πY (E).
Let ϕ1, ϕ2 ∈ ΦE . Then HE

ϕ1
∩ HE

ϕ2
�= ∅ if and only if ϕ1, ϕ2 are close.

Proof If Card(Y) < 2, then ΦE consists of the identity morphism only so the state-
ment holds trivially. Suppose that Card(Y) ≥ 2. Suppose firstly that ϕ1, ϕ2 are
close. Then there exist y1, y2 ∈ Y with y1 �= y2 and γ1, γ2 ∈ Δ(E)∗ such that
ϕ1(y1) = γ1γ2y1, ϕ2(y1) = γ2y1, ϕ2(y2) = γ1ϕ1(y2), and for y ∈ Y\{y1, y2},
ϕ1(y) = ϕ2(y). In order to show that HE

ϕ1
∩ HE

ϕ2
�= ∅, we need the following claim.

Theory of Computing Systems

Claim 6.14.1 There exist Ê ∈ [EY]⇒ and α̂1, α̂2, β̂1, β̂2 ∈ (Y\{y1, y2})∗ such that
Ê can be written either as:

1. y1α̂1y2α̂2
.= y2β̂1y1β̂2, or

2. y2α̂1y1α̂2
.= y1β̂1y2β̂2

Proof By Lemma 6.13, there exists Ê′ ∈ [EY]⇒ such that Ê′ may be written as
xα̂z

.= zβ̂x where x, z ∈ Y , x �= z and α̂, β̂ ∈ (Y\{x, z})∗. By Lemma 6.3, EY

is basic, meaning that each variable in Y = var(EY) occurs exactly once on each
side of EY . It follows by properties of ⇒ that each variable in Y also occurs exactly
once in each of xα̂z and zβ̂x. Hence there exist α̂′, α̂′′ ∈ (Y\{y2})∗ such that xα̂z =
α̂′y2α̂

′′ (and such that y1 occurs in either α̂′ or α̂′′).
Suppose w.l.o.g. that y1 occurs to the left of y2 in the RHS. We shall show that

Statement 1 of the lemma is satisfied. The case that y2 occurs to the right of y1 is
symmetric and leads to Statement 2 being satisfied. Then there exist β̂ ′, β̂ ′′, β̂ ′′′ ∈
(Y\{y1, y2})∗ such that zβ̂x = β̂ ′y1β̂

′′y2β̂
′′′. Then we may write Ê′ as

α̂′y2α̂
′′ .= β̂ ′y1β̂

′′y2β̂
′′′.

Note that z is a suffix of y2α̂
′′ and a prefix of β̂ ′y1. Since y2 does not occur in

β̂ ′y1, we have y2 �= z. Consequently, we may write α̂′′ = α̂′′′z for some α̂′′′. Then

Ê′
︷ ︸︸ ︷

α̂′y2α̂
′′′z .= β̂ ′y1β̂

′′y2β̂
′′′

⇒∗
R y2α̂

′′′α̂′z .= β̂ ′y1β̂
′′y2β̂

′′′

⇒∗
L y2 α̂′′′α̂′z

︸ ︷︷ ︸
α̂1y1α̂2

.= y1 β̂ ′′β̂ ′
︸︷︷︸

β̂1

y2 β̂ ′′′
︸︷︷︸

β̂2

so y2α̂
′′′α̂′z .= y1β̂

′′β̂ ′y2β̂
′′′ ∈ [EY]⇒. Since y1 occurs either in α̂′ or in α̂′′ = α̂′′′z,

we may write α̂′′′α̂′z as α̂1y1α̂2 for some α̂1, α̂2 ∈ (Y\{y1, y2})∗. Thus the first
statement of the lemma holds with β̂1 = β̂ ′′β̂ ′ and β̂2 = β̂ ′′′.

Assume that the first statement of Claim 6.14.1 holds. The case that the second
statement holds is symmetric. Then there exists Ê ∈ [EY]⇒ such that Ê has the form
y1α̂1y2α̂2

.= y2β̂1y1β̂2, for some α̂1, α̂2, β̂1, β̂2 ∈ (Y\{y1, y2})∗. Let EINT be the
equation given by

γ2y1ϕ1(α̂1)γ1ϕ1(y2)ϕ1(α̂2)
.= ϕ1(y2)ϕ1(β̂1)γ1γ2y1ϕ1(β̂2)

and notice that

ϕ1(Ê)
︷ ︸︸ ︷

ϕ1(y1)ϕ1(α̂1)ϕ1(y2)ϕ1(α̂2)
.= ϕ1(y2)ϕ1(β̂1)ϕ1(y1)ϕ1(β̂2)

⇒∗
R γ2y1ϕ1(α̂1)γ1ϕ1(y2)ϕ1(α̂2)

.= ϕ1(y2)ϕ1(β̂1)γ1γ2y1ϕ1(β̂2)︸ ︷︷ ︸
EINT

.

Theory of Computing Systems

Moreover, recall that ϕ2(y1) = γ2y1, ϕ2(y2) = γ1ϕ1(y2). Since α̂1, α̂2 ∈
(Y\{y1, y2})∗, we also have ϕ2(α̂1) = ϕ1(α̂1) and ϕ2(α̂2) = ϕ1(α̂2). Consequently

ϕ2(Ê)
︷ ︸︸ ︷

γ2y1ϕ1(α̂1)γ1ϕ1(y2)ϕ1(α̂2)
.= γ1ϕ1(y2)ϕ1(β̂1)γ2y1ϕ1(β̂2)

⇒∗
L γ2y1ϕ1(α̂1)γ1ϕ1(y2)ϕ1(α̂2)

.= ϕ1(y2)ϕ1(β̂1)γ1γ2y1ϕ1(β̂2)︸ ︷︷ ︸
EINT

.

Since Ê ∈ [EY]⇒, by definition ϕ1(Ê) ∈ V E
ϕ1

and ϕ2(Ê) ∈ V E
ϕ2

. Thus it follows
that EINT ∈ UE

ϕ1
∩ UE

ϕ2
and consequently HE

ϕ1
∩ HE

ϕ2
�= ∅.

Now suppose instead that HE
ϕ1

∩ HE
ϕ2

�= ∅. Let EINT ∈ HE
ϕ1

∩ HE
ϕ2

. If ϕ1 = ϕ2
then the statement holds trivially. Thus we assume that ϕ1 �= ϕ2. Before we proceed,
we need the following claim.

Claim 6.14.2 Let ϕ′, ϕ′′ ∈ ΦE and μ′, μ′′ ∈ Y ∗ such that |μ′|y = |μ′′|y = 1 for all
y ∈ Y . If ϕ′(μ′) = ϕ′′(μ′′), then ϕ′ = ϕ′′ and μ′ = μ′′.

Proof Suppose that ϕ′(μ′) = ϕ′′(μ′′). It follows from the definition of ΦE that for
any ϕ ∈ Φ, the morphism πY ◦ ϕ is the identity over Y . Thus μ′ = πY (ϕ′(μ′)) =
πY (ϕ′′(μ′′)) = μ′′. Furthermore, for each y ∈ Y , we may uniquely reconstruct ϕ′(y)

and ϕ′′(y) as the longest factors of the form Δ(E)∗y in ϕ′(μ′) and ϕ′′(μ′′) respec-
tively. It follows from the definition of ΦE and the fact that |μ′|y, |μ′′|y = 1 that these
factors will exist and be unique. Thus, under the assumption that ϕ′(μ′) = ϕ′′(μ′′),
it follows that ϕ′(y) = ϕ′′(y) for all y ∈ Y and hence ϕ′ = ϕ′′.

It follows from Fact 6.9 and Lemma 6.10 that for each i ∈ {1, 2}, there exists
μi ∈ Y ∗ with |μi |y = 1 for all y ∈ Y such that at least one of the LHS or RHS
of EINT has the form ϕi(μi). By Claim 6.14.2, and since ϕ1 �= ϕ2, a single side
of EINT cannot have the form ϕi(μi) for both i = 1 and i = 2. By Fact 6.9, this
means that EINT /∈ V E

ϕ1
, V E

ϕ2
and consequently that EINT ∈ UE

ϕ1
∩ UE

ϕ2
. Thus, either

Statement 1 or Statement 2 of Lemma 6.10 holds with ϕ = ϕ1 and E′ = EINT .
W.l.o.g. suppose that the LHS of EINT has the form ϕ1(μ1) and the RHS of EINT

has the form ϕ2(μ2). This corresponds to the case that Statement 1 of Lemma 6.10
holds, so there exist y1, y2, . . . , yn with Y = {y1, y2, . . . , yn} and a permutation
σ : {1, 2, . . . , n} → {1, 2, . . . , n} such that EINT may be written as

ϕ1(y1)ϕ1(y2) . . . ϕ1(yn)
.= δ2ϕ1(yσ(2)) . . . ϕ1(yσ(ι−1))δ1ϕ1(yσ(ι)) . . . ϕ1(yσ(n))

where δ1δ2 = ϕ1(yσ(1)) with δ1, δ2 �= ε and σ(ι) = 1. Note that by the definition
of ΦE , the fact that δ2 �= ε implies that δ1 ∈ Δ(E)∗ and δ2 = δ3yσ(1) for some
δ3 ∈ Δ(E)∗.

Recalling that the RHS of EINT has the form ϕ2(μ2), we may directly infer that
μ2 = yσ(1)yσ (2) . . . yσ(n) and subsequently ϕ2(yσ(2)) = δ2, ϕ2(yσ(ι)) = δ1ϕ1(yσ(ι)),
and ϕ2(y) = ϕ1(y) for all y /∈ {yσ(2), yσ(ι)}. Thus ϕ1 and ϕ2 are close as required.

Theory of Computing Systems

We are now able to prove that each set HE
ϕ is in fact a subset of the vertices of

G ⇒[E], and thus that the subgraphs H E
ϕ of G ⇒[E] are well-defined.

Lemma 6.15 Let E be a basic RWE. Then HE
ϕ ⊆ [E]⇒ for each ϕ ∈ ΦE .

Proof Let Y = var(E)\Δ(E) and let EY = πY (E). By Lemma 6.11, there exists
ϕ ∈ ΦE such that ϕ(EY) ∈ [E]⇒. Let Ẽ ∈ HE

ϕ′ for some arbitrary ϕ′ ∈ ΦE . By
Lemma 6.7, there exist k ≤ 4Card(Δ(E)) + 1 and ϕ1, ϕ2, . . . , ϕk ∈ ΦE such that
ϕ = ϕ1, ϕ

′ = ϕk , and for 1 ≤ i < k, ϕi and ϕi+1 are close. Thus, by Lemma 6.14,
there exist E1, E2, . . . , Ek such that Ei ∈ HE

ϕi
∩ HE

ϕi+1
for 1 ≤ i < k.

It follows from Lemma 6.12 that if E′, E′′ ∈ HE
ϕi

for some i, 1 ≤ i ≤ k, then

E′ ⇒∗ E′′. Thus, ϕ(EY) ⇒∗ ϕ(E1), Ek ⇒∗ Ẽ, and for 1 ≤ i ≤ k, Ei ⇒∗ Ei+1.
Consequently, Ẽ ∈ [E]⇒. Since this holds for all Ẽ ∈ H E

ϕ′ for all ϕ′ ∈ ΦE , the
lemma follows.

The following lemma completes the proof of Statement 1 of Theorem 6.8.

Lemma 6.16 Let E be a basic RWE. Let Y = var(E)\Δ(E), let EY = πY (E),
and let ϕ ∈ ΦE . Then G ⇒[EY] is isomorphic to an isolated path contraction of order

Card(Δ(E)) of H E
ϕ .

Proof For k ≥ 0, we shall say that a sequence of equations E0, E1, . . . , Ek+1 as a
U -path if E0, Ek+1 ∈ V E

ϕ , Ei ∈ UE
ϕ for 1 ≤ i ≤ k, and there exists Z ∈ {L, R} such

that E0 ⇒Z E1 ⇒Z E2 ⇒Z . . . ⇒Z Ek ⇒Z Ek+1. Let � be the relation on V E
ϕ

such that E′ � E′′ if and only if E′, E′′ ∈ V E
ϕ and there exists a U -path starting with

E′ and ending with E′′. We shall show firstly that the graph G �
V E

ϕ
is an isolated path

compression of order Card(Δ(E)) of H E
ϕ , and secondly that G ⇒[EY] is isomorphic to

G �
V E

ϕ
.

Clearly, every U -path is a path in H E
ϕ . Moreover, it follows from the definition

of HE
ϕ , along with the fact that ⇒∗

Z is an equivalence relation for Z ∈ {L, R}, that
for every vertex E′ ∈ UE

ϕ , there exist E′′, E′′′ ∈ V E
ϕ and Z ∈ {L, R} such that

E′′ ⇒∗
Z E′ and E′ ⇒∗

Z E′′′. Consequently, every vertex in H E
ϕ either belongs to

V E
ϕ or is the internal vertex of some U -path. It follows as a direct consequence of the

following claim that U -path containing a given vertex in UE
ϕ is unique, and therefore

that no two distinct U -paths share an internal vertex. Thus G �
V E

ϕ
is an isolated path

compression of order k of H E
ϕ where k is the number of internal vertices in the

longest U -path in H E
ϕ .

Claim 6.16.1 Let E′ ∈ UE
ϕ . Then the in- and out-degrees of E′ in H E

ϕ are exactly
one.

Proof Since E′ ∈ UE
ϕ , there exist a permutation σ : {1, 2, . . . , n} → {1, 2, . . . , n}

and y1, y2, . . . , yn with Y = {y1, y2, . . . , yn} such either Statement 1 or Statement 2

Theory of Computing Systems

of Lemma 6.10 holds. Suppose that Statement 1 holds. The case that Statement 2
holds is symmetric. Then we may write E′ as follows:

ϕ(y1)ϕ(y2) . . . ϕ(yn)
.= δ2ϕ(yσ(2)) . . . ϕ(yσ(ι−1))δ1ϕ(yσ(ι)) . . . ϕ(yσ(n))

where σ(ι) = 1, δ1δ2 = ϕ(yσ(1)) and δ1, δ2 �= ε. Moreover, Ê ∈ [EY]⇒ where Ê is
given by y1y2 . . . yn

.= yσ(1)yσ(2) . . . yσ(n). Note that ϕ(Ê) ⇒∗
L E′.

Let E′
preL

, E′
sucL

be the equations such that E′
preL

⇒L E′ and E′ ⇒L E′
sucL

. It

follows from the definitions that ϕ(Ê) ⇒∗
L E′

preL
and ϕ(Ê) ⇒∗

L E′
sucL

, so both

belong to HE
ϕ and the in- and out-degree of E′ in H E

ϕ are both at least one. To see
that they are exactly one, we must show that for the equations E′

preR
and E′

sucR
such

that E′
preR

⇒R E′ and E′ ⇒R E′
sucR

, neither E′
preR

nor E′
sucR

is contained in the set

HE
ϕ . We may write E′

preR
as

zϕ(y1)ϕ(y2) . . . δ3δ2 . . . ϕ(yn)
.= δ2ϕ(yσ(2)) . . . ϕ(yσ(i−1))δ1ϕ(yσ(i)) . . . ϕ(yσ(n))

where z ∈ X and δ3 ∈ X∗ such that δ3z = δ1, and we may write E′
sucR

as

γ ϕ(y2) . . . δ1z
′δ2 . . . ϕ(yn)

.= δ2ϕ(yσ(2)) . . . ϕ(yσ(i−1))δ1ϕ(yσ(i)) . . . ϕ(yσ(n))

where z′ ∈ X and γ ∈ X∗ such that z′γ = ϕ(y1). It follows by Fact 6.9 and
Lemma 6.10 that any equation in V E

ϕ ∪ UE
ϕ = HE

ϕ must have ϕ(yσ(1)) = δ1δ2
occurring as a factor of at least one side. However, since each variable occurs exactly
once on each side of the equations E′

preR
, E′

sucR
, we may immediately observe that

ϕ(yσ(1)) does not occur as a factor of the LHS or of the RHS of either equation. Thus
E′

preR
, E′

sucR
/∈ HE

ϕ , and the in- and out-degrees of E′ in H E
ϕ are exactly one as

claimed.

The following claim asserts that each vertex in E′ ∈ UE
ϕ occurs on a U -path

with at most Card(Δ(E)) internal vertices. Since we have already shown that E′
occurs on exactly one U -path, it follows that all U -paths have at most Card(Δ(E))

internal vertices and thus that the order of the isolated path compression is at most
Card(Δ(E)).

Claim 6.16.2 Let E′ ∈ UE
ϕ . Then there exist k ≤ Card(Δ(E)), E0, E1, . . . , Ek+1

and Z ∈ {L, R} such that:

1. E0, Ek+1 ∈ V E
ϕ , and

2. Ei ∈ UE
ϕ for 1 ≤ i ≤ k, and

3. Ei ⇒Z Ei+1 for 0 ≤ i ≤ k, and
4. there exists i, 1 ≤ i ≤ k such that E′ = Ei .

Proof Since E′ ∈ UE
ϕ , there exist a permutation σ : {1, 2, . . . , n} → {1, 2, . . . , n}

and y1, y2, . . . , yn with Y = {y1, y2, . . . , yn} such either Statement 1 or Statement 2
of Lemma 6.10 holds. Suppose that Statement 1 holds. The case that Statement 2
holds is symmetric. Then the equation Ê given by y1y2 . . . yn

.= yσ(1)yσ(2) . . . yσ(n)

is contained in [EY]⇒ and we may write E′ as follows

ϕ(y1)ϕ(y2). . .ϕ(yn)
.=zj+1 . . . zkϕ(yσ(2)) . . . ϕ(yσ(ι−1))z1. . .zjϕ(yσ(ι)) . . . ϕ(yσ(n))

Theory of Computing Systems

where σ(ι) = 1, z1z2 . . . zk = ϕ(yσ(1)) and 1 ≤ j < k ≤ Card(Δ(E)) + 1.
Now, let E0 be the equation given by

ϕ(y1)ϕ(y2) . . . ϕ(yn)
.=

ϕ(y1)︷ ︸︸ ︷
z1z2 . . . zk ϕ(yσ(2)) . . . ϕ(yσ(ι−1))ϕ(yσ(ι)) . . . ϕ(yσ(n)),

let Ek+1 be the equation

ϕ(y1)ϕ(y2) . . . ϕ(yn)
.= ϕ(yσ(2)) . . . ϕ(yσ(ι−1))

ϕ(y1)︷ ︸︸ ︷
z1z2 . . . zk ϕ(yσ(ι)) . . . ϕ(yσ(n)),

and for 1 ≤ i < k, let Ei be the equation given by

ϕ(y1)ϕ(y2)...ϕ(yn)
.= zi+1... zkyσ(1)ϕ(yσ(2))...ϕ(yσ(ι−1))z1 . . . ziϕ(yσ(ι))...ϕ(yσ(n)).

Then clearly we have E0 = ϕ(Ê) ∈ V E
ϕ . Let Ê′ be the equation given by

y1y2 . . . yn
.= yσ(2) . . . yσ(ι−1)yσ(1)yσ(ι) . . . yσ(n). Then Ê ⇒ Ê′ so Ê′ ∈ [EY]⇒, and

moreover Ek+1 = ϕ(Ê′) so Ek+1 ∈ V E
ϕ . Thus Statement 1 is satisfied. Note also that

Ei ⇒L Ei+1 for 0 ≤ i ≤ k, so Statement 3 is satisfied, and furthermore we have
that Ei ∈ HE

ϕ for 1 ≤ i ≤ k. For each i, 1 ≤ i ≤ k, since each variable y ∈ Y occurs
exactly once on each side Ei , we may conclude that ϕ(yσ(1)) = z1z2 . . . zk is not a
factor of the RHS of Ei . Thus, by Fact 6.9, Ei /∈ V E

ϕ so Ei ∈ UE
ϕ and Statement 2 is

satisfied. Finally note that E′ = Ej , so Statement 4 is also satisfied.

It remains to show that G ⇒[EY] is isomorphic to G �
V E

ϕ
. Recall that by definition V E

ϕ =
{ϕ(E′) | E′ ∈ [EY]⇒} and note that the function mapping equations Ê ∈ [EY]⇒
to their counterparts ϕ(Ê) ∈ V E

ϕ is a bijection. Consequently, the fact that G �
V E

ϕ
is

isomorphic to G ⇒[EY] follows directly from the following claim.

Claim 6.16.3 Let Ê1, Ê2 ∈ [EY]⇒. Then Ê1 ⇒ Ê2 if and only if ϕ(Ê1)�ϕ(Ê2).

Proof Suppose that Ê1 ⇒ Ê2. Then it follows from Lemma 6.12 that ϕ(Ê1)�ϕ(Ê2).
Suppose instead that ϕ(Ê1) � ϕ(Ê2). Since Ê1 ∈ [EY]⇒, it may be written as

y1y2 . . . yn
.= yσ(1)yσ(2) . . . yσ(n)

where Y = {y1, y2, . . . , yn} and σ : {1, 2, . . . , n} → {1, 2, . . . , n} is a permutation.
By definition of �, there exists Z ∈ {L, R} and � ∈ N such that ϕ(Ê1) ⇒�

Z ϕ(Ê2).
Suppose that Z = L. The case that Z = R is symmetric. For i > 1, let Ei be the
equation such that ϕ(Ê1) ⇒i

L ϕ(Ei). Let k = |ϕ(yσ(1))| − 1. Then we may write
Ek+1 as

ϕ(y1)ϕ(y2) . . . ϕ(yn)
.= ϕ(yσ(2)) . . . ϕ(yσ(ι−1))ϕ(yσ(1))ϕ(yσ(ι)) . . . ϕ(yσ(n)).

Let Ê3 be the equation given by y1y2 . . . yn
.= yσ(2) . . . yσ(ι−1)yσ(1)yσ(ι) . . . yσ(n).

Then Ê1 ⇒ Ê3 so Ê3 ∈ [EY]⇒ and it follows from Fact 6.9 that Ek+1 ∈ V E
ϕ .

Hence we must have � ≤ k + 1. Moreover, for 1 ≤ i ≤ k, there exist δ1, δ2 such that
δ1δ2 = ϕ(yσ(1)) and δ1, δ2 �= ε and such that we may write Ei as

ϕ(y1)ϕ(y2) . . . ϕ(yn)
.= δ2ϕ(yσ(2)) . . . ϕ(yσ(ι−1))δ1ϕ(yσ(ι)) . . . ϕ(yσ(n)).

Theory of Computing Systems

Consequently, by Lemma 6.10, Ei ∈ UE
ϕ for 1 ≤ i ≤ k. By definition, ϕ(Ê2) ∈ V E

ϕ ,

so it follows that � > k and thus � = k + 1, and thus that in fact Ê2 = Ê3, meaning
that Ê1 ⇒ Ê2 as required.

Claims 6.16.1 and 6.16.2 show that the graph G �
V E

ϕ
is an isolated path compression

of order Card(Δ(E)) of H E
ϕ . Claim 6.16.3 shows that G ⇒[E] is isomorphic to G �

V E
ϕ

, so

the statement of the lemma holds.

The following lemma deals with the second statement of Theorem 6.8. It asserts
that the subgraphs H E

ϕ completely cover the graph G ⇒[E]: each edge and each vertex

of G ⇒[E] also belong to at least one subgraph H E
ϕ .

Lemma 6.17 Let E be a basic RWE. Then G ⇒[E] = ⋃

ϕ∈ΦE

H E
ϕ .

Proof We have already shown in Lemma 6.15 that each vertex of
⋃

ϕ∈ΦE

H E
ϕ is a vertex

of G ⇒[E]. Moreover, it follows directly from the definition of H E
ϕ that each edge in

⋃

ϕ∈ΦE

H E
ϕ is also an edge of G ⇒[E]. It remains to show that each vertex/edge of G ⇒[E] is a

vertex/edge of H E
ϕ for some ϕ ∈ ΦE . The main step is Claim 6.17.1 as follows.

Claim 6.17.1 For every E′ ∈ [E]⇒, and Z ∈ {L, R}, there exists ϕ ∈ ΦE and
E′′ ∈ V E

ϕ such that E′′ ⇒∗
Z E′.

Proof Note that by Lemma 6.11, there exists E0 ∈ [E]⇒ and ϕ0 ∈ ΦE such that
E0 ∈ V E

ϕ0
and thus the claim holds for E0 = E′. Note also that for every E′ ∈ [E]⇒,

since ⇒∗ is an equivalence relation, we have E0 ⇒∗ E′. Thus it is sufficient to show
that if the claim holds for Ei and Ei ⇒ Ei+1, then it also holds for Ei+1.

Suppose that the claim holds for Ei ∈ [E]⇒ and that Ei ⇒Zi
Ei+1. Then there

exist ϕi ∈ ΦE and E′′
i ∈ V E

ϕi
such that E′′

i ⇒∗
Zi

Ei and thus E′′
i ⇒∗

Zi
Ei+1. Thus

Ei+1 ∈ HE
ϕi

. If Ei+1 ∈ V E
ϕi

, then the claim holds trivially. Suppose instead that
Ei+1 ∈ UE

ϕi
.

Let Y = var(E)\Δ(E) and let EY = πY (E). Recall that there exist a permutation
σ : {1, 2, . . . , n} → {1, 2, . . . , n} and y1, y2, . . . , yn with Y = {y1, y2, . . . , yn} such
either Statement 1 or Statement 2 of Lemma 6.10 holds. Suppose that Statement 1
holds (the case that Statement 2 holds is symmetric). Then we may write Ei+1 as

ϕi(y1)ϕi(y2) . . . ϕi(yn)
.= δ2ϕi(yσ(2)) . . . ϕi(yσ(ι−1))δ1ϕi(yσ(ι)) . . . ϕi(yσ(n))

where σ(ι) = 1, δ1δ2 = ϕi(yσ(1)) and δ1, δ2 �= ε. Furthermore, we have Ê ∈ [EY]⇒
where Ê is the equation given by

y1y2 . . . yn
.= yσ(1)yσ(2) . . . yσ(n).

It is straightforward to see that for Z = L, ϕi(Ê) ⇒∗
Z Ei+1 and since ϕi(Ê) ∈ V E

ϕi

by definition, the claim holds in this case.

Theory of Computing Systems

It remains to consider the case that Z = R. By Lemma 6.3, EY is basic and
therefore indecomposable. Thus y1 �= yσ(1). Let ϕi+1 : Y ∗ → X∗ be the morphism
such that ϕi+1(yσ(1)) = δ2, ϕi+1(y1) = δ1ϕi(y1), and ϕi+1(yj) = ϕi(yj) for 1 ≤
j ≤ n with j /∈ {1, σ (1)}. Note that ϕi+1 ∈ ΦE since δ1 ∈ Δ(E)∗ and δ2 ∈
Δ(E)∗yσ(1). Let E′′

i+1 be the equation given by ϕi+1(Ê), so that E′′
i+1 ∈ V E

ϕi+1
. Then

we may write E′′
i+1 as:

δ1ϕi(y1)ϕi(y2) . . . ϕi(yσ(1)−1)δ2ϕi(yσ(1)+1) . . . ϕi(yn)
.= δ2ϕi(yσ(2)) . . . ϕi(yσ(ι−1))δ1ϕi(yσ(ι)) . . . ϕi(yσ(n)).

Consequently E′′
i+1 ⇒∗

R Ei+1, so the claim holds for Ei+1 and by induction, it holds
for all E′ ∈ [E]⇒.

It follows directly from Claim 6.17.1 that every vertex of G ⇒[E] belongs to HE
ϕ for

some ϕ ∈ ΦE and is consequently also a vertex of some subgraph H E
ϕ . To see why

the same holds for edges, note firstly that for every edge (E1, E2) in G ⇒[E], there exists
Z ∈ {L, R} such that E1 ⇒Z E2. By Claim 6.17.1 and since E1 ∈ [E]⇒, there exist
ϕ ∈ ΦE and E′ ∈ V E

ϕ such that E′ ⇒∗
Z E1. It follows that E′ ⇒∗

Z E2, meaning
that E1, E2 ∈ HE

ϕ (so they are both vertices of H E
ϕ). It follows by definition that

(E1, E2) is an edge of H E
ϕ .

The proof of Theorem 6.8 is completed by the following lemma which addresses
the third statement of the theorem.

Lemma 6.18 Let E be a basic RWE. Let Y = var(E)\Δ(E) and let EY = πY (E).
Let d = max{1, diam(G ⇒[EY])}. Then diam(G ⇒[E]) ∈ O(d|E|2).
Proof Let E′, E′′ ∈ [E]⇒. Then by Lemma 6.17, there exist ϕ′, ϕ′′ ∈ ΦE such
that E′ ∈ Hϕ′ and E′′ ∈ Hϕ′′ . For each ϕ ∈ ΦE , note that by Lemma 6.16 and
Remark 4.6, there is path of length O(dCard(Δ(E))) between any two vertices in
HE

ϕ . Thus if ϕ′ = ϕ′′, then there is path of length O(dCard(Δ(E))) from E′ to E′′.
Suppose otherwise that ϕ′ �= ϕ′′. Then it follows from Lemma 6.7, there exist

k ∈ O(Card(Δ(E))) and ϕ1, ϕ2, . . . , ϕk ∈ ΦE such that ϕ′ = ϕ1, ϕ′′ = ϕk and
ϕi, ϕi+1 are close for 1 ≤ i < k. By Lemma 6.14, there exist E1, E2, . . . , Ek−1 such
that Ei ∈ HE

ϕi
∩ HE

ϕi+1
for 1 ≤ i < k.

It follows that there exist paths from E′ to E0, from Ek to E′′ and from Ei to Ei+1
for 1 ≤ i < k of length O(dCard(Δ(E))). Thus there is a path from E′ to E′′ of
length O(kdCard(Δ(E))) = O(dCard(Δ(E))2) = O(d|E|2). Since this is true for
all E′, E′′, the statement of the lemma follows.

7 Normal Forms and Block Decompositions

Having described the structure of G ⇒[E] for equations E which are not jumbled in the
previous section, the current section focuses on the structure of G ⇒[E] in the case that
E is jumbled. Our main result in this direction is the existence of specific normal
forms, from which every vertex in G ⇒[E] is polynomial distance away. We present two

Theory of Computing Systems

normal forms, with the second being a restriction on the first. Both are constructed
based on reversed structures in such a way that they allow for taking full advantage
of the invariant ΥE from Section 5. A major advantage of this is that we are able to
show later in Section 8 that the number of equations occurring as vertices in G ⇒[E] in
the second normal form is bounded by a polynomial in |E|, allowing us to prove that
the diameter of G ⇒[E] is also polynomial.

Since the results in this section mainly concern positive reachability statements,
the technical content relies heavily on describing sequences of applications of ⇒.
Certain sequences will occur repeatedly, so it is convenient to define some shorthand
notations given in terms of the following ‘shortcut’ relations.

Definition 7.1 (
u,v−−→ and �) For each u, v ∈ X, we define the relation

u,v−−→ over basic
regular equations as E1

u,v−−→ E2 if there exist x, y ∈ X and α1, α2, α3, β1, β2, β3 ∈
(X\{u, v, x, y})∗ such that E1 may be written as xα1uα2vα3y

.= yβ1uβ2vβ3x and
E2 may be written as xα1vα3uα2y

.= yβ1vβ3uβ2x. Additionally, we define � =
⋃

u,v∈X

u,v−−→.

Note that there exist u, v ∈ X such that E1
u,v−−→ E2 if and only if E1 � E2.

The following lemma verifies that if E1 � E2, then we can reach E2 from E1 by
a short sequence of applications of the rewriting transformation ⇒, or equivalently,
that there is a short path from E1 to E2 in G ⇒[E1].

Lemma 7.2 Let x, y, u, v ∈ X and α1, α2, α3, β1, β2, β3 ∈ (X\{x, y, u, v})∗. Let
E1 be the basic RWE given by xα1uα2vα3y

.= yβ1uβ2vβ3x and let E2 be the basic
RWE given by xα1vα3uα2y

.= yβ1vβ3uβ2x. Then there exist n1, n2 < 4|E1| such
that E1 ⇒n1 E2 and E2 ⇒n2 E1.

Proof Let E3, E4, E5 be the equations given as follows:

E3 : vα3xα1uα2y
.= yβ1uβ2vβ3x

E4 : xα1vα3uα2y
.= uβ2yβ1vβ3x

E5 : vα3xα1uα2y
.= uβ2yβ1vβ3x.

Then it follows directly from the definitions that E1 ⇒∗
R E3 ⇒∗

L E5 ⇒∗
R E4 ⇒∗

L

E2. Thus, by Remark 3.2, there exists n1 < 4|E1| such that E1 ⇒n1 E2. By the same
remark, we know that ⇒∗

L, ⇒∗
R are symmetric, and thus we may similarly conclude

that E2 ⇒∗
L E4 ⇒∗

R E5 ⇒∗
L E3 ⇒∗

R E1 so there exists n2 < 4|E1| such that
E2 ⇒n2 E1.

Corollary 7.3 Let E1, E2 be basic RWEs. If E1 �m E2 for some m ∈ N, then E1 ⇒n

E2 for some n ∈ O(|E1|m).

The first of our two normal forms is defined as follows. Theorem 7.5 confirms the
desired property that any basic RWE E can be transformed into an equation E which
is in normal form in a small (i.e. polynomial in |E|) number of rewriting steps.

Theory of Computing Systems

Definition 7.4 (Normal Form) Let E be a basic RWE. Then E is in normal form if
it can be written as xα1α2, . . . αny

.= yαR
1 αR

2 . . . αR
n x where x, y ∈ X, αi ∈ X+ for

1 ≤ i ≤ n, and |αi | ≤ 3 for 1 ≤ i < n.

Theorem 7.5 Let E be a jumbled basic RWE. Then there exists E which is in normal
form and such that E ⇒n1 E and E ⇒n2 E for some n1, n2 ∈ O(|E|3).

The main step in the proof of Theorem 7.5 is the following lemma, which we shall
make use of again later and is therefore stated independently.

Lemma 7.6 Let E be a jumbled basic RWE of the form xγ1β1y
.= yγ2β2x where

x, y ∈ X, γ1, γ2, β1β2 ∈ (X\{x, y})∗ and var(γ1) = var(γ2). Then at least one of
the following two statements holds:

1. β1 = βR
2 , or

2. there exists α ∈ var(β1)
∗ with 1 ≤ |α| ≤ 3, η1, η2 ∈ var(β1)

∗ and n ∈ O(|E|)
such that E �n xγ1αη1y

.= yγ2α
Rη2x.

Proof Throughout this proof, we shall use the fact that E1
u,v−−→ E2 implies E1 �

E2 and shall use the two notations interchangeably where convenient. Let E be a
jumbled basic RWE of the form xγ1β1y

.= yγ2β2x where x, y ∈ X, γ1, γ2, β1β2 ∈
(X\{x, y})∗ and var(γ1) = var(γ2). Suppose that β1 �= βR

2 . Note that since E is
basic and regular, var(β1) = var(β2), and moreover we have that β1, β2 �= ε. Hence
we may write E in the form:

xγ1uδ1y
.= yγ2δ2uδ3x (1)

where u ∈ X, and δ1, δ2, δ3 ∈ X∗ such that uδ1 = β1 and δ2uδ3 = β2. If δ2 = ε then
we can set α = u and we are done. Otherwise, the next step is to show that we can
get to an equation of the form

xγ1uδ′
1z1z2 . . . zkδ

′
2y

.= yγ2zkzk−1 . . . z1uδ′
3x (2)

where z1, z2, . . . , zk ∈ X, δ′
1, δ

′
2, δ

′
3 ∈ X∗. Suppose that our equation of the form (1)

is not already of the form (2). Suppose firstly that there exist v1, v2 ∈ X such that
v1 and v2 occur in the same order in δ1 and δ2. In other words, suppose there exist
δ1,1, δ1,2, δ1,3, δ2,1, δ2,2, δ2,3 ∈ X∗ such that we can write δ1 = δ1,1v1δ1,2v2δ1,3

and δ2 = δ2,1v1δ2,2v2δ2,3. Then we have that E
v1,v2−−−→ E1,2 where E1,2 is given

by xγ1uδ̂1y
.= yγ2δ̂2uδ̂3x such that |δ̂2| < |δ2|, with δ̂1 = δ1,1v2δ1,3v1δ1,2, δ̂2 =

δ2,1v2δ2,3 and δ̂3 = δ3v1δ2,2.
Iterating this, we may thus conclude that there exists n1 ≤ |δ2| and a sequence

E = E1,1 � E1,2 � . . . � E1,n1 such that E1,n1 has the form

xγ1uδ̂′
1y

.= yγ2zkzk−1 . . . z1uδ̂′
3x

where z1, z2, . . . , zk ∈ X and δ̂′
1 ∈ X∗z1X

∗z2X
∗ . . . X∗zkX

∗. If all the internal X∗
factors are the empty word (i.e. if δ̂′

1 ∈ X∗z1z2 . . . zkX
∗), then E1,n1 already has the

Theory of Computing Systems

desired form described by (2). Otherwise, there exists w ∈ X\{z1, z2, . . . , zk} such
that w occurs between z1 and zk in δ̂′

1. More precisely, we can write E1,n1 as:

xγ1uδ̂1,1z1δ̂1,2wδ̂1,3zkδ̂1,4y
.= yγ2zkδ̂2,1z1δ̂3,1wδ̂3,2x

where δ̂1,1, δ̂1,2, δ̂1,3, δ̂1,4, δ̂2,1, δ̂3,1, δ̂3,2 ∈ X∗ such that δ̂′
1 = δ̂1,1z1δ̂1,2wδ̂1,3zkδ̂1,4,

and zk−1zk−2 . . . z2 = δ̂2,1, and δ̂′
3 = δ̂3,1wδ̂3,2. In this case we have E1,n1

z1,w−−→
E2,1

zk,z1−−−→ E2,2 where E2,1 is given by

xγ1uδ̂1,1wδ̂1,3zkδ̂1,4z1δ̂1,2y
.= yγ2zkδ̂2,1wδ̂3,2z1uδ̂3,1x

and E2,2 is given by

xγ1uδ̂1,1wδ̂1,3z1δ̂1,2zkδ̂1,4y
.= yγ2z1uδ̂3,1zkδ̂2,1wδ̂3,2x

which is again of the desired form described by (2) for k = 1 and z1 = v1. In all
cases, there exists n2 ≤ |E| such that E �n2 E2,2 for some equation E2,2 of the
desired form (2).

Now suppose that E2,2 has the form (2), and define δ′
1, δ

′
2, δ

′
3 accordingly. Next,

we note that there exists n3 ∈ {0, 1} such that E2,2 �n3 E3 where E3 has the form

xγ1u
′z1z2 . . . zkδ

′′
1y

.= yγ2zkzk−1 . . . z1u
′δ′′

2x (3)

where u′ ∈ X and δ′′
1 , δ′′

2 ∈ X∗. Indeed, if δ′
1 = ε, then this is trivial, simply taking

E3 = E2,2. Otherwise, there exists u′ ∈ X and δ′
1,1, δ

′
3,1, δ

′
3,2 such that δ′

1 = δ′
1,1u

′
and δ′

3 = δ′
3,1u

′δ′
3,2. Then E2,2 may be written as:

xγ1uδ′
1,1u

′z1z2 . . . zkδ
′
2y

.= yγ2zkzk−1 . . . z1uδ′
3,1u

′δ′
3,2x

and E2,2
u,u′−−→ E3 where E3 is given by

xγ1u
′z1z2 . . . zkδ

′
2uδ′

1,1y
.= yγ2zkzk−1 . . . z1u

′δ′
3,2uδ′

3,1x

which is of the form (3) as required. Now, if k ≤ 2, we may take α = u′z1z2 . . . zk ,
η1 = δ′

2uδ′
1,1 and η2 = δ′

3,2uδ′
3,1 and we are done. Suppose otherwise that k ≥ 3.

Next, we observe that if uδ′
1,1 and uδ′

3,1 share a non-empty suffix, then we have an
equation of the form x . . . sy

.= y . . . sx. However, this implies that (s, s) ∈ ΥE3 ,
and by Theorem 5.3, ΥE3 = ΥE , meaning that E is not jumbled: a contradiction.
Consequently, there must exist s, t ∈ X with s �= t and β ′

1,1, β
′
1,2, β

′
2,1, β

′
2,2 ∈ X∗

such that E3 has the form

xγ1u
′z1z2 . . . zkβ

′
1,1sβ

′
1,2ty

.= yγ2zkzk−1 . . . z1u
′β ′

2,1tβ
′
2,2sx.

Then we have E3
z2,s−−→ E4,1

z1,t−−→ E4,2
zk,z1−−−→ E4,3

u′,zk−1−−−−→ E4,4 where
E4,1, E4,2, E4,3, E4,4 are given as follows:

E4,1 : xγ1u
′z1sβ

′
1,2tz2 . . . zkβ

′
1,1y

.= yγ2zkzk−1 . . . z3sz2z1u
′β ′

2,1tβ
′
2,2x

E4,2 : xγ1u
′tz2 . . . zkβ

′
1,1z1sβ

′
1,2y

.= yγ2zkzk−1 . . . z3sz2tβ
′
2,2z1u

′β ′
2,1x

E4,3 : xγ1u
′tz2 . . . zk−1z1sβ

′
1,2zkβ

′
1,1y

.= yγ2z1u
′β ′

2,1zkzk−1 . . . z3sz2tβ
′
2,2x

E4,4 : xγ1zk−1z1sβ
′
1,2zkβ

′
1,1u

′tz2 . . . zk−2y
.= yγ2z1zk−1zk−2 . . . z3sz2tβ

′
2,2u

′β ′
2,1zkx.

Theory of Computing Systems

Now, E4,4 has the required form with α = zk−1z1, η1 = sβ ′
1,2zkβ

′
1,1u

′tz2 . . . zk−2

and η2 = zk−2 . . . z3sz2tβ
′
2,2u

′β ′
2,1zk . Moreover, we have that E �n E4,4 with n ≤

n2 + n3 + 4 ≤ |E| + 5 ∈ O(|E|) as claimed.

We can now prove Theorem 7.5 with a simple induction based on Lemma 7.6.

Theorem 7.5. By Lemma 6.13, we have that E ⇒n1 E′ and E′ ⇒n′
1 E where E′ is a

basic regular equation of the form xβ1y
.= yβ2x such that x, y ∈ X and β1, β2 ∈

(X\{x, y})∗ with n1, n
′
1 ∈ O(|E|2). By Theorem 5.3, since E is jumbled, E′ is also

jumbled. By a simple induction using Lemma 7.6 (starting with the case that γ1 =
γ2 = ε) we can therefore infer that E′ �n2 E for some E in normal form and n2 ∈
O(|E|2). It follows directly from the definitions that �, is symmetric, so we also
have that E �n2 E′. Thus, by Corollary 7.3 we have that E′ ⇒n3 E and E ⇒n′

3 E′
for some n3, n

′
3 ∈ O(|E|3), and therefore also that E ⇒n E and E ⇒n′

E for some
n, n′ ∈ O(|E|3) as claimed.

The idea behind the first normal form is to divide the RWE into pairs (αi, α
R
i)

which are regular-reversed word equations (although solutions to the full equation
E are not necessarily solutions to these smaller equations), and for which all but
one belong to a finite number of cases (i.e. three cases depending on the length of
αi). Forcing the sub-equations to be regular-reversed gives us the most control when
working with the invariant ΥE . Some intuition behind this fact can be derived from
the observation that if we know that a (complete) basic RWE E is regular-reversed,
we can uniquely reconstruct it from the leftmost two variables on the LHS and ΥE .
Indeed, any regular-reversed basic RWE E can be written in the form x1x2 . . . xn

.=
xnxn−1 . . . x1, meaning that ΥE = {(xi−1, xi+1) | 2 ≤ i ≤ n} ∪ {(xn−1, x2)}, and if
we know x1, then we may infer from ΥE all the odd-index variables (x3, x5, . . .) and
if we know x2 then we may infer all the even-index variables (x4, x6, . . .).

Rather than looking at the pairs (αi, α
R
i) in isolation, in order to take full advantage

of the invariant ΥE , we actually need to consider pairs of the form

(αiαi+1 . . . αj , α
R
i αR

i+1 . . . αR
j)

for well-chosen values i and j . We shall call such pairs blocks, which we define
formally below.

Definition 7.7 (Blocks) We define 3 variations of blocks which may each have up to
two types.

1. A standard block is a pair (α1α2 . . . αj , α
R
1 αR

2 . . . αR
j) such that j ≥ 1, αi ∈ X∗

for 1 ≤ i ≤ j , |α1| ∈ {1, 3}, and for each i, 1 < i ≤ j , |αi | = 2. It is Type A if
|α1| = 1 and Type B if |α1| = 3.

2. An initial block is a pair (xα1 . . . αj , yαR
1 . . . αR

j) with j ≥ 0, x, y ∈ X with
x �= y, and αi ∈ (X\{x, y})∗ where |αi | = 2 for 1 ≤ i ≤ j . All initial blocks
are Type A.

3. A final block is a pair (γ1δy, γ2δ
Rx) where x, y ∈ X with x �= y, and γ1, γ2, δ ∈

X∗ with |δ| ≥ 1 such that (γ1, γ2) is a block (initial or standard). It is Type A if
(γ1, γ2) is Type A, and Type B otherwise.

Theory of Computing Systems

Given an equation which is in normal form, we may decompose it uniquely into
blocks in the following manner. The intuition behind this decomposition is that if we
fix the invariant property ΥE , then each block (with the exception of the final block)
is determined entirely by the block preceding it along with its first (leftmost in the
first element) variable. This gives us a crucial degree of control when considering
which equations in normal form may appear in G ⇒[E].

Definition 7.8 (Block Decomposition) Let E be a basic RWE in normal form. Then
E may be written as xα1α2 . . . αny

.= yαR
1 αR

2 . . . αR
n x where x, y ∈ X, αi ∈ X+ for

1 ≤ i ≤ n, and |αi | ≤ 3 for 1 ≤ i < n. Let I = {i1, i2, . . . , ik} = {i | 1 ≤ i <

n and |αi | �= 2} with 1 ≤ i1 < i2 < . . . < ik < n. If I = ∅, let B = (E). Otherwise,
let B = (B0, B1, . . . , Bk) where for 0 ≤ j ≤ k, the Bj are blocks such that:

1. B0 = (xα1 . . . αi1−1, yαR
1 . . . αR

i1−1),

2. Bk = (αik . . . αny, αR
ik

. . . αR
n x), and

3. for 1 ≤ j < k, Bj = (αij . . . αij+1−1, α
R
ij

. . . αR
ij+1−1).

Then B is the block decomposition of E.

As an example, consider the basic RWE E given as follows:

x

α1︷︸︸︷
z1z2

α2︷︸︸︷
z3

α3︷ ︸︸ ︷
z4z5z6

α4︷︸︸︷
z7z8

α5︷︸︸︷
z9

α6︷ ︸︸ ︷
z10z11z12z13 y

.= y

αR
1︷︸︸︷

z2z1

αR
2︷︸︸︷

z3

αR
3︷ ︸︸ ︷

z6z5z4

αR
4︷︸︸︷

z8z7

αR
5︷︸︸︷

z9

αR
6︷ ︸︸ ︷

z13z12z11z10 x

Note that E is in normal form. Then I = {2, 3, 5} and the block decomposition of E

is (B0, B1, B2, B3) where:

B0 = (xz1z2, yz2z1)

B1 = (z3, z3)

B2 = (z4z5z6z7z8, z6z5z4z8z7)

B3 = (z9z10z11z12y, z9z12z11z10x).

Another example illustrating the block decomposition of an equation in normal form
is given in Fig. 6. The next fact follows directly from the definitions.

Fact 7.9 For every basic RWE in normal form, there exists a unique block decompo-
sition (B0, B1, . . . , Bk) where k ≤ Card(var(E)), Bk is a final block, and if k > 0,
then B0 is an initial block.

Since the blocks are fixed by their first variable, it is natural to ask for which
variables we can find an equation in our graph G ⇒[E] such that the block begins with
that variable. In particular, can we find an equation in normal form in G ⇒[E] for which
the first variable of each block is lexicographically minimal when reading from left
to right? The answer to the question is “nearly”. In other words, if we relax the notion
slightly to account for some specific exceptions, then we can always guarantee the
existence of such an equation. This leads to the notion of Lex Normal Form defined
below.

Theory of Computing Systems

Fig. 6 A depiction of the equation E given by xz1z2z3z4z5z6z7z8z9z10z11z12z13z14z15y
.=

yz2z1z5z4z3z7z6z8z10z9z11z15z14z13z12x where x, y and zi for 1 ≤ i ≤ 15 are variables. The LHS and
RHS of the equation are aligned vertically. The block decomposition B = (B0, B1, B2, B3) of E is shown
with solid rectangles and with the variety and type of the block written beneath. The additional divisions
into the factors αi, α

R
i required by the definition of normal form are indicated by dashed lines (so that,

i.e. α1 = z1z2, α2 = z3z4z5, α3 = z6z7, α4 = z8, z5, α5 = z9z10, α6 = z11 and α7 = z12z13z14z15).
In order for the equation to satisfy the definition of Lex Normal Form, the variables highlighted in bold
must be lexicographically minimal with respect to the appropriate sets Γ E

i . For i = 1, we have that
Γ E

1 = {zi | 3 ≤ i ≤ 15}\{z4}. In particular, Γ E
1 consists of the first variable in the block B1 (x3) along

with (nearly) all variables on the LHS of the equation occurring to the right of z3, excluding the rightmost
variable (y), and since B1 is Type B, also excluding the second variable in the block B1 (namely z4). On
the other hand, since B2 is Type A, for i = 2, we do not need to exclude the second variable in the block
B2, so Γ E

2 = {zi | 8 ≤ i ≤ 15}. Assuming an underlying lexicographic order for which zi+1 is greater
than zi , we can conclude that E is in Lex Normal Form

Definition 7.10 (Lex Normal Form) Let E be a basic RWE in normal form. Then
there exist x, y ∈ X and α, β ∈ (X\{x, y})∗ such that E has the form xαy

.= yβx.
Let (B0, B1, . . . , Bk) be the block decomposition of E. For each i, 0 ≤ i ≤ k, let
γi, γ

′
i ∈ X∗ such that Bi = (γi, γ

′
i), let Si = {γi[2], y} whenever Bi is Type B and

Si = {y} otherwise, and let Γ E
i =

(
⋃

i≤j≤k

var(γj)

)

\Si . A block Bi is lex-minimal

if γi[1] is lexicographically minimal in Γ E
i . The equation E is in Lex Normal Form

(LNF) if, for each i, 0 < i < k, Bi is lex-minimal.

Lex Normal Form (see also Fig. 6 for an example) describes the class of equations
for which the first variable of each blocks is lexicographically minimal whenever
possible. We can, in general, guarantee the existence of an equation E′ in G ⇒[E] such
that the first variable of each block is lexicographically minimal with the following
exceptions. Firstly, we must exclude the first and last blocks (the first block is fixed
completely by ΥE). Secondly, we must only compare the first variable to other vari-
ables occurring further right in the LHS of the equation, and excluding the rightmost
variable on the LHS of the equation (y in the definition above) and, for blocks of
Type B, the second variable in the block. The sets Γ E

i in the definition account for
these exclusions.

The main result of this section is that every vertex in G ⇒[E] is never more than a
polynomial distance away from a vertex corresponding to an equation in LNF.

Theorem 7.11 Let E be a jumbled basic RWE. Then there exists E′ such that E′ is
in Lex Normal Form, and such that E ⇒n1 E′ and E′ ⇒n2 E for some n1, n2 ∈
O(|E|4).

Theory of Computing Systems

Although Theorem 7.11 does not provide as detailed a description of the graphs
G ⇒[E] in the jumbled case as Theorem 6.8 does in the non-jumbled case, it does allow
us to study them as the polynomial-distance neighbourhoods of the highly restricted
set of vertices corresponding to equations in Lex Normal Form. Section 8 gives a
strong example of the benefits of this approach, allowing us to show firstly that the
cardinality of the set of vertices in Lex Normal Form is bounded by a polynomial in
|E| (in contrast to the fact that the total number of vertices will typically be expo-
nential, as shown in Section 9), and consequently, that the diameter of G ⇒[E] is also
bounded by a polynomial in |E|.

Proof of Theorem 7.11 The rest of this section is devoted to proving Theorem 7.11.
To do so, we essentially provide a strategy for rewriting any jumbled basic regu-
lar word equation E into an equation in Lex Normal Form. The overall structure is
similar to that of Theorem 7.5 in the sense that we transform the equation in steps
from left to right so that after each step, the prefixes of the LHS and RHS having the
desired form are longer. Since each side of the equation stays the same length under
the transformations, we eventually reach a state where the entire equation is in the
correct form.

The first step in this strategy is to first ensure that E is in normal form (which
we can do due to Theorem 7.5). We can then decompose E into blocks according to
Definition 7.8 (see also Fig. 6). In each subsequent step, we apply transformations
which increase the number of blocks satisfying the requirements for Lex Normal
Form. In particular, if the first j blocks satisfy the requirements for Lex Normal
Form, then we apply a sequence of transformations which either preserve the first
j − 1 blocks and turn the j th block into a final block, or which preserves the first j

blocks, and which result in an equation which is also in normal form, and for which
the j + 1th block also satisfies the requirements for Lex Normal Form. Note that Lex
Normal Form does not impose any additional constraints on the initial or final blocks,
so we can start with j = 1 and we are done whenever we produce a final block.

There are two cases depending on whether the j + 1th block is Type A or Type B.
The case that it is Type A is substantially the easier of the two and is considered
directly in the proof of Lemma 7.17. Lemmas 7.12-7.16 focus on the case that the
block is Type B. In this case, there exist x, y, a, b, c, ∈ X and μ1, μ

′
1, μ2, μ

′
2 ∈ X∗

such that our equation may be written as

xμ1abcμ2y
.= yμ′

1cbaμ′
2x

where var(μ1) = var(μ′
1) and var(μ2) = var(μ′

2), the prefixes xμ1 and yμ′
1

constitute the first j blocks (the ones satisfying the requirements for LNF), and such
that the j + 1th block, which does not satisfy the requirements for LNF, has the form
(abcγ, cbaγ ′) for prefixes γ, γ ′ of μ2, μ

′
2 respectively. Our aim is to transform the

equation above into an equation either of the form:

xμ1βy
.= yμ′

1β
Rx

in which case the j th block becomes final (and all other blocks are preserved), or of
the form:

xμ1zbwηy
.= yμ′

1wbzη′x

Theory of Computing Systems

where w, z ∈ X and η, η′ ∈ X∗, such that either η′ = ηR (meaning (zbwηy, wbzη′x)

is a final block), or z is lexicographically minimal in Γ E
j+1 = var(μ2) ∪ {a, c}.

In the case that η′ = ηR , then the new equation is in normal form and will have
a block decomposition with j + 1 blocks, such that the first j blocks are the same
as before, and thus satisfy the requirements for LNF. The j + 1th block is final, and
trivially satisfies the requirements for LNF, so the whole equation is in LNF. In the
second case, we can apply Lemma 7.6 to further transform our equation into one in
normal form without changing the prefixes xμ1zbw and yμ′

1wbz. In the resulting
block decomposition, the first j blocks will remain unchanged, while the j + 1th

block will have the form (zbwγ, wbzγ ′) for some γ, γ ′ ∈ Γ E
j+1

∗
. Since Γ E

j+1 will

also remain unchanged, z is lexicographically minimal in Γ E′
j+1 for our new equation

E′, so the j + 1th block also satisfies the requirements for LNF as intended.
The following lemma shows us how, under the rewriting transformation �, we can

replace the factors abc and cba with factors dbe and ebd, providing that d, e ∈ X

occur in the appropriate positions (namely directly left of y and x on the LHS and
RHS respectively).

Lemma 7.12 Let E, E′ be basic RWEs given by

E : xμ1abcμ2dμ3ey
.= yμ′

1cbaμ′
2eμ

′
3dx

E′: xμ1ebdμ3cμ2ay
.= yμ′

1dbeμ′
3aμ′

2cx

where x, y, a, b, c, d, e ∈ X and μ1, μ2, μ3, μ
′
1, μ

′
2, μ

′
3 ∈ X∗. Then E �3 E′.

Proof It follows from the definitions that:

E
︷ ︸︸ ︷
x μ1 abc μ2 d μ3 ey

.= y μ′
1 cba μ′

2 e μ′
3 dx

b,e−→ x μ1 aebc μ2 d μ3 y
.= y μ′

1 ce μ′
3 dba μ′

2 x

c,d−→ x μ1 aebd μ3 c μ2 y
.= y μ′

1 dba μ′
2 ce μ′

3 x

a,e−→ x μ1 ebd μ3 c μ2 ay
.= y μ′

1 dbe μ′
3 aμ′

2cx.
︸ ︷︷ ︸

E′

Thus the statement follows by Lemma 7.2.

Of course, the variable d occurring to the left of y on the RHS will in general
not be the lexicographically minimal element z of Γ E

j+1. In order to take advantage
of Lemma 7.12, we also need to find a sequence of transformations which, for any
z ∈ {c} ∪ var(ν), results in an equation of the form xμ1a

′bc′ηzy
.= yμ′

1c
′ba′η′x

with a′, c′ ∈ X and η, η′ ∈ X∗. To achieve this, we need Lemmas 7.13 and 7.14 as
follows.

Lemma 7.13 Let E be a basic RWE given by xμ1αμ2y
.= yμ′

1α
Rμ′

2x with
α, μ1, μ2, μ′

1, μ
′
2 ∈ X∗, 2 ≤ |α| ≤ 3, |μ2| ≥ 1 and var(μ2) = var(μ′

2). Let

Theory of Computing Systems

v = α[|α| − 1]. Then for each z ∈ var(αμ2)\{v}, there exists n ≤ 3 and η, η′ ∈ X∗
such that E �n xμ1ηzy

.= yμ′
1η

′x.

Proof Let z ∈ var(αμ2)\{v}. If z is a suffix of μ2 then the statement holds trivially.
Suppose that z is not a suffix of μ2. We shall consider two cases separately. Firstly,
suppose that z ∈ var(μ2)∪{α[|α|]}. Then there exists w ∈ X such that zw is a factor
of αμ2. Moreover, w ∈ var(μ2) = var(μ′

2), so there exist ν1, ν2, ν
′
1, ν

′
2 ∈ X∗ such

that μ2 = ν1wν2 and μ′
2 = ν′

1wν′
2 where ν1 = ε if z = α[|α|], and ν1[|ν1|] = z

otherwise. Furthermore, there exists u ∈ X and α′ ∈ X∗ such that α = uα′ and
αR = α′Ru. Thus we may write E as xμ1uα′ν1wν2y

.= yμ′
1α

′Ruν′
1wν′

2x, and thus

E
u,w−−→ xμ1wν2uα′ν1y

.= yμ′
1α

′Rwν′
2uν′

1x. Since z is a suffix of α′ν1, the statement
of the lemma follows.

Now suppose that z /∈ var(μ2)∪{α[|α|]}. Then the only possibility is that |α| = 3
and z = α[1]. In this case, due to the fact that � is symmetric, the statement follows
directly from Lemma 7.12.

Lemma 7.14 Let E be a basic RWE given by xμ1vμ2y
.= yμ′

1vμ′
2x with v ∈ X and

μ1, μ2, μ
′
1, μ

′
2 ∈ X∗ such that var(μ2) = var(μ′

2). Then for every z ∈ var(vμ2),
there exist v′ ∈ X and η, η′ ∈ X∗ and n ≤ 1 such that E �n xμ1v

′ηzy
.= yμ′

1v
′η′x.

Proof Let z ∈ var(vμ2). If z is a suffix of μ2, then the statement holds trivially.
Otherwise, there exists w ∈ X such that zw is a factor of vμ2. Moreover, since
w �= v, w ∈ var(μ2) = var(μ′

2), so there exist ν1, ν2, ν
′
1, ν

′
2 ∈ X∗ such that

vμ2 = ν1wν2 and vμ′
2 = ν′

1wν′
2. Thus we may write E as xμ1ν1wν2y

.= yμ′
1ν

′
1wν′

2x

such that v is a prefix of ν1 and ν′
1, and such that z is a suffix of ν1. Thus, E

v,w−−→
xμ1wν2ν1y

.= yμ′
1wν′

2ν
′
1x, and since z is a suffix of ν1, the statement of the lemma

follows.

Recall that our strategy for transforming an equation of the form xμ1abcμ2y
.=

yμ′
1cbaμ′

2x into one of the form xμ1zbwηy
.= yμ′

1wbzν′x is first to ‘move’ the
lexicographically minimal variable z from Γ E

j+1 into the correct position (to the left
of y on the LHS) and then to apply Lemma 7.14. We can consider three cases for z

separately. The first, that z = a is trivial, and we do not need to change our original
equation at all. The case that z = c is the most involved and is considered in the proof
of Lemma 7.16. All other choices of z (namely when z ∈ var(μ2)), are addressed in
Lemma 7.15 below.

Note that in the statement of Lemma 7.15, the factors μ2, μ
′
2 are replaced by μ2δ

and μ′
2δ

R respectively. We may make this change w.l.o.g. since our equation is in
normal form, and since the case that μ2 = μ′

2 = ε is trivial (the j th block will
be final in this case). Moreover, if |δ| = 1, then (δ, δ) ∈ ΥE , so it follows from
the definitions that the equation is not jumbled. Since we are only interested in this
section in jumbled equations, we may therefore also assume that |δ| ≥ 2, which is
necessary for the proof of the lemma.

Theory of Computing Systems

Lemma 7.15 Let E be a basic RWE in normal form given by

xμ1abcμ2δy
.= yμ′

1cbaμ′
2δ

Rx

with a, b, c ∈ X and δ, μ1, μ2, μ
′
1, μ

′
2 ∈ X∗ such that |δ| ≥ 2, and var(μ2) =

var(μ′
2). Then at least one of the following two statements is true.

1. There exist n ∈ O(|E|), a′, c′ ∈ X, and β ∈ X+ such that E �n xμ1a
′bc′βy

.=
yμ′

1c
′ba′βRx, or

2. for every z ∈ var(μ2δ), there exist a′, c′ ∈ X, η, η′ ∈ X∗, and n ∈ O(|E|2)
such that E �n xμ1a

′bc′ηzy
.= yμ′

1c
′ba′η′x.

Proof Suppose that the first statement does not hold and notice that this implies
|μ2| ≥ 1. We shall now prove that the second statement holds. We divide our rea-
soning into three cases based on the prefixes of μ2 and μ′

2. In particular, since E is
in normal form, there exists a prefix αi of μ2 such that αR

i is a prefix of μ′
2 and such

that 1 ≤ |αi | ≤ 3. Firstly suppose that |αi | = 1, or in other words that μ2 and μ′
2

have a common prefix v ∈ X. Then the statement follows directly from Lemma 7.14.
It remains to consider the cases that |αi | = 2 and |αi | = 3. Before we consider

these cases explicitly, it is convenient to define the following equation E′ such that
E �n′

E; for some n′ ∈ O(|E|). In particular, note that there exist u, v ∈ X such that
δ = uδ′v. It follows by Lemma 7.12 that there exist ν1, ν1 ∈ X+ with var(ν1) =
var(ν′

1) such that E �3 xμ1vbuν1y
.= yμ′

1ubvν′
1x. Moreover, by Lemma 7.6, there

exist ν2, ν
′
2 ∈ X∗, β ∈ X+ and n′ ∈ O(|E|) such that E �n′

E′ where E′ is given by

E′ : xμ1vbuβν2y
.= yμ′

1ubvβRν′
2x

where 1 ≤ |β| ≤ 3 (recall by our assumption that the first statement of the lemma
does not hold, that ν2 �= ε). Note that since E �∗ E′, we have E ⇒∗ E′ and thus by
Theorem 5.3, ΥE′ = ΥE = Υ .

We are now ready to consider the second case, that |αi | = 2. In this case, there
exist d, e ∈ X such that αi = de, so de is a prefix of μ2 and ed is a prefix of μ′

2.
If z ∈ var(μ2α)\{d}, then the second statement of the lemma follows directly from
Lemma 7.13. Suppose instead that z = d . In this case, we shall show that the (second
statement of the) lemma holds for E′. Since E �n′

E′, it follows that the lemma also
holds for E.

If |β| = 1, then the second statement of the lemma follows from Lemma 7.14
along with the fact that E �n′

E′. Similarly, if |β| ∈ {2, 3} and z �= β[|β| − 1],
the statement follows from Lemma 7.13. Finally, we must consider the case that
β ∈ {2, 3} and z = β[|β| − 1]. If |β| = 2, then there exists z′ ∈ X such that β = zz′.
It follows that zz′ is a factor of the LHS of E′ and vz′ is a factor of the RHS of E′,
so (z, v) ∈ Υ . Furthermore, by our assumption that z = d , ze = de is a factor of
the LHS of E and ae is a factor of the RHS of E, so (z, a) ∈ Υ . However, since
a �= v, this contradicts Remark 5.2. We can proceed similarly when |β| = 3. In
particular, if |β| = 3, then there exist z′, z′′ ∈ X such that β = z′zz′′. It follows that
(z, v), (u, z) ∈ Υ . Furthermore, since z = d , we also have that (z, a) ∈ Υ . However,
since v �= a we again get a contradiction to Remark 5.2. Thus d �= β[|β| − 1] and
we are done with the case that |αi | = 2.

Theory of Computing Systems

Suppose now that |αi | = 3, meaning there exist d, e, f ∈ X such that αi = def

is a prefix of μ2 and f ed is a prefix of μ′
2. As before, if z ∈ var(μ2α)\{e}, the

second statement of the lemma follows from Lemma 7.13 (applied to E). Suppose
instead that z = e. We shall again proceed by showing that the second statement of
the lemma holds for E′. If |β| = 1, it follows directly from Lemma 7.14. Similarly,
if |β| ∈ {2, 3} and z �= β[|β| − 1], the statement again follows from Lemma 7.13.
Finally, suppose for contradiction that β ∈ {2, 3} and z = β[|β| − 1]. We again have
to consider two cases based on |β|. If |β| = 2, then there exists z′ ∈ X such that
β = zz′. It follows that (z, v) ∈ Υ . Furthermore, since z = e, we also have that
(z, a) ∈ Υ , a contradiction to Remark 5.2. Similarly, if |β| = 3, then there exist
z′, z′′ ∈ X such that β = z′zz′′. It follows that (z, v), (u, z) ∈ Υ . Furthermore, since
z = e, we also have that (z, a), (c, z) ∈ Υ . However, since u �= c, v �= a we again
get a contradiction to Remark 5.2. Thus d �= β[|β| − 1] and the statement holds as
required.

We are now ready to prove the following lemma, which is the main technical step
in the proof of Theorem 7.11, showing that we can replace the factors abc and cba

at the start of the j + 1th block (which occur whenever the block is Type B) with
factors zbw and wbz where z is any variable from Γ E

j+1, and hence that we can do the
same for the lexicographically minimal choice of z. This, combined with Lemma 7.6,
allows us to transform the equation into one with the j + 1th block satisfying the
requirements for Lex Normal Form.

It is also worth noting that the variable b and whether the block is Type A or Type B
remain unchanged (see Section 8 for more information on why we cannot change
them). Aside from these parameters, we can essentially produce all other possibili-
ties for the variable in the first position in the block. In other words, we do not use
anything about the lexicographic order other than it permits us to make some well-
defined choice at each stage which is consistent across all equations. Consequently,
there is a high degree of symmetry in the set of equations in normal form occurring
in the graph G ⇒[E].

Lemma 7.16 Let E be a basic RWE in normal form given by

xμ1abcμ2δy
.= yμ′

1cbaμ′
2δ

Rx

with a, b, c ∈ X and δ, μ1, μ2, μ
′
1, μ

′
2 ∈ X∗ such that |δ| ≥ 2 and var(μ2) =

var(μ′
2). Let Γ = var(μ2δ) ∪ {a, c}. Then at least one of the following two

statements is true.

1. There exist n ∈ O(|E|), a′, c′ ∈ X, and β ∈ X+ such that E �n xμ1a
′bc′βy

.=
yμ′

1c
′ba′βRx, or

2. for each z ∈ Γ , there exist w ∈ X, η, η′ ∈ X∗, and n ∈ O(|E|2) such that
E �n xμ1zbwηy

.= yμ′
1wbzη′x.

Proof Assume that the first statement does not hold and notice that this implies
|μ2| ≥ 1. We shall now prove that the second statement holds. The case that z = a is
trivial. Next, consider the case that z /∈ {a, c}. Then z ∈ var(μ2δ). By Lemma 7.15,

Theory of Computing Systems

and by our assumption that Statement 1 of the lemma does not hold, we get that there
exist a′, c′ ∈ X ν, ν′ ∈ X∗ and n′ ∈ O(|E|2) such that

E �n′
xμ1a

′bc′νzy
.= yμ′

1c
′ba′ν′x.

Since E is basic and regular, and since var(μ1) = var(μ′
1), we may conclude that

var(ν′) = var(νz). Thus, by Lemma 7.12, there exist η, η′ ∈ X∗ such that

xμ1a
′bc′νzy

.= yμ′
1c

′ba′ν′x �3 xμ1zbwηy
.= yμ′

1wbzη′x

where w = ν′[|ν′|]. Consequently, we have that E �n xμ1zbwηy
.= yμ′

1wbzη′x for
some n ∈ O(|E|) and the second statement holds as claimed.

It remains to consider the case that z = c. Then since |δ| ≥ 2, there exist u, v ∈
X\{a, b, c} such that δ = uδ′v for some δ′ ∈ X∗. Thus, by Lemma 7.12, there exist
ν1, ν

′
1 ∈ X∗+ such that E �3 xμ1vbuν1y

.= yμ′
1ubvν′

1x. Moreover, since E is
basic and regular, and since var(μ1) = var(μ′

1), we may conclude that var(ν1) =
var(ν′

1). Thus, by Lemma 7.6, there exist ν2, ν
′
2 ∈ X∗ and β ∈ X+ and n1 ∈ O(|E|)

such that E �n1 E′ where E′ is given by xμ1vbuβν2y
.= yμ′

1ubvβRν′
2x and such

that 1 ≤ |β| ≤ 3 whenever ν2 �= ε. By our assumption that the first statement of the
lemma is not true, we must in fact have that ν2 �= ε.

Additionally, note that var(ν2) = var(ν′
2) and c ∈ var(βν2). Thus, by

Lemma 7.15, along with our assumption that the first statement of the lemma does not
hold, it follows that there exist n2 ∈ O(|E|2), a′, c′, d ∈ X and η, η′ ∈ X∗ such that
E′ �n2 E′′ where E′′ is given by xμ1a

′bc′ηcy
.= yμ′

1c
′ba′η′dx. As before, since E

(and therefore also E′′) is basic and regular, and since var(μ1) = var(μ′
1), we may

further conclude that var(ηc) = var(η′d). Similarly, since E is jumbled and E�∗E′′
(meaning also that E ⇒∗ E′′) it follows that E′′ is also jumbled and consequently
that d �= c. Hence we may write E′′ as xμ1a

′bc′η1dη2cy
.= yμ′

1c
′ba′η′

1cη
′
2dx

where η1, η
′
1, η2, η

′
2 ∈ X∗ and the second statement of the lemma follows from

Lemma 7.12.

Having described the main technical elements to the proof of Theorem 7.11, we
are now ready to give the main intuitive statement as to why it holds, which also
constitutes the main induction step, forming the backbone of the proof.

Lemma 7.17 Let E be a jumbled basic RWE in normal form with block decomposi-
tion (B0, B1, . . . , Bk). Let ι ∈ N with 0 < ι < k. Then at least one of the following
two statements is true.

1. There exists a (final) block Cι, Ê ∈ [E]⇒ and n ∈ O(|E|) such that E �n Ê and
such that Ê has a block decomposition (B0, B1, . . . , Bι−1, Cι), or

2. there exist blocks Cι, Cι+1, . . . C�, Ê ∈ [E]⇒ and n ∈ O(|E|2) such thatE�n Ê

and such that Ê has a block decomposition (B0, B1, . . . , Bι−1, Cι, Cι+1, . . . C�)

and such that Cι is lex-minimal.

Proof Let E be given by

xα1α2 . . . αmy
.= yαR

1 αR
2 . . . αR

mx

Theory of Computing Systems

such that x, y ∈ X, αi ∈ X+ for 1 ≤ i ≤ n, and |αi | ≤ 3 for 1 ≤ i < m. Let IE =
{i1, i2, . . . , ik} = {i | 1 ≤ i < m and |αi | �= 2} with 1 ≤ i1 < i2 < . . . < ik < m.
If IE = ∅, then the statement holds trivially. Thus we may assume that IE �= ∅. Note
that the block decomposition B of E is given by (B0, B1, . . . , Bk) where

B0 = (xα1α2 . . . αi1−1, yαR
1 αR

2 . . . αR
i1−1)

Bj = (αij αij +1 . . . αij+1−1, α
R
ij
αR

ij +1 . . . αR
ij+1−1)

Bk = (αikαik+1 . . . αny, αR
ik
αR

ik+1 . . . αR
n x)

for 0 < j < k.
Now, let ι ∈ N with 0 < ι < k. If Bι is lex-minimal, the second statement holds

trivially for � = k and Cj = Bj for ι ≤ j ≤ k. Suppose instead that Bι is not
lex-minimal. We shall consider the cases that Bι is Type A and Type B separately.
Suppose firstly that Bι is Type A. Then |αiι | = 1. Thus we can write E as

xμ1vμ2y
.= yμ′

1vμ′
2x

where v = αiι ∈ X, μ1 = α1α2 . . . αiι−1, μ′
1 = αR

1 αR
2 . . . αR

iι−1, μ2 =
αiι+1αiι+2 . . . αm and μ′

2 = αR
iι+1α

R
iι+2 . . . αR

m. Moreover, Γ E
ι = var(vμ2). Let z

be the lexicographically minimal element of Γ E
ι . Then by our assumption that Bι is

not lex-minimal, we have that z �= v. Thus there exist ν1, ν2, ν
′
1, ν

′
2 ∈ X∗ such that

μ2 = ν1zν2 and μ′
2 = ν′

1zν
′
2. Consequently, E

v,z−→ xμ1zν2vν1y
.= yμ′

1zν
′
2vν′

1x and
since var(μ1z) = var(μ′

1z), by Lemma 7.6, we have that E �n E′ where E′ is given
by:

xα1α2 . . . αiι−1zα
′
iι+1α

′
iι+2 . . . α′

m′y
.= yαR

1 αR
2 . . . αR

iι−1zα
′R
iι+1α

′R
iι+2 . . . α′R

m′x

for some n ∈ O(|E|2) and α′
iι+1, α

′
iι+2, . . . , α

′
m′ ∈ X+ with 1 ≤ |α′

j | ≤ 3 for
iι +1 ≤ j < m′. Let IE′ = {i′1, i′2, . . . , i′�} = {i | 1 ≤ i < iι and |αi | �= 2}∪{iι}∪{i |
iι < i < m′ and |α′

i | �= 2} with 1 ≤ i′1 < i′2 < . . . < i′� < m.
Let B′ = (B ′

0, B
′
1, . . . , B

′
�) be the block decomposition of E′. Then since IE ∩

{1, 2, . . . , iι} = IE′ ∩ {1, 2, . . . , iι}, we have Bj = B ′
j for 0 ≤ j ≤ ι − 1. Moreover,

since z is minimal in Γ E
ι = Γ E′

ι , B ′
ι is lex-minimal and the second statement holds.

Now suppose that Bι is Type B. Then |αiι | = 3, so there exist a, b, c ∈ X such
that αiι = abc. Thus we can write E as

xμ1abcμ2δy
.= yμ′

1cbaμ′
2δ

Rx

where μ1 = α1α2 . . . αiι−1, μ′
1 = αR

1 αR
2 . . . αR

iι−1, μ2 = αiι+1αiι+2 . . . αm−1,

μ′
2 = αR

iι+1α
R
iι+2 . . . αR

m−1 and δ = αm. Moreover, Γ E
ι = var(μ2δ) ∪ {a, c}. Let z be

the lexicographically minimal element of Γ E
ι . Then by our assumption that Bι is not

lex-minimal, z �= a. Moreover, since E is jumbled, we may conclude that |δ| �= 1
(otherwise we would have (δ, δ) ∈ ΥE , a contradiction).

By Lemma 7.16, we have two cases. The first is that there exists n ∈ O(|E|2),
a′, c′ ∈ X and β ∈ X+ such that E � E′ where E′ is given by

xα1α2 . . . αiι−1a
′bc′βy

.= yαR
1 αR

2 . . . αR
iι−1c

′ba′βRx.

Theory of Computing Systems

Let IE′ = {i′1, i′2, . . . , i′�} = {i | 1 ≤ i < iι and |αi | �= 2} ∪ {iι}. Let B′ =
(B ′

0, B
′
1, . . . , B

′
�) be the block decomposition of E′. Then since IE ∩ {1, 2, . . . , iι} =

IE′ ∩ {1, 2, . . . , iι}, we have Bj = B ′
j for 0 ≤ j ≤ ι − 1. Moreover, since IE′ does

not contain any elements greater than iι, B ′
ι is the final block, so the first statement

holds for Cι = Bι.
The second case is that there exist n′ ∈ O(|E|2), w ∈ X and η, η′ such that

E �n′
xμ1zbwηy

.= yμ′
1wbzη′x. By Lemma 7.6, there exist n′′ ∈ O(|E|2) and

α′
iι+1, α

′
iι+2, . . . , α′

m′ ∈ X+ with |α′
j | ≤ 3 for iι < j < m′ such that E � E′ where

E′ is given by

xα1α2 . . . αiι−1zbwα′
iι+1α

′
iι+2 . . . α′

m′y
.= yαR

1 αR
2 . . . αR

iι−1wbzα′R
iι+1α

′R
iι+2 . . . α′R

m′x.

Let IE′ = {i′1, i′2, . . . , i′�} = {i | 1 ≤ i < iι and |αi | �= 2} ∪ {iι} ∪ {i | iι + 1 ≤ i <

m′ and |α′
i | �= 2} with 1 ≤ i′1 < i′2 < . . . < i′� < m′. Let B′ = (B ′

0, B
′
1, . . . , B

′
�) be

the block decomposition of E′. Then since IE ∩ {1, 2, . . . , iι} = IE′ ∩ {1, 2, . . . , iι},
we have Bj = B ′

j for 0 ≤ j ≤ ι − 1. Moreover, since z is minimal in Γ E
ι = Γ E′

ι , B ′
ι

is lex-minimal and the second statement of the lemma statement holds for Cj = B ′
j

for ι ≤ j ≤ �.

Finally, for the sake of completeness, we provide a formal summary of the proof
of Theorem 7.11 based on Lemma 7.17 using the arguments which have so-far been
described informally.

Theorem 7.11 Let E be a jumbled basic RWE. By Theorem 7.5, we may assume
that E is in normal form. Let B = (B0, B1, . . . , Bk) be its block decomposition.
If Bi is lex-minimal for 0 < i < k, then E is in LNF and we are done (this also
covers the case that k ≤ 1). Otherwise, suppose that k > 1 and let ι = min

0<j<k
{j |

Bj is not lex-minimal}. Then by Lemma 7.17, we have two possibilities. Either:

1. there exists a block Cι, n ∈ O(|E|) and Ê such that E �n Ê and Ê has the block
decomposition (B0, B1, . . . , Bι−1, Cι), or

2. there exist blocks Cι, Cι+1, . . . , C�, n ∈ O(|E|2) and Ê such that E �n Ê and
such that Ê has the block decomposition (B0, B1, . . . , Bι−1, Cι, Cι+1, . . . , C�)

and such that Cι is lex-minimal.

In the first case, by definition of ι, Bj is lex-minimal for 0 < j < ι, meaning Ê is in
LNF and we are done. In the second case, we have an equation Ê such that E �n′

Ê

where n′ ∈ O(|E|)2 and such that the block decomposition of Ê has a longer initial
sequence of lex-minimal blocks than the block decomposition of E.

Furthermore, it follows from the definitions that any block decomposition cannot
have more blocks than the number of variables occurring in the equation. Recall that
the set of variables occurring in an equation is invariant under ⇒∗ (and therefore also
�). Thus with at most O(|E|) applications of Lemma 7.17, we may conclude that
E �n′′

E′ for an equation E′ and with block decomposition (B ′
0, B

′
1, B

′
2, . . . , B

′
k′)

such that B ′
j is lex-minimal for 0 < j < k′ (meaning E′ is in LNF) and such that

n′′ ∈ O(|E|3). It follows directly from the definitions that � is symmetric, and

Theory of Computing Systems

therefore we also have E′ �n′′
E. By Corollary 7.3, we may therefore conclude that

E′ ⇒n1 E and E ⇒n2 E′ for some n1, n2 ∈ O(|E|4).

8 Diameter

It was mentioned in the previous section that the choices for the blocks in a block
decomposition of an equation in normal form are restricted by the invariant ΥE . We
shall now make full use of that fact to show that the number of equations in Lex Nor-
mal Form in a single graph G ⇒[E] is bounded by a polynomial in |E| (Theorem 7.11),
and as a consequence that the diameter of G ⇒[E] is also bounded by a polynomial in |E|
(Theorem 8.11). By combining this result with Theorems 6.8 and 4.8, we can extend
it from jumbled basic regular word equations to all regular word equations. Conse-
quently, we can conclude that satisfiability of regular word equations is NP-complete
(Theorem 8.12).

Since each equation in Lex Normal Form has a unique block decomposition, it
is sufficient to count the possible block decompositions satisfying the conditions for
Lex Normal Form for a given value of ΥE . We shall focus on conditions which force
two blocks to be the same. We shall consider the cases of initial, standard and final
blocks separately, but first we need the following lemmas which take advantage of
the invariant ΥE in order to limit the equations in normal form occurring in a single
equivalence class [E]⇒.

The first of these lemmas, and the resulting corollary provide some intuition
behind the definition of the block decomposition and to why the blocks are often
fixed by the invariant ΥE (along with the leftmost variable which, aside from excep-
tional cases, is fixed by Lex Normal Form). Essentially, they show that the length-two
factors αi (and thus αR

i) occurring as per the definition of normal form are fixed
exactly by the variables preceding them along with the invariant ΥE .

Lemma 8.1 Let u, v, a, b ∈ X and let α1, α2, β1, β2, α
′
1, α

′
2, β

′
1, β

′
2, γ ∈ X∗ such

that 1 ≤ |γ | ≤ 3. Let E1 and E2 be jumbled basic RWEs given by

E1 : α1uabα2
.= β1vbaβ2

E2 : α′
1uγα′

2
.= β ′

1vγ Rβ ′
2.

If ΥE1 = ΥE2 then γ = ab.

Proof Let γ = c1c2 . . . cn with ci ∈ X, 1 ≤ i ≤ n. Suppose that ΥE1 = ΥE2 = Υ .
Note that (a, v), (u, b) ∈ Υ . If |γ | = 1, then (u, v) ∈ Υ , which by Remark 5.2,
implies a = u, a contradiction to the assumption that E1 is regular. Similarly, if
|γ | = 3, then (c2, v), (u, c2) ∈ Υ which by Remark 5.2 implies c2 = a = b, again
a contradiction to the assumption that E1 is regular. Thus, it follows that |γ | = 2. In
this case, we have that (c1, v), (u, c2) ∈ Υ . By Remark 5.2, it follows that c1 = a

and c2 = b so γ = ab as required.

Theory of Computing Systems

Corollary 8.2 Let k ∈ N. For 1 ≤ i ≤ 4 and 1 ≤ j ≤ k, let μi, μ
′
i , αj , βj ∈ X∗

such that |αj | = |βj | = 2. Let E1 and E2 be the jumbled basic RWEs given by

E1 : μ1uα1α2 . . . αkμ2
.= μ3vαR

1 αR
2 . . . αR

k μ4

E2 : μ′
1uβ1β2 . . . βkμ

′
2

.= μ′
3vβR

1 βR
2 . . . βR

k μ′
4.

Suppose that ΥE1 = ΥE2 . Then αj = βj for 1 ≤ j ≤ k.

Any initial block has the form (xα1α2 . . . αi, yαR
1 αR

2 . . . αR
i) where x, y ∈ X and

αj ∈ X∗ with |αj | = 2 for 1 ≤ j ≤ i. Since x, y are fixed by ΥE , it follows
from Corollary 8.2 that all the αj factors, for 1 ≤ j ≤ i are fixed exactly by the
invariant ΥE . With a little additional effort, we can conclude the slightly more general
statement that initial blocks occurring in the block decomposition of some equation
E in normal form are fixed exactly by ΥE . Recall from the definitions that in a block
decomposition (B0, B1, . . . , Bk) of an equation in normal form, B0 will be an initial
block provided k ≥ 1 (if k = 0 then B0 = Bk will be a final block).

Lemma 8.3 Let E1, E2 be jumbled basic RWEs in normal form such that ΥE1 =
ΥE2 . Let (B0, B1, . . . , Bk) and (C0, C1, . . . , C�) be the block decompositions of E1
and E2 respectively. Suppose that k, � ≥ 1. Then B0 = C0.

Proof Since E1 is in normal form, we may write it as xα1α2 . . . αny
.=

yαR
1 αR

2 . . . αR
n x with x, y ∈ X and αi ∈ X+ for 1 ≤ i ≤ n such that |αi | ≤ 3 for

1 ≤ i < n. Similarly, we may write E2 as x′α′
1α

′
2 . . . α′

my′ .= y′α′R
1 α′R

2 . . . α′R
m x′ with

x′, y′ ∈ X and α′
i ∈ X+ for 1 ≤ i ≤ m such that |α′

i | ≤ 3 for 1 ≤ i < m. Suppose
that ΥE1 = ΥE2 = Υ and note that this implies var(E1) = var(E2). Similarly, is
easily verified (either from the definition of ⇒, or from Remark 5.2) that x = x′ and
y = y′.

Since k, � ≥ 1, there must exist p = min{i | 1 ≤ i < n and |αi | �= 2} and q = min{i |
1 ≤ i < m and |α′

i | �= 2}. It follows that B0 = (xα1α2 . . . αp−1, yαR
1 αR

2 . . . αR
p−1)

and C0 = (xα′
1α

′
2 . . . α′

q−1, yα′R
1 α′R

2 . . . α′R
q−1). By Corollary 8.2, it follows that αi =

α′
i for 1 ≤ i < min{p, q}.

Suppose for contradiction that p �= q. W.l.o.g. suppose that p > q. Then we may
write E1 and E2 as μ1uabμ2

.= μ3vbaμ4 and μ′
1uabγμ′

2
.= μ′

3vγ Rμ′
4 respectively

where μ1, μ2, μ3, μ4, μ′
1, μ′

2, μ′
3, μ′

4, γ ∈ X∗, u, v, a, b ∈ X, and |γ | ∈ {1, 3} (in
particular, this is true for ab = αq and γ = α′

q). However in this case, it follows from
Lemma 8.1 that ΥE1 �= ΥE2 , a contradiction. Thus we must have that p = q, and the
fact that B0 = C0 follows immediately.

Similarly to initial blocks, we can use Corollary 8.2 to restrict standard blocks
which are Type A. These blocks will have the form (zα1α2 . . . αi, zα

R
1 αR

2 . . . αR
i)

where z ∈ X and αj ∈ X∗ with |αj | = 2 for 1 ≤ j ≤ i. Hence the factors αj ,
1 ≤ j ≤ i are fixed completely by ΥE and z. For Type B blocks, which instead have
the form (abcα1α2 . . . αi, cbaαR

1 αR
2 . . . αR

i) with a, b, c ∈ X, we need the following
additional observation.

Theory of Computing Systems

Lemma 8.4 Let u, v, a, b, c, ∈ X and let α1, α2, β1, β2, α
′
1, α

′
2, β

′
1, β

′
2, γ ∈ X∗ such

that 1 ≤ |γ | ≤ 3. Let E1 and E2 be the basic regular word equations given by

E1 : α1uabcα2
.= β1vcbaβ2

E2 : α′
1uγα′

2
.= β ′

1vγ Rβ ′
2.

If ΥE1 = ΥE2 then there exist a′, c′ ∈ X such that γ = a′bc′. Moreover, if a′ = a,
then c′ = c.

Proof Let γ = e1e2 . . . en with ei ∈ X, 1 ≤ i ≤ n. Suppose that ΥE1 = ΥE2 = Υ .
Note that (u, b), (a, c), (b, v) ∈ Υ . If |γ | = 1, then (u, v) ∈ Υ , and by Remark 5.2
we have that u = b, a contradiction to the assumption that E is regular. Thus we
assume n ≥ 2. Then (u, e2), (en−1, v) ∈ Υ . Hence, we have e2 = en−1 = b, and
since E is regular, this implies that n = 3 so the statement holds with a′ = e1, b

′ =
e3. Finally, we note that since (a′, c′) ∈ Υ , by Remark 5.2, if a = a′ then c = c′ as
claimed.

In what follows we shall show that for two jumbled basic regular equations E1, E2
in Lex Normal Form with ΥE1 = ΥE2 and block decompositions of the same length,
all blocks except the final blocks must be identical (Corollary 8.7). We have already
shown in Lemma 8.3 that this is true for the initial blocks, The next step is to show
that if the previous blocks in both block decompositions are identical, then the next
blocks will have the same type.

Lemma 8.5 Let E1, E2 be jumbled basic regular word equations in normal form
such that ΥE1 = ΥE2 . Let (B0, B1, . . . , Bk) and (C0, C1, . . . , C�) be block decom-
positions of E1 and E2 respectively. Suppose that i, j ∈ N0 with i < k, j < � such
that Bi = Cj . Then Bi+1 and Cj+1 have the same type.

Proof Since there are two types, it is sufficient to prove that Bi+1 is Type B if and
only if Cj+1 is Type B. Suppose that Bi+1 is Type B and suppose for contradic-
tion that Cj+1 is Type A. Then there exist γ1, γ2, γ3, γ4 ∈ X∗, and a, b, c, d ∈ X

such that Bi+1 = (abcγ1, cbaγ2) and Cj+1 = (dγ3, dγ4). Note that there exist
u, v ∈ X such that Bi = Cj = (δ1u, δ2v) where δ1, δ2 ∈ X∗. Hence there exist
α1, α2, β1, β2, α

′
1, α

′
2, β

′
1, β

′
2 ∈ X∗ such that E1 is may be written as α1uabcα2

.=
β1vcbaβ2 and E2 may be written as α′

1udα′
2

.= β ′
1vdβ ′

2. However, by Lemma 8.4,
this implies ΥE1 �= ΥE2 , a contradiction. Consequently, Cj+1 is Type B if Bi+1 is
Type B. The proof that Bi+1 is Type B if Cj+1 is Type B is symmetric and can be
obtained by simply swapping E1 and E2.

We are now ready to show that standard blocks in a block decomposition are fixed
entirely by the preceding block, the invariant ΥE , and the leftmost letter of the block.
This is the primary motivation for the definition of Lex Normal Form, which restricts
the choice for the leftmost letter of the block where possible, and thus restricts the
possibilities for the standard blocks. In particular, it follows directly by a straightfor-
ward induction that for two jumbled basic RWEs in Lex Normal Form with the same
invariant ΥE , if their block decompositions have the same length, then all but the final
blocks will be identical.

Theory of Computing Systems

Lemma 8.6 Let E1, E2 be jumbled basic RWEs in normal form such that ΥE1 =
ΥE2 . Let (B0, B1, . . . , Bk) and (C0, C1, . . . , C�) be their respective block decompo-
sitions and let k, � > 0. Suppose that Bi = Cj , for some i < k − 1, j < � − 1. Let
Bi+1 = (γ1, γ2) and Cj+1 = (δ1, δ2) with γ1, γ2, δ1, δ2 ∈ X∗. If γ1[1] = δ1[1], then
Bi+1 = Cj+1.

Proof Note that since 0 < i + 1 < k and 0 < j + 1 < �, the blocks
Bi+1 and Cj+1 are both standard blocks. Note also that by Lemma 8.5, Bi+1
and Cj+1 have the same type. Hence, by definition, there exist α1, α2, . . . , αn,
β1, β2, . . . , βm ∈ X+ such that Bi+1 = (α1α2 . . . αn, α

R
1 αR

2 . . . αR
n) and Cj+1 =

(β1β2 . . . βm, βR
1 βR

2 . . . , βR
m), where |α1| = |β1| ∈ {1, 3} and |αp|, |βq | = 2

for 2 ≤ p ≤ n and 2 ≤ q ≤ m. Since Bi = Cj , there exist u, v ∈ X

and μ1, μ2, ν1, ν2, μ
′
1, μ

′
2, ν

′
1, ν

′
2, η, η′ ∈ X∗ with |η|, |η′| ∈ {1, 3} and such that

E1 is given by μ1uα1α2 . . . αnημ2
.= ν1vαR

1 αR
2 . . . αR

n ηRν2 and E2 is given by
μ′

1uβ1β2 . . . βnη
′μ′

2
.= ν′

1vβR
1 βR

2 . . . βR
n η′Rν′

2.
By the assumption that γ [1] = δ[1], we have that α1[1] = β1[1] meaning if

|α1| = |β1| = 1 then α1 = β1 holds trivially. Similarly, if |α1| = |β1| = 3, then it
follows from Lemma 8.4 that α1 = β1. In both cases, it follows from Corollary 8.2
that additionally, αp = βp for 2 ≤ p ≤ min{n, m}. It follows from Lemma 8.1 that
n = m. Hence we have Bi+1 = Cj+1 as required.

Note that if the first i blocks are identical in the block decompositions of two
jumbled basic RWEs in Lex Normal Form with the same invariant set ΥE , it follows
that the set Γ E

i+1 is also the same in both cases. Consequently, by definition of Lex
Normal Form, if the i + 1th blocks are not final blocks, the leftmost variable will
be the same in each case (namely the lexicographically minimal element of Γ E

i+1).
Consequently, by Lemma 8.6, the i + 1th blocks will also be identical. By a simple
induction, we can thus conclude the following.

Corollary 8.7 Let E1, E2 be jumbled basic RWEs in Lex Normal Form such that
ΥE1 = ΥE2 . Let (B0, B1, . . . , Bk) and (C0, C1, . . . , C�) be their respective block
decompositions and suppose that k, � > 0. Then Bi = Ci for 0 ≤ i < min(k, �).

Consequently, two equations in Lex Normal Form in the graph G ⇒[E] with block
decompositions containing the same number of blocks may differ only in the
final block. Clearly, the number of blocks in a block decomposition is at most
Card(var(E)). Thus, in order to bound the number of equations in Lex Normal Form
in G ⇒[E], it suffices to count the possibilities for the final block.

Recall from the definition of normal form that the last (rightmost) αi factor is the
only one which may have length greater than 3. Consequently, we need a counterpart
to Lemmas 8.1 and 8.4 for this case, given by the following.

Lemma 8.8 Let u, v, x, y, x′, y′ ∈ X and let α, β, α′, β ′, γ, γ ′ ∈ X∗ such that |γ | ≥
1. Let E1 and E2 be the basic regular word equations given by xαuγy

.= yβvγ Rx

and x′α′uγ ′y′ .= y′β ′vγ ′Rx′ respectively. If ΥE1 = ΥE2 and γ [1] = γ ′[1] then
γ = γ ′.

Theory of Computing Systems

Proof Let z1, z2, . . . , zn, w1, w2, . . . , wm ∈ X be variables such that γ = z1z2 . . . zn

and γ ′ = w1w2 . . . wm and suppose that z1 = w1. Suppose also that ΥE1 = ΥE2 = Υ .
Note that for 1 ≤ i ≤ min{n, m}− 2, we have (zi, zi+2), (wi, wi+2) ∈ Υ . Moreover,
if n, m ≥ 2, we also have that (u, z2), (u, w2) ∈ Υ . Consequently, by Remark 5.2,
we have that wi = zi for 1 ≤ i ≤ min{n, m}. If n = m we are done. Otherwise,
suppose that n �= m, and note in particular that since E1, E2 are regular, this implies
zn �= wm. However, (zn, z1), (wn, w1) ∈ Υ , and since w1 = z1, by Remark 5.2
we have that zn = wm, a contradiction. Thus we must have n = m and γ = γ ′ as
claimed.

The following lemma establishes conditions under which two final blocks must be
identical, forming the basis for our bound on the number of possible final blocks in a
block decomposition of an equation in Lex Normal Form, and consequently, a bound
on the number of equations in Lex Normal Form itself.

Lemma 8.9 Let E1, E2 be jumbled basic RWEs in normal form such that
ΥE1 = ΥE2 . Let (B0, B1, . . . , Bk) and (C0, C1, . . . , C�) be their respective block
decompositions. Suppose that k, � > 0 and that Bk−1 = C�−1. Let Bk =
(α1α2 . . . αny, αR

1 αR
2 . . . αR

n x) and C� = (β1β2 . . . βmy, βR
1 βR

2 . . . , βR
mx), where

x, y ∈ X, α1, α2, . . . , αn, β1, β2, . . . , βm ∈ X+, |α1| = |β1| ∈ {1, 3} and
|αi |, |βj | = 2 for 2 ≤ i < n and 2 ≤ j < m. Then if α1[1] = β1[1], n = m, and
αn[1] = βm[1], we have Bk = C�.

Proof Suppose that all the conditions of the lemma are met. Note that Bk and C� are
both end blocks. Note also that by Lemma 8.5, Bk and C� have the same type.

Since Bk−1 = C�−1, there exist u, v ∈ X and μ1, μ2, μ
′
1, μ

′
2 ∈ X∗ such that E1

and E2 are given by:

E1 : xμ1uα1α2 . . . αny
.= yμ2vαR

1 αR
2 . . . αR

n x

E2 : xμ′
1uβ1β2 . . . βny

.= yμ′
2vβR

1 βR
2 . . . βR

n x.

By the assumption that α1[1] = β1[1], we have that if |α1| = |β1| = 1 then trivially
α1 = β1, and if |α1| = |β1| = 3, then α1 = β1 by Lemma 8.4. In both cases, it
follows from Corollary 8.2 that αi = βi for 1 ≤ i < min{n, m}. It follows from
Lemma 8.1 that n = m, and from Lemma 8.8 that αn = βm. Consequently, we have
Bk = C� as claimed.

Lemma 8.9 reveals that the options for last block are dependent only on the choices
of three parameters: α1[1], αn[1], and n. Since each of these can take at most |E|
possible values, there are |E|3 possibilities altogether. Thus for each possible number
of blocks, there are at most |E|3 possible block decompositions, and therefore only
|E|4 possible block decompositions respecting the invariant ΥE in total. Since every
equation in Lex Normal Form permits a unique block decomposition, this gives us
our desired polynomial bound.

Theorem 8.10 Let E be a jumbled basic RWE. Let S be the set of basic regular
equations E′ in Lex Normal Form for which ΥE = ΥE′ . Then Card(S) ≤ |E|4.

Theory of Computing Systems

Proof We shall count possible block decompositions of equations E′ for which
ΥE′ = ΥE = Υ . Since the block decomposition uniquely determines the equation,
this count is an upper bound on the number of equations in S. Note that ΥE′ = ΥE ,
implies var(E′) = var(E).

It is straightforward from the definitions that any block decomposition of an equa-
tion E′ can have at most Card(var(E′)) = Card(var(E)) < |E| blocks, so it
is sufficient to count how many block decompositions with exactly N blocks are
possible for each N ≤ Card(var(E)).

We start with the case that the block decomposition consists of exactly one block
(N = 1). Suppose we have two basic regular word equations E1, E2 in Lex Nor-
mal Form, such that ΥE1 = ΥE2 = Υ (and so additionally var(E1) = var(E2) =
var(E)). Suppose that (B0) and (C0) are the block decompositions of E1 and
E2 respectively. By definition B0 = E1 and C0 = E2. It follows that B0 =
(xα1α2 . . . αoy, yαR

1 αR
2 . . . αR

o x) and C0 = (x′α′
1α

′
2 . . . α′

my′, y′α′
1, α

′
2, . . . , α

′
mx′)

where x, x′, y, y′ ∈ X and αi, α
′
j ∈ X+ for 1 ≤ i ≤ o, 1 ≤ j ≤ m and such that

|αi |, |αj | = 2 for 1 ≤ i < o and 1 ≤ j < m. It is easily verified (either from the defi-
nition of ⇒, or from Remark 5.2) that x = x′ and y = y′. Moreover, we clearly must
have o, m < Card(var(E)). Now suppose that o = m. Then by Corollary 8.2, we
may conclude that αi = α′

i for 1 ≤ i < n. Similarly, it follows from Lemma 8.9 that
αn = α′

n, and thus B0 = C0. Hence, for each possible value of o, there is at most one
possible block decomposition, meaning there are fewer than Card(var(E)) < |E|
possible block decompositions containing only one block.

Now consider the cases that there is more than one block in the block decom-
position (1 < N ≤ Card(var(E))). Suppose we have two basic regular word
equations E1, E2 in Lex Normal Form, such that ΥE1 = ΥE2 = Υ . Suppose
that (B0, B1, B2, . . . , Bn) and (C0, C1, . . . , Cn) are the block decompositions of
E1 and E2 respectively, and that they have the same number of blocks 1 < n ≤
Card(var(E)). By Corollary 8.7, we have that Bi = Ci for 0 ≤ i ≤ n − 1. By
Lemma 8.9, there are at most |E|3 possibilities for the end block Cn. Thus there are
at most |E|3 block decompositions overall with exactly n blocks for 1 < n ≤ |E|.
Thus at most |E|4 possible block decompositions in total, and the statement of the
theorem follows.

For a jumbled basic RWE E, since every vertex in G ⇒[E] is a small (i.e. bounded by
a polynomial in |E|) distance from a vertex in Lex Normal Form, and since there are
only a small number of such vertices, it is straightforward to show that the diameter
of G ⇒[E] must also be small: indeed if we have a sufficiently long path between two
vertices, then we must have a long path between two vertices which are close to the
same vertex in Lex Normal Form. Since they are close to the same vertex, we can
find a shortcut between them, and the initial long path is not minimal. Knowing that
the diameter of G ⇒[E] is bounded by a polynomial in |E| when E is jumbled and basic,
it follows from Theorems 6.8 and 4.8 (see also Remark 4.6) and Proposition 3.5 that
the diameter of G ⇒NT[E] is bounded by a polynomial in |E| whenever E is regular.

Theory of Computing Systems

Theorem 8.11 Let E be a basic RWE. Then diam(G ⇒[E]) ∈ O(|E|10). Consequently,

for any RWE E, diam(G ⇒NT[E]) ∈ O(|E|12).

Proof We shall first consider the case of diam(G ⇒[E]) when E is jumbled, basic and
regular. Let S = {E′ ∈ [E]⇒ | E′ is in Lex Normal Form}. By Theorem 5.3, ΥE1 =
ΥE2 for all E1, E2 ∈ [E]⇒. Thus, by Theorem 8.10, we have that Card(S) ≤ |E|4.
Moreover, by Theorem 7.11, for every E′ ∈ [E]⇒, there exists some Ê′ ∈ S such
that E′ is at most distance O(|E|4) from Ê′, and Ê′ is at distance at most O(|E|4)
from E′ in the graph G ⇒[E]. From this, we may conclude that diam(G ⇒[E]) ∈ O(|E|8)
as follows: suppose for contradiction that, for an appropriate constant c, there exist
E1, E2 ∈ [E]⇒ such that the minimal path between them in G ⇒[E] has length at

least 2c|E|8 + 1. Let that path be E1, E2, . . . , En where E1 = E1, En = E2, and
Ei ⇒ Ei+1 for 1 ≤ i ≤ n and such that n > 2c|E|8 +1. Now, to each Ei , 1 ≤ i ≤ n,
we may associate some Êi ∈ S such that the distance from Ei to Êi is at most c|E|4.
Since Card(S) ≤ |E|4 and n > 2c|E|8+1, we must have that there exists Ê ∈ S such
that Ê = Êi for at least 2c|E|4 + 1 different values of i. This implies in particular
that there exist i1, i2 with i1 − i2 > 2c|E|4 such that Êi1 = Êi2 . It follows that
the length of the path Ei1 , Ei1+1, . . . Ei2 is at least 2c|E|4 + 1, and moreover, since
E1, E2, . . . , En is the shortest path between E1 and E2, Ei1 , Ei1+1, . . . Ei2 must also
be the shortest path between Ei1 and Ei2 . However, we have that Ei1 is distance
at most c|E|4 from Ê, and that Ê is at most distance Ei2 at most c|E|4 from Ei2 .
Consequently, Ei1 is distance at most 2c|E|4 from Ei2 , a contradiction to the fact that
Ei1 , Ei1+1, . . . Ei2 is the shortest possible path. Consequently, if E is jumbled basic
and regular, then diam(G ⇒[E]) ∈ O(|E|8).

Now we shall consider the case that E of diam(G ⇒[E]) when E is basic and
regular, but not necessarily jumbled. Suppose that E is given by α

.= β. Let
Y = var(E)\Δ(E) and let E′ be the equation πY (α)

.= πY (β). Clearly, E′
is basic, regular and |E′| ≤ |E|. By Theorem 6.8, we have that diam(G ⇒[E]) ∈
O(diam(G ⇒

[E′])|E|2). Moreover, by Lemma 6.3, E′ is jumbled. Thus by our previous

claim, it follows that diam(G ⇒[E]) ∈ O(|E′|8|E|2) = O(|E|10).
Finally, we consider the case of diam(G ⇒NT[E]) for arbitrary regular equations E.

Let E be any regular word equation. Then by Proposition 3.5, diam(G ⇒NT[E]) ≤ 1 +
(|E| + 1)m where

m = max{diam(G ⇒
[E′]) | E ⇒∗

NT E′}.
Now fix E′ be such that E ⇒∗

NT E′ and diam(G ⇒
[E′]) = m. Then since E ⇒∗

NT

E′, E′ is also regular and |E′| ≤ |E|. Moreover by Theorem 4.8, there exists a
basic regular equation E′′ such that |E′′| ≤ |E| and such that G ⇒

[E′′] is isomor-
phic to an isolated path compression of order |E′| of G ⇒

[E′]. Thus (cf. Remark 4.6),
we have m ≤ |E′|diam(G ⇒

[E′′]). Since E′′ is basic and regular, we have that

diam(G ⇒
[E′′]) ∈ O(|E′′|10). Since |E′′|, |E′| ≤ |E|, we therefore have m ∈ O(|E|11)

and diam(G ⇒NT[E]) ∈ O(|E|12).

Theory of Computing Systems

Due to Proposition 3.4, we may infer directly from Theorem 8.11 that the satisfi-
ability problem for regular word equations is in NP. It was already shown in [8] that
this problem is NP-hard, and thus we obtain matching upper and lower bounds for its
complexity.

Theorem 8.12 The satisfiability problem for RWEs is NP-complete.

Proof Directly from Theorem 8.11 and Proposition 3.4.

9 Size

While the diameter of G ⇒[E] is one important parameter, being directly related to the
complexity of the satisfiability problem, it is by no means the only interesting one.
The overall size of the graphs will also play a central role in the practical performance
of the algorithm described in Section 3.

For basic RWEs, we are able to give tight upper and lower bounds on the number
of vertices in the graphs G ⇒[E], as well as identifying the cases in which these bounds
are reached. Recalling Theorem 4.8, we are also able to translate these bounds into
the case of general (i.e. not basic) RWEs. In particular, when moving to a general
RWE from the corresponding basic one, the effect on the graph G ⇒[E] is that ‘isolated
paths’ of length linear in |E| are collapsed. In fact, an inspection of the proofs (in par-
ticular of Lemma 4.7) yields a tighter bound, namely that collapsed paths will have at
most max(T1, T2) internal vertices where T1 and T2 are the number of occurrences of
terminal symbols and single-occurrence variables in the LHS and RHS respectively.

Corollary 9.1 Let E be an RWE given by α
.= β. Let Ebasic be the corresponding

basic equation as per Theorem 4.8. Let n = Card(qv(E)) and let M = max{|α| −
n, |β| − n}. Then

Card([Ebasic]⇒) ≤ Card([E]⇒) ≤ MCard([Ebasic]⇒).

We begin with the upper bounds, which occur in the case of basic regular-rotated
word equations.

Lemma 9.2 Let E be a basic regular word equation. Let n = Card(var(E)) and
suppose that n ≥ 2. Let V be the number of vertices in G ⇒[E]. Then V ≤ n!

2 . Moreover,

V = n!
2 if and only if there exists E′ ∈ [E]⇒ such that E′ is regular rotated.

Proof Let E be a basic regular word equation. Let n = Card(var(E)) and suppose
that n ≥ 2. Let V = Card([E]⇒) be the number of vertices in G ⇒[E]. We shall begin

with the claim that V ≤ n!
2 . To do this, we recall that from Theorem 5.3, the set

SΥ = {E′ | E′ is a basic regular equation such that ΥE′ = ΥE} is a (not necessarily
strict) superset of [E]⇒. We shall show that the cardinality of SΥ is at most n!

2 . Let
Υ = ΥE and let E′ be a regular basic equation such that ΥE′ = Υ . Now, it follows
from the definition of Υ that var(E′) = var(E) and that the rightmost variables the

Theory of Computing Systems

LHS (resp. RHS) of E and E′ are the same. More precisely, there exist x, y ∈ var(E)

and α, α′, β, β ′ ∈ X∗ such that E may be written αx
.= βy and E′ may be written

as α′x .= β ′y. Clearly, there are at most (n − 1)! possibilities for α′. Moreover, since
ΥE′ = Υ is fixed, we can, given α′, for each u ∈ var(β ′)\{α′[1], β ′[1]}, determine
uniquely the predecessor of u in β ′y. More precisely, there exist factors vu and v′u
of α′x and β ′y respectively where v, v′ ∈ var(E). Thus (v, v′) ∈ Υ , so if v is fixed
(i.e. by α′) then v′ is also fixed by Υ . It follows directly that for each choice of α′,
there exists a unique suffix γ of β ′y having α′[1] as a prefix. Moreover, once the
variable occurring immediately to the left of γ (i.e. the predecessor of γ [1] in β ′y) is
fixed, then β ′y is fixed entirely, meaning that there are n − |γ | possible choices for
β ′y once α′ is fixed.

Next, we shall show that for each k, 1 ≤ k ≤ n − 1, there are exactly (n − 2)!
choices of α′ such that the corresponding γ has length exactly k. For other values of
k, there are no possible choices of α′ due to the fact that every equation in SΥ is basic
and regular (note in particular that the case k = n would result in an equation which
is decomposable and therefore not basic). It follows from this that the cardinality of
SΥ is at most n!

2 :

Card(SΥ) ≤
n−1∑

k=1

k(n − 2)! = (n − 2)!
n−1∑

k=1

k = (n − 2)!n(n − 1)

2
= n!

2
.

To see why there are exactly (n− 2)! choices of α′ such that the corresponding γ has
length k, we shall take a slightly different approach to constructing/selecting α′ and
β ′. In particular, we shall first choose γ and then see how many choices there are for
α′. Let k ∈ N such that 1 ≤ k < n.

By definition of ΥE , we must have that if γ = v1v2 . . . vk−1y, then there exist
u1, u2, . . . , uk−1 ∈ var(E) such that α′[1] = v1 and (ui, vi) ∈ Υ for 1 ≤ i ≤ k − 2,
(uk−1, y) ∈ Υ , and such that uk−1y is a factor of α′x and uivi+1 are factors of α′x
for 1 ≤ i ≤ k − 2. Since E′ is regular, it follows that vi �= x for 1 ≤ i ≤ k − 1.
Consequently, there are

(
n−2
k−1

)
(k −1)! = (n−2)!

(n−k−1)! possible ways of choosing γ . Once
γ is fixed, then, since uk−1y is a factor of α′x and uivi+1 are factors of α′x for
1 ≤ i ≤ k−2, we may infer that α′ is uniquely determined by the relative order of the
variables in var(E)\{x, y, v1, v2, . . . , vk−1}, and thus there are (n− k − 1)! possible
choices for α′ for each choice of γ . Altogether we have (n−k−1)! (n−2)!

(n−k−1)! = (n−2)!
possible choices for α′ as claimed, and it follows that V ≤ n!

2 .
It remains to consider the claim that V = n!

2 if and only if there exists E′ ∈ [E]⇒
such that E′ is regular rotated. Note that since n > 1, and since E′ is basic (and
therefore indecomposable) for all E′ ∈ [E]⇒, E′ is not regular ordered for all E′ ∈
[E]⇒.

We shall begin with the ‘if’ direction. Let V = Card([E]⇒) be the number of
vertices in G ⇒[E]. Then we may assume w.l.o.g. that E is regular rotated and thus
we can write E as y1y2 . . . ykx1yk+1yk+2 . . . y�x2

.= yk+1yk+2 . . . y�x2y1y2 . . . ykx1
where x1, x2, y1, y2, . . . y� ∈ X, � = n−2 and k ≤ �. Then Δ(E) = {y1, y2, . . . , y�}.
Consequently, by Theorem 6.8, the set of equations

S = {αx1βx2
.= βx2αx1 | |αβ|y = 1 if y ∈ Δ(E) and |αβ|z = 0 otherwise}

Theory of Computing Systems

is a subset of [E]⇒. Now, for each i, 1 ≤ i ≤ � = Card(Δ(E)), let the set Si ⊂ S be
the set

Si = {αx1βx2
.=βx2αx1 | |α|= i ∧|αβ|y =1 if y ∈ Δ(E) and |αβ|z = 0 otherwise}.

Clearly, we have S = ⋃

0≤i≤�

Si . Moreover, we have that Card(Si) = �! = (n − 2)!
for each i, 0 ≤ i ≤ �. Finally, note that for each i, 0 ≤ i ≤ �, if E′ ∈ Si , then for
TE′ = {E′′ | E′ ⇒∗

R E′′}, we have that Card(TE′) = i + 1 It is straightforward from
the definitions that for E1, E2 ∈ S, if E1 �= E2, then TE1 ∩ TE2 = ∅. Consequently,
we may conclude that

V ≥
∑

E′∈S

Card(TE′) =
∑

0≤i≤�

(i + 1)Card(Si) = (� + 1)(� + 2)

2
(n − 2)! = n!

2
.

We have already shown that V ≤ n!
2 , so V = n!

2 as required.
Suppose now that E′ is not regular rotated for all E′ ∈ [E]⇒. To see that V < n!

2 , it
suffices to notice that we can decrease the bound on Card(SΥ) if not all the previously
considered possibilities for the left-hand-sides α′y are actually possible.

Recall from the Theorem 5.3 that Δ(E) = Δ(E′) for all E′ ∈ [E]⇒. More-
over, it follows from the definitions that the rightmost variables on each side of the
equation are not contained in (Δ(E)) and thus Card(Δ(E)) ≤ n − 2. Next, suppose
(for contradiction) that Card(Δ(E)) = n − 2. Then there exist z1, z2, . . . , zn ∈ X

and i, 1 ≤ i < n such that zn is a suffix of the LHS of E and zi is a suffix
of the RHS of E, meaning that Δ(E) = {zj | 1 ≤ j < n, j �= i}. Con-
sequently, there exists j, i < j ≤ n such that E may be written z1z2 . . . zn

.=
zj+1 . . . zn−1znzi+1 . . . zj−1zj z1 . . . zi−2zi−1zi . Thus E ⇒∗

L E′ where E′ is given
by z1z2 . . . zn

.= zi+1 . . . zj−1zj zj+1 . . . zn−1znz1 . . . zi−2zi−1zi . However, E′ is
regular-rotated, a contradiction.

Hence, we may assume that Card(Δ(E)) < n − 2, and consequently, there exist
pairwise distinct variables u, v, x, y ∈ var(E) such that (u, v), (x, y) ∈ ΥE . How-
ever, if this is the case, then the LHS of any equation in [E]⇒ cannot contain both
the factors uv and xy. Suppose for contradiction that both factors were present in the
LHS, then by definition of ΥE , there must exist z ∈ X such that either uz is a factor
of the LHS and vz is a factor of the RHS, or xz is a factor of the LHS and yz is a fac-
tor of the RHS. W.l.o.g. we may assume the first case that uz is a factor of the LHS
and vz is a factor of the RHS. However, by the assumption that uv is also a factor of
the LHS, we have z = v, and consequently vv is a factor of the RHS, a contradiction
to the fact that E is regular. It follows in this case that Card(SΥ) < n

2 , and thus that
V < n

2 .

We can use Corollary 9.1 to adapt Lemma 9.2 to general RWEs as follows. Let
E be a RWE given by α

.= β, let n = Card(qv(E)), and let T = max{|α| −
n, |β| − n}. Let Ebasic be the corresponding basic RWE as per Theorem 4.8. Clearly
for Card([E]⇒) to be maximal, E should be indecomposable. Now, by Corollary 9.1,
we have that Card([E]⇒) ≤ T Card([Ebasic]⇒) ≤ T n!

2 ≤ (n+T)!
2 = (max{|α|,|β|})!

2 .
Note also that if E is not regular-rotated, then either Ebasic is not regular-rotated,

or E is decomposable and Ebasic is regular-rotated but with fewer variables. In either

Theory of Computing Systems

case it follows that the second inequality becomes strict. Similarly, if T �= 0, then the
third inequality becomes strict. Hence we get the following.

Corollary 9.3 Let E be a RWE given by α
.= β. Let M = max{|α|, |β|}. Let V be

the number of vertices in G ⇒[E]. Then V ≤ M!
2 . Moreover, V = M!

2 if and only if E is
basic and there exists E′ ∈ [E]⇒ such that E′ is regular rotated.

For upper bounds on the number of vertices in G ⇒[E], we consider the class of
regular-reversed equations. We shall eventually prove a statement similar to that of
Lemma 9.2, but first we need some additional definitions and lemmas. Our reasoning
in this case revolves primarily around a particular binary-tree like structure arising
locally in the graphs G ⇒[E]. The binary trees do not occur directly as subgraphs of
G ⇒[E], but rather can be obtained by treating certain short paths as edges. The relation
defining the ‘edges’ of the tree is given by �, introduced formally below. By showing
that these binary trees always occur in the graphs G ⇒[E], and by verifying that they are
balanced and have height proportional to the number of edges, we are able to produce
the lower bound on the number of vertices in G ⇒[E] given in Lemma 9.11.

Definition 9.4 (→R, →L, �, W(E)) Let E be a basic RWE such that
Card(var(E)) ≥ 2. Then we may write E in the form

xγ0z1γ1z2γ2 . . . zkγkyα
.= yδ0w1δ1w2δ2 . . . wkδkxβ

with x, y, z1, z2, . . . , zk, w1, w2, . . . , wk ∈ X such that {z1, z2, . . . , zk} =
{w1, w2, . . . , wk}, and α, β, γ1, γ2, . . . , γk, δ1, δ2, . . . , δk ∈
(X\{x, y, z1, z2, . . . , zk})∗ such that for each i, j , 0 ≤ i, j ≤ k, we have
var(γi) ∩ var(δj) = ∅. Note that this decomposition is unique. We define
W(E) = {x, y, z1, z2, . . . , zk}. Moreover, there exist i, j such that wi = zk and
zj = wk . We define the relations →L and →R such that

xγ0z1γ1z2γ2 . . . zkγkyα
.= yδ0w1δ1w2δ2 . . . wkδkxβ

→Lxγ0z1γ1z2γ2. . .zkγkyα
.=wiδiwi+1δi+1. . .wkδkyδ0w1δ1w2δ2 . . . wi−1δi−1xβ

and

xγ0z1γ1z2γ2 . . . zkγkyα
.= yδ0w1δ1w2δ2 . . . wkδkxβ

→R zjγizj+1γj+1. . .zkγkxγ0z1γ1z2γ2. . .zj−1γj−1yα
.=yδ0w1δ1w2δ2 . . . wkδkxβ

Additionally, for convenience, we define � =→L ∪ →R .

The tree-structure we are interested in is the set S = {E′ | E�∗E′} for a given basic
RWE E with at least two variables (the one-variable case being trivial). An example
is given by Fig. 7. The following fact can be verified directly from the definition, and
confirms that the set S is indeed contained in G ⇒[E].

Fact 9.5 Let E1, E2 be basic RWEs with Card(var(E1)), Card(var(E2)) ≥ 2. Let
Z ∈ {L, R}. If E1 →Z E2, then E1 ⇒∗

Z E2. Conversely, if E1 ⇒Z E2, then either
E1 →∗

Z E2 or E2 →∗
Z E1.

Theory of Computing Systems

Fig. 7 The set S = {E′ | E �∗ E′} occurring as a subset of the vertices of the graph G ⇒[E] in the case that
E is given by x1x2x3x4

.= x4x2x3x1. In order to conserve space, for each vertex, the equation is arranged
vertically with the LHS above and the RHS below. The vertices belonging to S are highlighted in bold,
and E is shaded (blue). The tree structure induced by the relation � is given by the bold solid edges, while
the edges of G ⇒[E] are dashed. Note that the edges due to � do not necessarily coincide with edges due to
⇒, but for every �-edge, there is a corresponding path using ⇒-edges, guaranteeing that S ⊆ [E]⇒. In
this case we have that W(E) = var(E) = {x1, x2, x3, x4}, so S forms a tree of height 24−2 − 1 = 3, and
contains exactly 24−1 − 1 = 7 equations

In what follows, in order to understand the number of equations occurring in S =
{E′ | E �∗ E′}, we shall show that when combined with the relation �, it becomes
a balanced binary tree of height Card(W(E)) − 1. We proceed by noting two more
facts following directly from the definition. Fact 9.6 provides the first step towards
understanding why � induces a binary tree like structure on S: the leaf nodes are
equations for which Card(W(E)) = 2, while all other equations have exactly two
children w.r.t. �.6

Fact 9.6 Let E be a basic RWE with Card(var(E)) ≥ 2. Then the following
statements are equivalent.

1. Card(W(E)) > 2,
2. there exists E′ such that E →L E′,
3. there exists E′ such that E →R E′.

6It is worth noting that since basic RWEs are indecomposable, Card(W(E)) ≥ 2 whenever
Card(var(E)) ≥ 2.

Theory of Computing Systems

Fact 9.7 allows us to infer exactly the height of the tree by establishing a natu-
ral ordering (namely the cardinality of W(E)) on equations. Note that by Fact 9.6,
whenever we move from a an equation to one of its children w.r.t. �, we decrease
Card(W(E)) by exactly one.

Fact 9.7 Let E1, E2 be basic RWEs with Card(var(E1)), Card(var(E2)) ≥ 2.
Let Z ∈ {L, R} and suppose that E1 →Z E2. Suppose that x, y ∈ X and let
α1, α2, β1, β2 ∈ (X\{x, y})∗ such that E1 may be written xα1yα2

.= yβ1xβ2. If
Z = L, then W(E2) = W(E1)\{y} and if Z = R, then W(E2) = W(E1)\{x}.

Facts 9.7 and 9.6 are sufficient to observe that the set {E′ | E�∗E′} combined with
� forms a DAG of bounded height. However, this is not sufficient for our purposes of
providing a lower bound on the number of equations contained in {E′ | E �∗ E′}. The
following lemma shows that this DAG is in fact a tree by confirming that for each
equation (which is not a leaf node), the two ‘subtrees’ rooted at the two children of
that equation do not share any vertices.

Lemma 9.8 Let E, E1, E2 be basic regular word equations such that E →L E1 and
E →R E2. Let S1 = {E′

1 | E1 �∗ E′
1} and let S2 = {E′

2 | E2 �∗ E′
2}. Then S1 ∩S2 = ∅

and E /∈ S1 ∪ S2.

Proof The fact that E /∈ S1 ∪ S2 follows from the fact that, by Fact 9.7, for
all E′ ∈ S1 ∪ S2, we have Card(W(E′)) ≤ Card(W(E1)) = Card(W(E2)) <

Card(W(E)). We shall next consider the claim that S1 ∩ S2 = ∅. Notice
that it follows from the definitions of →R and →L that if E′ � E′′ and
w ∈ var(E′)\W(E′), then firstly w ∈ var(E′′)\W(E′′), and secondly
QE′(w) = QE′′(w) where QE′ , QE′′ are the functions defined in accor-
dance with Definition 5.1. Now, if Card(W(E)) ≤ 2, then the statement fol-
lows trivially. Otherwise let x, y, z1, z2, . . . , zk, w1, w2, . . . , wk ∈ X such that
{z1, z2, . . . , zk} = {w1, w2, . . . , wk}, and α, β, γ1, γ2, . . . , γk, δ1, δ2, . . . , δk ∈
(X\{x, y, z1, z2, . . . , zk})∗ such that var(γi) ∩ var(δj) = ∅ for 0 ≤ i ≤ k and such
that E may be written as:

xγ0z1γ1z2γ2 . . . zkγkyα
.= yδ0w1δ1w2δ2 . . . wkδkxβ.

From Fact 9.7, it follows that y /∈ W(E1), so we may conclude that QE′(y) =
QE1(y) for all E′ ∈ S1. Similarly, it follows from Fact 9.7 that x /∈ W(E2), and
we may hence conclude that QE′(x) = QE2(x) for all E′ ∈ S2. Now, let u, v be
the rightmost variables in zkγk and wkδk respectively. Then QE1(y) = QE2(x) =
(u, v). However, since E′ is regular, x �= y, so by properties of the functions QE′
(namely that by Remark 5.2 they are injective), we cannot have that QE′(x) = (u, v)

for any E′ ∈ S1 and likewise we cannot have QE′(y) = (u, v) for any E′ ∈ S2.
Consequently, S1 ∩ S2 = ∅.

Lemma 9.8, along with Facts 9.6 and 9.7, are sufficient to confirm our claim that
the set {E′ | E �∗ E′} forms a balanced binary tree of height Card(W(E)) − 2. Thus
we are now in a position to state the cardinality of {E′ | E�∗E′} precisely as follows.

Theory of Computing Systems

Lemma 9.9 Let E be a basic regular word equation such that Card(W(E)) ≥ 2. Let
S = {E′ | E �∗ E′}. Then Card(S) = 2Card(W(E))−1 − 1.

Proof We shall prove the claim by induction on Card(W(E)). If Card(W(E)) = 2
then S = {E} and the statement is immediate. Now suppose that the claim holds
for all basic regular word equations E such that Card(W(E)) ≤ n for some n ≥
2. Let E be a basic regular word equation such that Card(W(E)) = n + 1. Then
Card(W(E)) > 2, so by Fact 9.6, there exist E1, E2 ∈ [E]⇒ such that E →L E1
and E →R E2. From the definitions, we have that S = {E} ∪ S1 ∪ S2 where S1 =
{E′

1 | E1 �∗ E′
1} and S2 = {E′

2 | E2 �∗ E′
2}. By Lemma 9.8, it follows that Card(S) =

1 + Card(S1) + Card(S2). Moreover, since Card(W(E1)) = Card(W(E2)) = n, we
have from our induction hypothesis that Card(S1) = Card(S2) = 2n−1 − 1. Thus we
have Card(S) = 2(2n−1 − 1) + 1 = 2(n+1)−1 − 1 as required.

Lemma 9.9 together with Fact 9.5 are sufficient to provide lower bounds on the
number of vertices of G ⇒[E], and we are nearly ready to provide the counterpart to
Lemma 9.2. The final step before we do so is the following lemma which charac-
terises the basic RWEs E for which the set of vertices of G ⇒[E] is exactly W(E). Since
by Fact 9.5, W(E) is always a subset of the vertices of G ⇒[E], this naturally leads us to
the extremal case in which the lower bound is obtained.

Lemma 9.10 Let E be a basic regular word equation. Let S = {E′ | E �∗ E′}. Then
S = [E]⇒ if and only if E is regular reversed.

Proof Let E be a basic regular word equation. If Card(var(E)) = 1 then E can be
written as x = x, for some x ∈ X, meaning that E is regular reversed, and moreover,
that S = [E]⇒ = {E}, so the statement holds trivially. Suppose henceforth that
Card(var(E)) ≥ 2.

Consider first the case that E′ is not regular reversed for all E′ ∈ [E]⇒. Then by
Lemma 6.13, there exists E1 ∈ [E]⇒ such that E1 has the form xαy

.= yβx where
x, y ∈ X and α, β ∈ (X\{x, y})∗. By our assumption, E1 is not regular reversed.
Hence we may write E1 as:

xα1uα2vα3y
.= yβ1uβ2vβ3x

where x, y, u, v ∈ X and α1, α2, α3, β1, β2, β3 ∈ (X\{x, y, u, v})∗. Thus, by
Lemma 7.2 we have that E2 ∈ [E]⇒ where E2 is given by xα1vα3uα2y

.=
yβ1vβ3uβ2x. However, Card(W(E1)) = Card(W(E2)) = n. Since by Fact 9.7, E′ �
E′′ implies Card(W(E′′)) < Card(W(E′)), and hence Card(W(E′)) < Card(W(E))

for all E′ ∈ S\{E}, we may immediately conclude that at least one of E1, E2 /∈ S,
and hence S �= [E]⇒.

Now suppose that E is regular reversed. We have the following claim:

Claim 9.10.1 Let E′ ∈ S be given by α
.= β. Then the equation πW(E′)(α)

.=
πW(E′)(β) is regular reversed.

Theory of Computing Systems

Proof We shall prove the claim by induction on Card(W(E′)). In particular note
that if Card(W(E′)) = Card(W(E)), then by Fact 9.7, we have E′ = E and
the statement holds trivially. Now suppose for some n that the claim holds for
all E′ ∈ S with Card(W(E′)) ≥ n. Let E′ ∈ S such that Card(W(E′)) =
n − 1. By definition, since E′ �= E, there exists E′′ ∈ S such that E′′ � E′.
By Fact 9.7, we have also that Card(W(E′′)) = n. Assume w.l.o.g. that E′′ →R

E′. Then by the induction hypothesis, there exist x, y, z1, z2, . . . , zn−2 ∈ X, and
α, β, γ0, γ1, γ2, . . . , γk, δ0, δ1, δ2, . . . , δk ∈ (X\{x, y, z1, z2, . . . , zk})∗ such that
var(γi) ∩ var(δj) = ∅ for 0 ≤ i ≤ k and such that E′′ is given by

xγ0z1γ1z2 . . . zkγkyα
.= yδ0zkδ1zk−1δ2 . . . z1δkxβ

and E′ is given by

z1γ1z2 . . . zkγkxγ0yα
.= yδ0zkδ1zk−1δ2 . . . z1δkxβ.

Note that W(E′) = W(E′′)\{x} = {y, z1, z2, . . . , zk}. Erasing all the variables not
in W(E′) from E′ yields

z1z2 . . . zky
.= yzkzk−1 . . . z1

which is regular reversed so the statement of the claim holds for E′. By induction, it
holds for all E′ ∈ S as required.

Now suppose for contradiction that [E]⇒ �= S. This implies that there exists
E′ ∈ [E]⇒ such that E′ /∈ S. Now, by Fact 9.5, this implies that there exists
a sequence E1, E2, . . . En such that E1 = E, En /∈ S and such that either
Ei � Ei+1 or Ei+1 � Ei for each i, 1 ≤ i < n. Let us take the shortest such
sequence. Note that this implies that Ei ∈ S for all i, 1 ≤ i < n, and conse-
quently, that Ei � Ei+1 for all i, 1 ≤ i < n − 1, and that En−1 � �En, meaning
that En � En−1 instead. It follows from the fact that W(E) = Card(var(E)), and
by Fact 9.7 that there does not exist E′ ∈ [E]⇒ such that E′ � E. Hence we
may additionally conclude that n > 2. Moreover, since En−2 ∈ S and En /∈ S,
we have that En−2 �= En. Thus we must necessarily have that either En−2 → LEn−1
and En →R En−1, or symmetrically En−2 →R En−1 and En →L En−1.
W.l.o.g. we may assume the first case holds. Then it follows from the definitions that
there exist x1, x2, y1, y2, z1, z2, α1, α2, α3, β1, β2, β3, γ1, γ2, γ3, δ1, δ2, δ3 such that
var(α1α2) ⊆ var(β3), var(β1β2) ⊆ var(α3), var(γ1γ2) ⊆ var(δ3) and var(δ1δ2) ⊆
var(γ3), and such that En−2 is given by x1α1z1α2y1α3

.= y1β1z1β2x1β3, En is given
by x2γ1z2γ2y2γ3

.= y2δ1z2δ2x2δ3, and therefore that En−1 can be written both as

z1α2x1α1y1α3
.= y1β1z1β2x1β3 and as x2γ1z2γ2y2γ3

.= z2δ2y2δ1x2δ3.

It follows that x2 = z1, z2 = y1, and thus that γ1 = α2x1α1, α3 = γ2y2γ3, β1 =
δ2y2δ1, and δ3 = β2x1β3. Consequently, we may write En−2 as:

x1α1z1α2y1γ2y2γ3
.= y1δ2y2δ1z1β2x1β3.

Now, let E′
n−1 be the equation

x1α1z1α2y1γ2y2γ3
.= y2δ1z1β2y1δ2x1β3.

Theory of Computing Systems

Since var(δ2) ⊆ var(γ3) ⊆ var(α3), we have that var(δ2) ∩ var(α1α2γ2) = ∅, and
consequently, E′

n−1 →L En−2. However, since z1, y1 ∈ W(E′
n−1), we can infer from

Claim 1.10.1 that En−1 /∈ S. However, this contradicts our earlier assumption that the
sequence E1, E2, . . . , En is minimal, since E1, E2, . . . En−2, E

′
n−1 also satisfies that

E1 = E, E′
n−1 /∈ S and Ei � Ei+1 or Ei+1 � Ei for 1 ≤ i < n − 2 and E′

n−1 � En−2.
Thus, we must have that [E]⇒ = S as required.

We are now ready to give the tight lower bounds on the number of vertices in G ⇒[E],
and to characterise those equations for which the lower bounds are achieved. The
final step is to move from the bounds depending on Card(W(E)) given by Lemma 9.9
to bounds depending on Card(var(E)) by noting that by Lemma 6.13, there is always
an equation in G ⇒[E] for which Card(var(E)) = Card(W(E)).

Lemma 9.11 Let E be a basic regular word equation. Let n = Card(var(E)) and
suppose that n ≥ 2. Let V be the number of vertices in G ⇒[E]. Then V ≥ 2n−1 − 1.

Moreover, V = 2n−1 − 1 if and only if E is regular reversed.

Proof Let E be a basic regular word equation and let n = Card(var(E)) ≥ 2. Let
V = Card([E]⇒) be the number of vertices in G ⇒[E]. W.l.o.g. by Lemma 6.13, we may
assume that E has the form xαy

.= yβx for some x, y ∈ X and α, β ∈ (X\{x, y})∗.
Thus Card(W(E)) = n. Let S = {E′ | E �∗ E′}. Then by Fact 9.5, S ⊆ [E]⇒. By
Lemma 9.9, Card(S) = 2n−1 − 1. Hence we have that V ≥ 2n−1 − 1. Moreover, by
Lemma 9.10, S = [E]⇒ if and only if E is regular reversed. Hence V = 2n−1 − 1 if
and only if there exists E′ ∈ [E]⇒ such that E′ is regular reversed.

It is worth noting that the lower bound given by Lemma 9.11 is already exponen-
tial in the number of variables, which, since we consider basic RWEs, is proportional
to the length of the equation. In order to interpret these bounds in the more general
(i.e. not basic) case we recall from Section 4 that for any RWE α

.= β, there exist
prefixes α′, β ′ of α and β respectively such that E′ given by α′ .= β ′ is indecompos-
able, and such that G ⇒[E] is isomorphic to G ⇒

[E′]. In this case, the lower bound on the

number of vertices in G ⇒[E] becomes 2m−1 − 1 where m = Card(qv(E′)).
We conclude this section with the following theorem summarising the bounds on

the number of vertices in G ⇒[E].

Theorem 9.12 Let E be a basic RWE and let n = Card(var(α)). Suppose that
n > 1. Let V be the number of vertices in G ⇒[E]. Then:

1. 2n−1 − 1 ≤ V ≤ n!
2 ,

2. V = 2n−1 − 1 if and only if there exists E′ ∈ [E]⇒ such that E′ is regular
reversed,

3. V = n!
2 if and only if there exists E′ ∈ [E]⇒ such that E′ is regular rotated.

Proof Directly from Lemmata 9.2 and 9.11.

Theory of Computing Systems

10 DAG-Width

In addition to the size we are also able to give some insights about the connectedness
of the graphs, which, as discussed in Section 3.3, are of interest when solving RWEs
modulo additional constraints. We show firstly that there exist classes of equations E

for which dgw(G ⇒NT[E]) may be arbitrarily large.

Theorem 10.1 Let x, y, z0, z1, z2, . . . , zn ∈ X. Let E be the equation given by

xz0z1z2 . . . zny
.= yz0znzn−1 . . . z1x.

Then dgw(G ⇒NT[E]) > n.

To prove Theorem 10.1, we make use of the k-cops and robber games for directed
graphs as introduced by [5]. The following definition is taken directly from [5].

Definition 10.2 (Cops and robber game [5]) Given a directed graph G = (V , E),
the k-cops and robber game on G is played between two players, the cop and the
robber player. Positions of this game are pairs (X, r) where X ∈ V ≤k are the vertices
occupied by the cops and r ∈ V is the vertex occupied by the robber. The game is
played as follows:

– At the beginning, the cop player chooses X0 ∈ V ≤k , and the robber player
chooses a vertex r0 ∈ V , giving position (X0, r0).

– From position (Xi, ri), if ri /∈ Xi , then the cop player chooses Xi+1 ∈ V ≤k , and
the robber player chooses a vertex ri+1 ∈ V such that there is a directed path
from ri to ri+1 in the graph G\(Xi ∩ Xi+1).

– A play in the game is a maximal (finite or infinite) sequence π =
(X0, r0), (X1, r1), (X2, r2), . . . of positions given by the rules above.

– A play π is winning for the cop player if and only if it is finite. (Note that, by
the rules above, this implies that rm ∈ Xm for the last position (Xm, rm) of this
play.) A play π is winning for the robber player if and only if it is infinite.

– A (k-cop) strategy for the cop player is a function f from V ≤k × V to V ≤k . A
play (X0, r0), (X1, r1), . . . is consistent with a strategy f if Xi+1 = f (Xi, ri)

for all i. The strategy f is called a winning strategy if every play consistent with
the strategy is winning for the cop player.

– The cop number of a directed graph G is the least k such that the cop player has
a strategy to win the k-cops and robber game on G.

It is shown in [5] (Theorem 16) that for any directed graph G, there is a DAG-
decomposition of G of width at most k only if the cop player has a winning strategy
in the k-cops and robber game on G. Thus, to show that a graph G has DAG-width
greater than n, it is sufficient to show that there is no n-cop winning strategy in the
n-cops and robber game on G. This equivalently amounts to providing a winning
strategy for the robber. We shall use this fact to prove Theorem 10.1 as follows.
Figure 8 provides an example and depicts how the winning strategy for the robber
works.

Theory of Computing Systems

Theorem 10.1. Note that it is sufficient to show that the DAG-width of G ⇒[E] is greater
than n, since G ⇒[E] is a subgraph of G ⇒NT[E] . For 0 ≤ i ≤ n, let Ei be the (basic regular)
equation given by:

xzizi+1 . . . znz0z1z2 . . . zi−1y
.= yzizi−1 . . . z1z0znzn−1 . . . zi+1x

where x, y, z0, z1, . . . , zn ∈ X. Note that E = E0. Let V = [E]⇒. Before describing
a winning strategy for the robber in the n-cops and robber game on G ⇒[E], we define
some useful subsets of vertices of G ⇒[E] as follows. For each i, 0 ≤ i ≤ n and each
j, 0 ≤ i ≤ n with j > i, let:

T
j
i = {zizi+1 . . . znz0z1 . . . zi−1xy

.= yzizi−1 . . . z0znzn−1 . . . zi+1x,

zi+1 . . . znz0z1 . . . zi−1xziy
.= yzizi−1 . . . z0znzn−1 . . . zi+1x,

...

zj zj+1 . . . znz0z1 . . . zi−1xzizi+1 . . . zj−1y
.= yzizi−1 . . . z0znzn−1 . . . zi+1x}

∪{zj zj+1 . . . znz0z1 . . . zi−1xzizi+1 . . . zj−1y
.=

zizi−1 . . . z0znzn−1 . . . zj+1yzj zj−1 . . . zi+1x}
∪{zj+2 . . . znz0z1 . . . zi−1xzj zj+1zizi+1 . . . zj−1y

.=
zizi−1 . . . z0znzn−1 . . . zj+1yzj zj−1 . . . zi+1x,

...

zi−1xzj zj+1 . . . znz0z1 . . . zi−2zizi+1 . . . zj−1y
.=

zizi−1 . . . z0znzn−1 . . . zj+1yzj zj−1 . . . zi+1x}.
Similarly, for each i, 0 ≤ i ≤ n and each j, 0 ≤ j ≤ n with j < i, let:

T
j
i = { zizi+1 . . . znz0z1 . . . zi−1xy

.= yzizi−1 . . . z0znzn−1 . . . zi+1x,

zi+1 . . . znz0z1 . . . zi−1xziy
.= yzizi−1 . . . z0znzn−1 . . . zi+1x,

...

zj zj+1 . . . zi−1xzizi+1 . . . znz0z1 . . . zj−1y
.=yzizi−1. . .z0znzn−1 . . . zi+1x}

∪{ zj zj+1 . . . zi−1xzizi+1 . . . znz0z1 . . . zj−1y
.=

zizi−1 . . . z0znzn−1 . . . zj+1yzj zj−1 . . . zi+1x}
∪{ zj+2 . . . zi−1xzj zj+1zizi+1 . . . znz0z1 . . . zj−1y

.=
zizi−1 . . . zj+1yzj zj−1 . . . z0znzn−1 . . . zi+1x,

...

zi−1xzj zj+1 . . . zi−2zizi+1 . . . znz0z1 . . . zj−1y
.=

zizi−1 . . . zj+1yzj zj−1 . . . z0znzn−1 . . . zi+1x}.
For each i, 0 ≤ i ≤ n, let Sout

i = ⋃

0≤j≤n,i �=j

T
j
i and let

Sin
i = { xzizi+1 . . . znz0z1 . . . zi−1y

.= zj zj−1 . . . z0znzn−1 . . . zi+1yzizi−1 . . . zj+1x | j ≤ i}
∪{ xzizi+1 . . . znz0z1 . . . zi−1y

.= zj zj−1 . . . zi+1yzizi−1 . . . z0znzn−1 . . . zj+1x | j > i}.

Theory of Computing Systems

Note that Sin
i = {E′ | E′ ⇒∗

L Ei}\{Ei}. Moreover, we shall now show that for each
Ei, Ej with i �= j , there exist F1, F2, . . . , Fk ∈ Sout

i and G1, G2, . . . G� ∈ Sin
j such

that

Ei ⇒ F1 ⇒ F2 ⇒ . . . Fk ⇒ G1 ⇒ G2 ⇒ . . . ⇒ G� ⇒ Ej . (4)

Indeed, observe that

Ei ⇒ zizi+1 . . . znz0z1 . . . zi−1xy
.= yzizi−1 . . . z0znzn−1 . . . zi+1x

⇒ zi+1 . . . znz0z1 . . . zi−1xziy
.= yzizi−1 . . . z0znzn−1 . . . zi+1x

...

⇒ zj zj+1 . . . znz0z1 . . . zi−1xzizi+1 . . . zj−1y
.= yzizi−1 . . . z0znzn−1 . . . zi+1x

⇒ zj zj+1 . . . znz0z1 . . . zi−1xzizi+1 . . . zj−1y
.=

zizi−1 . . . z0znzn−1 . . . zj+1yzj zj−1 . . . zi+1x

⇒ zj+2 . . . znz0z1 . . . zi−1xzj zj+1zizi+1 . . . zj−1y
.=

zizi−1 . . . z0znzn−1 . . . zj+1yzj zj−1 . . . zi+1x

...

⇒ zi−1xzj zj+1 . . . znz0z1 . . . zi−2zizi+1 . . . zj−1y
.=

zizi−1 . . . z0znzn−1 . . . zj+1yzj zj−1 . . . zi+1x

⇒ xzj zj+1 . . . znz0z1 . . . zi−1zizi+1 . . . zj−1y
.=

zizi−1 . . . z0znzn−1 . . . zj+1yzj zj−1 . . . zi+1x ∈ Sin
j .

Thus, there exist F1, F2, . . . , Fk ∈ Sout
i and G1 ∈ Sin

j such that Ei ⇒ F1 ⇒ F2 ⇒
. . . ⇒ Fk ⇒ G1. By definition, Sin

j = {E′ | E′ ⇒∗
L Ej }\{Ej }, so it follows directly

that there exist G2, . . . , G� ∈ Sin
j such that G1 ⇒ G2 ⇒ . . . ⇒ Ej as claimed.

Consequently, we may conclude that Sin
i ∪ Sout

i {Ei} ⊂ [E]⇒ for all i, 0 ≤ i ≤ n.
Clearly, each Ei , 0 ≤ i ≤ n is not contained in any SZ

j for 0 ≤ j ≤ n and Z ∈
{in, out}. Furthermore, since the RHS of every equation in Sout

i has either yzi or
zi as a prefix, Sout

i ∩ Sout
j = ∅ whenever i �= j . Similarly since the LHS of every

equation in Sin
i has xzi as a prefix, Sin

i ∩ Sin
j = ∅ whenever i �= j . Since the LHS

of all equations in Sin
i has x as a prefix, and since the LHS all equations in Sout

j does

not have x as a prefix, we may conclude further that SZ
i ∩ SZ′

j = ∅ for all i �= j and
Z, Z′ ∈ {in, out}.

We are now ready to give the strategy for the robber in the n-cops and robber game
on G ⇒[E]. We shall say that Ei is a ‘safe’ vertex if Sin

i ∪ Sout
i ∪ {Ei} contains no vertex

with a cop on it. Since there are only n cops, it follows from the fact that the sets
Sin

i ∪ Sout
i ∪ {Ei} are pairwise disjoint that, at any given time, there must be at least

one i, 0 ≤ i ≤ n such that Ei is safe. By definition, if the robber is on a safe vertex,
then there is no cop also on that vertex, so the play continues.

Clearly, if the cop player chooses an initial placement X0 ∈ [E]≤n⇒ , then the robber
may be placed on a safe vertex r0 = Ei1 for some i1, 0 ≤ i1 ≤ n. Now, suppose
after k steps in the game the position is (Xk, rk) where rk is a safe vertex. Then we

Theory of Computing Systems

Fig. 8 A depiction of the graph G ⇒[E] in the case that E = xz0z1z2y
.= yz0z2z1x. Thus this is an example

of Theorem 10.1 for the case n = 2. The graph is divided into sections corresponding to the (disjoint)
sets {Ei} ∪ Sin

i ∪ Sout
i for 0 ≤ i ≤ 2. The vertices Ei are highlighted in bold while vertices from Sin

i are
coloured blue and vertices from Sout

i are coloured red. In order to conserve space, vertices belonging to
one of these sets are displayed with the LHS and RHS of the equation arranged vertically while for other
vertices the equations are omitted. Since there are three values for i, if there are two cops, there will always
be at least one i such that no vertex in {Ei} ∪ Sin

i ∪ Sout
i has a cop on it. The strategy of the robber is to

always be on Ei for such a choice of i. This is due to the fact that for each i and j , there is an path from
Ei to Ej visiting only vertices from Sout

i and Sin
j which can be used as an escape-route (an example for

i = 1 and j = 3 is highlighted in bold in the figure). Thus, if at any given stage in the game, a cop moves
to a vertex in {Ei} ∪ Sin

i ∪ Sout
i , the robber can use the escape route to safely move to some Ej for which

no vertex in {Ej } ∪ Sin
j ∪ Sout

j has a cop on it. The edges making up the escape-route paths needed for this
strategy are given by solid arrows, while the other edges which are not used by the robber are dashed

shall show that, whatever the cop player chooses for Xk+1, the robber may choose
rk+1 such that rk+1 is safe. Indeed, if rk = Eik for some ik, 0 ≤ ik ≤ n is safe, then
(Sout

ik
∪{Eki

})∩Xk = ∅. Moreover, since there are only n cops, whatever the choice of
Xk+1, there exists rk+1 = Eik+1 for some ik+1, 0 ≤ ik+1 ≤ n such that Eik+1 is safe,
meaning that Xk+1∩(Sin

ik+1
∪{Eik+1}) = ∅. It follows that Sout

ik
∪Sin

ik+1
∪{Eik , Eik+1} ⊂

[E]⇒\(Xk+1 ∩ Xk). We have already shown (Equation 4) that there is a directed
path in G ⇒[E] using only vertices from Sout

ki
∪ Sin

ki+1
∪ {Eik , Eik+1} from rk(= Eik) to

Theory of Computing Systems

rk+1(= Eik+1), and hence (Xk+1, rk+1) is a valid next position satisfying the rules of
the game. Since rk+1 is also safe, this proves our claim, and by a simple induction,
it follows that for any n-cop strategy, there is an infinite play (i.e. robber wins). It
follows that there is no winning n-cop strategy, so the DAG-width of G ⇒[E] is greater
than n as required.

Since high connectivity can be seen as an obstacle to deciding the satisfiability
problem with additional constraints, it is also worth noting classes for which the
DAG-width is bounded by a small constant. If all variables occur at most once in
an equation E, then it is not difficult to see that the graph G ⇒NT[E] will be a DAG.
However, when variables may occur more than once, the graphs of even very simple
equations such as xab

.= bax will contain cycles, and will therefore have DAG-
width at least two. The following theorem describes an infinite class of equations
for which the DAG-width of G ⇒NT[E] is at most two. It is worth pointing out that the
NP-hardness result for the satisfiability problem for regular word equations from [8]
applies to this class, and so, by Theorem 8.12, this class also has an NP-complete
satisfiability problem.

Theorem 10.3 Let α1, α2, . . . , αn, β1, β2, . . . , βn ∈ X∗ such that

1. |αi | = |βi | ∈ {1, 2, 3} for 1 ≤ i ≤ n, and
2. var(αi) = var(βi) for 1 ≤ i ≤ n, and
3. var(αi) ∩ var(αj) = ∅ for 1 ≤ i, j ≤ n with i �= j .

Let E be the RWE α1α2 . . . αn
.= β1β2 . . . βn. Then dgw(G ⇒NT[E]) ≤ 2.

Proof Let E be of the form described in the theorem. By Proposition 3.5,

dgw(G ⇒NT[E]) = max{m | E ⇒∗
NT E′ and m = dgw(G ⇒

[E′])}.
Let C be the subclass of RWEs of the form α1α2 . . . αk

.= β1β2 . . . βk where k ∈ N0
such that:

1. αi, βi ∈ X∗with |αi | = |βi | ∈ {1, 2, 3} for 1 ≤ i ≤ k, and
2. var(αi) = var(βi) for 1 ≤ i ≤ k, and
3. var(αi) ∩ var(αj) = ∅ for all i �= j , 1 ≤ i, j ≤ k.

Clearly, we have E ∈ C . Since k is not restricted, we may also assume w.l.o.g.
that for any word equation in C , the ‘sub-equations’ αi

.= βi are indecomposable.
Moreover, if E′ is not the equation ε

.= ε, we may also assume that |α1| ≥ 1. Under
these assumptions, it follows from Corollary 4.4 that for any E′ ∈ C , the graph G ⇒

[E′]
is isomorphic to the graph G ⇒

[α1
.=β1]. There are four possibilities for α1

.= β1 (up to a
renaming of the variables, which does not alter the structure of the graph G ⇒

[α1
.=β1]),

namely x
.= x, xy

.= yx, xyz
.= zyx, xyz

.= yzx and xyz
.= zxy. It is easily verified

by hand that in all cases the DAG-width is at most two (it is exactly two in the cases
where |α1| = |β1| = 3). Moreover, it follows from the definitions that if E1 ∈ C and
E1 ⇒NT E2 for some E2, then E2 ∈ C . Consequently, we have that

dgw(G ⇒NT[E]) = max{m | E ⇒∗
NT E′ and m = dgw(G ⇒

[E′])} ≤ 2.

Theory of Computing Systems

11 Extension to Systems of Equations

So far, we have considered individual equations. However, it is often the case that
there is not just one equation to be solved, but a system of several equations which
should be satisfied concurrently. However, while constructions exist which transform
a system of equations into a single equation (see e.g. [17]), the resulting equation will
generally not be quadratic/regular. We extend the definition of regular equations to
regular systems as follows.

Definition 11.1 (Regular systems) Let Θ = {α1
.= β1, α2

.= β2, . . . , αn
.= βn} be

a system of word equations. An orientation of Θ is any element of {α1
.= β1, β1

.=
α1} × {α2

.= β2, β2
.= α2} × . . . × {αn

.= βn, βn
.= αn}. We say that Θ is regular if

it has an orientation for which each variable occurs at most once across all LHSs and
at most once across all RHSs.

We can easily adapt the algorithm from Section 3 to work more generally for
systems of word equations, and with careful application, still make use of Theo-
rem 8.11 in order to obtain (non-deterministic) polynomial running time. To do this,
we need to extend the rewriting transformations (Nielsen transformations) underpin-
ning the relation ⇒NT which we have thus far defined for single equations only.
Note that each possible rewriting of a single equation can be achieved by firstly
applying a morphism to both sides of the equation then followed, if applicable, by
cancelling the longest identical prefixes of the new LHS and RHS. For example, the
rewriting xayzba

.= ybwbza ⇒NT axyzba
.= ybwbza consists of applying the

morphism ψy>x (cf. Section 3) to both sides of the first equation in order to get
xaxyzba

.= xybwbza and then cancelling the resulting leftmost occurrences of x.
The generalisation of the Nielsen Transformations to systems of equations is

straightforward: we select one of the word equations E from the system, and apply
any of the possible transformations to it as before. Then we simply need to apply the
associated morphism to both sides of all the other equations in the system, followed
by any further resulting cancellations. We shall say that such a transformation is
rooted on the chosen equation E, and we shall write Θ ⇒E

NT Θ ′ if Θ, Θ ′ are systems
of word equations such that Θ ′ is the result of applying a transformation rooted on E

to Θ . So if, for example, we have the system {xayzba
.= ybwbza, wba

.= abx},
then one possible transformation of the first equation is xayzba

.= ybwbza ⇒NT

xayzba
.= bwbza obtained by applying the morphism ψx>y and cancelling the

resulting leftmost occurrences of y. To extend this transformation to the whole sys-
tem, we just need to apply ψx>y to the other equation (no further cancellation is
required in this case) so we have {xayzba

.= ybwbza, wba
.= abx} ⇒E

NT{xayzba
.= bwbza, wba

.= abyx} where E is the equation xayzba
.= ybwbza.

Taking the length |Θ| of a system Θ of word equations to be the sum of the lengths
of all the individual word equations, it is easily seen that the important properties of
this rewriting carry over to the case of systems. Specifically, it is easily verified that
for any regular system Θ of word equations each of the following holds:

1. If E ∈ Θ and Θ ⇒E
NT Θ ′, then Θ ′ is also regular,

Theory of Computing Systems

2. If E ∈ Θ and Θ ⇒E
NT Θ ′, then |Θ ′| ≤ |Θ|,

3. for any solution h to Θ , and for any E ∈ Θ with |E| > 0 there exists a system
Θ ′ with a solution h′ such that Θ ⇒E

NT Θ ′ and either h′ is smaller than h or
|Θ ′| < |Θ|.

With this in mind, we are now able to extend our main result that solving regular
word equations is in NP to include regular systems of equations.

Theorem 11.2 The satisfiability problem for regular systems of equations is NP-
complete. Moreover, whether a system of word equations is regular can be decided
in polynomial time.

Proof Since the satisfiability problem is NP-hard for regular word equations, it is
also NP-hard for regular systems of word equations. Next we shall show inclusion in
NP. Let Θ = {E1, E2, . . . , En} be a regular system of equations. From Observations
1-3 above, there is a solution to Θ if and only if there exists a finite sequence of
transformations

Θ0 ⇒Ê1
NT Θ1 ⇒Ê2

NT . . . ⇒Êm

NT Θm

satisfying Θ = Θ0, Θm = {ε .= ε} and Êi ∈ Θi−1 for 1 ≤ i ≤ m. In fact, by
Observation 3, we may freely choose each Êi to be any equation from Θi−1, and such
a finite sequence must still exist whenever there is a solution. Consequently, we may
decide whether or not a solution exists with the following procedure (Algorithm 1)
which searches for such a sequence by applying firstly transformations rooted on the
first equation, followed transformations rooted on the second equation, then the third,
etc. For convenience, we shall represent Θ as an ordered list [E1, E2, . . . , En] rather
than a set.

We begin by non-deterministically applying a sequence of Nielsen transforma-
tions (generalised for systems of word equations) rooted on the first equation in the

Theory of Computing Systems

list until we reach a system of the form [ε .= ε, E′
2, . . . , E

′
n]. If we are not able to

transform E1 into ε
.= ε, then no solution to E1 exists and the system has no solution.

Otherwise, once we have transformed E1 into the ε
.= ε, we repeat the process

of applying the generalised Nielsen transformations to the (new) second equation E′
2

until it has also been transformed into ε
.= ε (note that none of the transformations

will change the trivial equation ε
.= ε). Continue to repeat this process for each

equation, in increasing order, until either an equation is reached which cannot be
transformed into ε

.= ε, or until we have transformed all equations into this form. In
the former case, there is no solution, while in the latter case, a solution exists.

It remains to be seen that we can implement the procedure just described such that
it runs in non-deterministic polynomial time. For this, we need a few further observa-
tions. The first is that when applying transformations rooted on the ith equation, we
are essentially traversing the same graph G ⇒NT

[Ẽi] as if we were to consider in isolation

the equation Ẽi obtained after transforming the first i − 1 equations into ε
.= ε. The

only difference is that we are potentially changing the other equations as we go. The
second important observation is that any transformation rooted on the ith equation
which changes any of the other (non-root) equations must necessarily decrease the
length of the ith equation. Finally, the equation on which a transformation is rooted
never increases in length as a result of that transformation. Thus, by applying the
transformations in the order specified, we never increase the length of ith equation
once it becomes the current root.

Consequently, when applying transformations which preserve the length of the
ith equation, we may, without affecting the outcome, take the shortest path through
the graph. Moreover, since we can only decrease the length of an equation a linear
number of times, the maximum number of transformations rooted on the ith equation
needed in order to find a solution when one exists is bounded above by

Ci = |Ẽi | max{diam(G ⇒[E]) | Ẽi ⇒∗
NT E}.

By Theorem 8.11, we can easily compute an upper bound CΘ ≥ max{Ci | 1 ≤ i ≤
n} on the number of transformations needed which allows us to restrict the above
procedure such that it works in non-deterministic polynomial time without affecting
the correctness.

Finally, we describe the following procedure (Algorithm 2) for determining if a
system Θ = {E1, E2, . . . , En} is regular. First we check that each individual equa-
tion is regular and that no variable occurs more than twice across the whole system.
We then initialise two sets L and R to the empty set. The sets L and R will keep
track of variables occurring across the LHS’s and RHS’s of an orientation of Θ . We
remove equations α

.= β from Θ one-by-one, deciding each time whether α
.= β or

β
.= α should be included in the orientation and updating L and R accordingly.
While there are still equations left in the system, there are two cases to consider.

The first is that there exists an equation α
.= β ∈ Θ which contains at least one

variable x which is already in L or R. In this case, we can rule out at least one choice
of α

.= β or β
.= α when constructing an orientation satisfying the definition for

regular systems. In particular, if x ∈ L, then whichever of α, β contains x should be
the RHS in the orientation (so, if x occurs in α, we include β

.= α in the orientation

Theory of Computing Systems

instead of α
.= β). Likewise if x ∈ R then whichever of α, β contains x should be

the LHS. Once we have decided which of α
.= β and β

.= α is a bad choice (in that it
would lead to two occurrences of x in either the LHS’s or RHS’s), we need to check
that the remaining “oriented” equation does not lead to a similar conflict (possibly
for one of the other variables). To do this, we simply need to check that the LHS does
not share any variables with L and likewise that the RHS does not share any variables
with R. If this test is failed then our system is not regular and we can stop and return
“No”. Otherwise we add all the variables from the LHS of the oriented equation to L

and all the variables from the RHS to R. Then we remove the equation α
.= β from

the system Θ and continue.

The second case is when none of the variables occurring in the remaining equa-
tions are contained in either L or R. In this case, how we construct the rest of the
orientation is not dependant on the previous choices. Moreover, for any orientation
satisfying the definition, we can find another by simply swapping the LHS’s and
RHS’s of all equations. Thus by symmetry, we may include any single one of the

Theory of Computing Systems

remaining equations in the orientation without exchanging the LHS and RHS, and
without affecting the possibility of constructing a valid orientation in the end. Thus,
we then pick any of the remaining equations α

.= β at random and add the variables
from α to L and all the variables from β to R, before removing α

.= β from Θ and
continuing. If we are able to iterate through and discard all equations in the system
like this without returning “No”, then the system is regular and we may return “Yes”.
The correctness, along with the fact that the procedure runs in polynomial time are
easily verified.

12 Conclusions

A famous algorithm for solving quadratic word equations can be used to produce
a (directed) graph containing all solutions to the equation. In the case of regular
equations, we have described some underlying structures of these graphs with the
intention of better understanding their solution sets. We give bounds on their diameter
and number of vertices, as well as provide classes with bounded (resp. unbounded)
DAG-width. Probably the most significant result arising from our analysis is that the
satisfiability problem for regular word equations is in NP (and thus NP-complete),
which we also extend to regular systems of equations.

We leave open many interesting problems, the most obvious of which is to gen-
eralise our results to the (full) quadratic case. We also believe that our analysis and
techniques open up the possibility to investigate in far more detail the graphs G ⇒[E],
both in the case of regular equations and more generally. For example, in light of
our results, it seems reasonable to suggest that determining whether E1 ⇒∗ E2 for
two regular equations E1 and E2 may be done in polynomial time. A particularly
nice characterisation of E1 and E2 such that E1 ⇒∗ E2 might yield a much quicker
algorithm than the one resulting from our bound on the diameter of G ⇒NT[E] by signif-
icantly reducing the degree of the polynomial. We also expect that a detailed analysis
of the length-reducing transformations and symmetries which may be found there
would be particularly helpful in understanding further the structure of solution sets
and the performance of algorithms solving regular equations in practice.

Finally, we mention the task of investigating the decidability of the satisfiability prob-
lem for regular equations with additional constraints, in particular length constraints,
with the hope that having identified cases where the DAG-width is particularly high/low,
along with improved means to describe precisely the structure of the solution-graphs,
might provide some useful hints with how to proceed in this direction.

Acknowledgements We thank the anonymous referees for their detailed and thoughtful comments.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://creativecommons.org/licenses/by/4.0/

Theory of Computing Systems

References

1. Abdulla, P.A., Atig, M.F., Chen, Y., Holı́k, L., Rezine, A., Rümmer, P., Stenman, J.: Norn: An
SMT Solver for String Constraints. In: Proc. Computer Aided Verification (CAV), Lecture Notes in
Computer Science (LNCS), vol. 9206, pp. 462–469 (2015)

2. Alkhalaf, M., Bultan, T., Yu, F.: STRANGER: an Automata-Based String Analysis Tool for PHP. In:
Proc. Tools and Algorithms for the Construction and Analysis of Systems (TACAS), Lecture Notes in
Computer Science (LNCS), vol. 6015 (2010)

3. Angluin, D.: Finding patterns common to a set of strings. J. Comput. Syst. Sci. 21, 46–62 (1980)
4. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T., Reynolds, A., Tinelli, C.:

CVC4. In: Proc. Computer Aided Verification (CAV), Lecture Notes In Computer Science (LNCS),
vol. 6806, pp. 171–177 (2011)

5. Berwanger, D., Dawar, A., Hunter, P., Kreutzer, S., Obdrzálek, J.: The DAG-width of directed graphs.
J Combin Theory Series B 102(4), 900–923 (2012)

6. Berzish, M., Ganesh, V., Zheng, Y.: Z3str3: a String Solver with Theory-Aware Heuristics. In: Proc.
Formal Methods in Computer-Aided Design (FMCAD), pp. 55–59. IEEE (2017)

7. Day, J.D., Ganesh, V., He, P., Manea, F., Nowotka, D.: The Satisfiability of Word Equations: Decid-
able and Undecidable Theories. In: Potapov, I., Reynier, P. (eds.) Proc. 12th International Conference
on Reachability Problems, RP 2018, Lecture Notes in Computer Science (LNCS), vol. 11123,
pp. 15–29 (2018)

8. Day, J.D., Manea, F., Nowotka, D.: The Hardness of Solving Simple Word Equations. In: Proc.
Mathematical Foundations of Computer Science (MFCS), LIPIcs, vol. 83, pp. 18:1–18:14 (2017)

9. Day, J.D., Manea, F., Nowotka, D.: Upper Bounds on the Length of Minimal Solutions to Cer-
tain Quadratic Word Equations. In: Proc. Mathematical Foundations of Computer Science (MFCS),
LIPIcs, vol. 138, pp. 44:1–44:15 (2019)

10. Diekert, V., Jeż, A., Plandowski, W.: Finding all solutions of equations in free groups and monoids
with involution. Inf. Comput. 251, 263–286 (2016)

11. Diekert, V., Robson, J.M.: On Quadratic Word Equations. In: Proc. 16Th Annual Symposium on Theo-
retical Aspects of Computer Science, STACS, Lecture Notes in Computer Science (LNCS), vol. 1563,
pp. 217–226 (1999)

12. Ehrenfeucht, A., Rozenberg, G.: Finding a homomorphism between two words is NP-complete. Inf.
Process. Lett. 9, 86–88 (1979)

13. Freydenberger, D.D.: A logic for document spanners. Theory of Computing Systems 63(7), 1679–
1754 (2019)

14. Freydenberger, D.D., Holldack, M.: Document spanners: From expressive power to decision prob-
lems. Theory of Computing Systems 62(4), 854–898 (2018)

15. Jeż, A.: Recompression: a simple and powerful technique for word equations. J. ACM 63 (2016)
16. Jeż, A.: Word Equations in Nondeterministic Linear Space. In: Proc. International Colloquium on

Automata, Languages and Programming (ICALP), LIPIcs, vol. 80, pp. 95:1–95:13 (2017)
17. Karhumäki, J., Mignosi, F., Plandowski, W.: The expressibility of languages and relations by word

equations. J. ACM 47, 483–505 (2000)
18. Kiezun, A., Ganesh, V., Guo, P.J., Hooimeijer, P., Ernst, M.D.: HAMPI: a Solver for String Con-

straints. In: Proc. ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA), pp. 105–116. ACM (2009)

19. Lin, A.W., Barceló, P.: String Solving with Word Equations and Transducers: Towards a Logic for
Analysing Mutation Xss. In: ACM SIGPLAN Notices, vol. 51, pp. 123–136. ACM (2016)

20. Lin, A.W., Majumdar, R.: Quadratic Word Equations with Length Constraints, Counter Systems, and
Presburger Arithmetic with Divisibility. In: Lahiri, S.K., Wang, C. (eds.) Proc. 16th International Sym-
posium on Automated Technology for Verification and Analysis (ATVA), Lecture Notes in Computer
Science (LNCS), vol. 11138, pp. 352–369. Springer (2018)

21. Lothaire, M.: Algebraic Combinatorics on Words. Cambridge University Press, New York (2002)
22. Makanin, G.S.: The problem of solvability of equations in a free semigroup. Sbornik: Mathematics

32(2), 129–198 (1977)
23. Manea, F., Nowotka, D., Schmid, M.L.: On the complexity of solving restricted word equations. Int.

J. Found. Comput. Sci. 29(5), 893–909 (2018)
24. Petre, E.: An Elementary Proof for the Non-Parametrizability of the Equation Xyz = Zvx. In: Proc.

29Th International Symposium on Mathematical Foundations of Computer Science (MFCS), Lecture
Notes in Computer Science (LNCS), vol. 3153, pp. 807–817 (2004)

Theory of Computing Systems

25. Plandowski, W.: Satisfiability of Word Equations with Constants is in PSPACE. In: Proc. Foundations
of Computer Science (FOCS), pp. 495–500. IEEE (1999)

26. Plandowski, W., Rytter, W.: Application of Lempel-Ziv Encodings to the Solution of Words Equations.
In: Proc. International Colloquium on Automata, Languages and Programming (ICALP), Lecture
Notes in Computer Science (LNCS), vol. 1443, pp. 731–742 (1998)

27. Schulz, K.U.: Makanin’s Algorithm for Word Equations-Two Improvements and a Generalization. In:
International Workshop on Word Equations and Related Topics, pp. 85–150. Springer (1990)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	On the structure of solution-sets to regular word equations
	Abstract
	Introduction
	Our contribution

	Preliminaries
	An Algorithm for Solving Regular Word Equations
	Nielsen Transformations
	Representing the Set of Solutions as a Graph
	Solving Equations Modulo Constraints
	Properties of the Graphs GNT[E] for Regular Equations E

	Basic Equations: A Convenient Abstraction
	A Useful Invariant
	Jumbled Equations and a Special Case of Symmetry
	Proof of Theorem 6.8

	Normal Forms and Block Decompositions
	Proof of Theorem 7.11

	Diameter
	Size
	DAG-Width
	Extension to Systems of Equations
	Conclusions
	References

