
Theory of Computing Systems
https://doi.org/10.1007/s00224-021-10049-6

Finite Sequentiality of Finitely Ambiguous Max-Plus
Tree Automata

Erik Paul1

Accepted: 22 May 2021
© The Author(s) 2021

Abstract
We show that the finite sequentiality problem is decidable for finitely ambiguous
max-plus tree automata. A max-plus tree automaton is a weighted tree automaton
over the max-plus semiring. A max-plus tree automaton is called finitely ambiguous
if the number of accepting runs on every tree is bounded by a global constant. The
finite sequentiality problem asks whether for a given max-plus tree automaton, there
exist finitely many deterministic max-plus tree automata whose pointwise maximum
is equivalent to the given automaton.

Keywords Weighted tree automata ·Max-plus tree automata · Finite sequentiality ·
Decidability · Finite ambiguity

1 Introduction

A max-plus automaton is a finite automaton whose transitions are weighted by real
numbers. A max-plus automaton assigns a weight to each of its runs by adding the
weights of the transitions which constitute the run and it assigns a weight to every
word by taking the maximum over the weights of all runs on the given word. Max-
plus automata are weighted automata [1–5] over the max-plus semiring. In the form
of min-plus automata, they were originally introduced by Imre Simon as a means to
show the decidability of the finite power property [6, 7] and they enjoy a continuing
interest [8–14]. They have found applications in many different contexts, for example

This article belongs to the Topical Collection: Special Issue on International Colloquium on
Automata, Languages and Programming (ICALP 2020)
Guest Editors: Artur Czumaj and Anuj Dawar

This work was partially supported by Deutsche Forschungsgemeinschaft (DFG), Graduiertenkolleg
1763 (QuantLA).

� Erik Paul
epaul@informatik.uni-leipzig.de

1 Institute of Computer Science, Leipzig University, Augustusplatz 10, Leipzig, 04109, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s00224-021-10049-6&domain=pdf
http://orcid.org/0000-0002-0814-598X
mailto: epaul@informatik.uni-leipzig.de

Theory of Computing Systems

to determine the star height of a language [15], to prove the termination of certain
string rewriting systems [16], and to model discrete event systems [17]. They also
appear in the context of natural language processing [18], where probabilities are
often computed in the min-plus semiring as negative log-likelihoods for reasons of
numerical stability.

Like finite automata, max-plus automata are by definition non-deterministic
devices. However, while every finite automaton can be determinized [19], the same
is in general not true for max-plus automata [10]. In fact, it is a long-standing
open question whether given a max-plus automaton, the existence of an equivalent
deterministic automaton can be decided. This problem is commonly known as the
sequentiality problem and is one of the most prominent open questions about max-
plus automata. For practical applications, the execution of a deterministic automaton
is of course much more efficient than the execution of a non-deterministic one, so
being able to decide whether a given automaton can be determinized is very much
desirable. While open in general, the sequentiality problem has been shown to be
decidable for some important subclasses of max-plus automata, namely for unam-
biguous [18], finitely ambiguous [10], and polynomially ambiguous [20] max-plus
automata. Here, we call a max-plus automaton unambiguous if there exists at most
one run on every word, finitely ambiguous if the number of runs on each word is
bounded by a global constant, and polynomially ambiguous if the number of runs on
each word is bounded polynomially in the length of the word. Note that the classes
of deterministic, unambiguous, finitely ambiguous, polynomially ambiguous, and
arbitrary max-plus automata form a strictly ascending hierarchy [10, 14, 21]. Also,
deciding the degree of ambiguity of a max-plus automaton can easily be reduced to
deciding the degree of ambiguity of a finite automaton. It is trivial to decide whether
a finite automaton is deterministic. Polynomial time algorithms to decide whether
a finite automaton is unambiguous, finitely ambiguous, or polynomially ambiguous
can be found in [22–24].

While a given max-plus automaton may not be equivalent to a single determin-
istic max-plus automaton, this does not exclude the possibility that it is equivalent
to the pointwise maximum of finitely many deterministic automata. The problem of
deciding whether a max-plus automaton possesses such a finitely sequential repre-
sentation is known as the finite sequentiality problem. The decidability of the finite
sequentiality problem was posed as an open question in [9] and has been solved
only recently for unambiguous [25] and finitely ambiguous [26] max-plus automata.
Note that the class of max-plus automata which possess a finitely sequential rep-
resentation lies strictly between the classes of deterministic and finitely ambiguous
max-plus automata, and it is incomparable to the class of unambiguous max-plus
automata [10].

In this paper, we show that the finite sequentiality problem is decidable for finitely
ambiguous max-plus tree automata. Operating on trees instead of words, max-plus
tree automata are a generalization of max-plus word automata and more generally,
they are weighted tree automata [27–30] over the max-plus semiring. Applications
of max-plus tree automata include proving the termination of certain term rewrit-
ing systems [31] and they are commonly employed in natural language processing
[32] in the form of probabilistic context-free grammars. Our approach to proving the

Theory of Computing Systems

decidability of the finite sequentiality problem for finitely ambiguous max-plus tree
automata employs ideas from Bala’s proof of the corresponding result for finitely
ambiguous max-plus word automata [26]. However, due to lack of space, formal
proofs had to be omitted in [26] and Bala’s informal description of his methods does
not suffice for reconstruction. Also, no other published version of [26] exists. We pro-
vide an honest attempt to compare our approach to his but note that our interpretation
might not be accurate.

In his proof for max-plus word automata, Bala first introduces the A-Fork property
and then proceeds to show that this property is a decidable criterion characterizing the
finite sequentiality of a finitely ambiguous max-plus automaton. More precisely, he
shows that a finitely ambiguous max-plus automaton possesses a finitely sequential
representation if and only if the A-Fork property is not satisfied. To show the decid-
ability of the A-Fork property, he shows its expressibility in a decidable fragment of
Presburger arithmetic. To show that an automaton is not finitely sequential if the A-
Fork property is satisfied, he uses pumping techniques similar to those employed in
[25] for the finite sequentiality problem of unambiguous max-plus word automata.
This part of his proof most likely employs Ramsey’s Theorem [33] as it involves
“colorings of finite hypercubes’. His proof for the existence of a finitely sequential
representation in case that the A-Fork property is not satisfied employs transducers
and the notions of critical pairs and close approximations, none of which occur in our
approach. We are thus unsure about the nature of this particular part of the proof, but
it most likely uses a reduction to the decidability of the finite sequentiality problem
for unambiguous automata.

Our approach is as follows. First, we introduce the separation property, a twofold
modification of the A-Fork property. On the one hand, we endow our new property
with a criterion accounting for the non-linear structure of trees. This new criterion
is inspired by the criterion we added in [34] to the fork property [25], the prop-
erty characterizing finite sequentiality of unambiguous max-plus word automata, in
order to obtain the tree fork property, the property characterizing finite sequentiality
of unambiguous max-plus tree automata. On the other hand, we strengthen the A-
Fork property as with only the first modification, our new property would wrongly
characterize some finitely sequential automata as not being finitely sequential. We
then show that the separation property is decidable by employing Parikh s Theorem
[35, 36] for a reduction to the decidability of the satisfiability of systems of linear
inequalities over the rational numbers with integer solutions [37, 38]. This means in
particular that we show the decidability of the finite sequentiality problem only for
automata with weights in the rationals. Then we employ Ramsey’s Theorem to show
that no finitely sequential representation exists whenever the separation property is
satisfied. Due to the criterion accounting for the non-linearity of trees, this is con-
siderably more difficult than in [26] and it is in fact the most technical and the most
challenging aspect of our result. Finally, we show that if the separation property is not
satisfied for a given max-plus tree automaton, then we can construct finitely many
unambiguous max-plus tree automata which all do not satisfy the tree fork property
and whose pointwise maximum is equivalent to the automaton. By [34], these unam-
biguous automata then possess finitely sequential representations. Combining these,
we obtain a finitely sequential representation of the original automaton.

Theory of Computing Systems

An extended abstract of this paper appeared as [39]. Here, we provide full proofs
together with detailed illustrations for these.

2 Preliminaries

For a set X, we denote the power set of X by P(X) and the cardinality of X by |X|.
For two sets X and Y and a mapping f : X → Y , we call X the domain of f , denoted
by dom(f), and Y the range of f , denoted by range(f). For a subset X′ ⊆ X, we
call the set f (X′) = {y ∈ Y | ∃x ∈ X′ : f (x) = y} the image or range of X′
under f . The restriction of f to X′, denoted by f�X′ , is the mapping f�X′ : X′ → Y

defined by f�X′ (x) = f (x) for every x ∈ X′. For an element y ∈ Y , we call the set
f−1(y) = {x ∈ X | f (x) = y} the preimage of y under f . For a second mapping
g : X → Y , we write f = g if for all x ∈ X we have f (x) = g(x).

An alphabet Σ is a non-empty finite set. By Σ∗, we denote the set of all finite
words over Σ . The empty word is denoted by ε, and the length of a word w ∈ Σ∗ by
|w|. The number of occurrences of a letter a ∈ Σ in a word w is denoted by |w|a . A
subset L ⊆ Σ∗ is called a language over Σ .

We let N = {0, 1, 2, . . .}. By N
∗ we denote the set of all finite words over N. The

set N∗ is partially ordered by the prefix relation ≤P and totally ordered with respect
to the lexicographic ordering ≤L. Two words from N

∗ are called prefix-dependent if
they are in prefix relation, and otherwise they are called prefix-independent.

A ranked alphabet is a pair (Γ, rkΓ), often abbreviated by Γ , where Γ is a non-
empty finite set and rkΓ : Γ → N a mapping which assigns a rank to every symbol.
For every m ≥ 0 we define Γ (m) = rk−1

Γ (m) as the set of all symbols of rank m. The
rank of Γ is defined as rk(Γ) = max{rkΓ (a) | a ∈ Γ }.

The set of (finite, labeled, and ordered) Γ -trees, denoted by TΓ , is the set of all
pairs t = (pos(t), labelt), where pos(t) ⊂ N

∗ is a finite non-empty prefix-closed
set of positions, labelt : pos(t) → Γ is a mapping, and for every w ∈ pos(t) we
have wi ∈ pos(t) iff 1 ≤ i ≤ rkΓ (labelt (w)). We write t (w) for labelt (w) and |t |
for |pos(t)|. We also refer to the elements of pos(t) as nodes, to ε as the root of t ,
and to prefix-maximal nodes as leaves. The height of t is defined as height(t) =
maxw∈pos(t) |w|. For a leaf w ∈ pos(t), the set {v ∈ pos(t) | v ≤P w} is called a
branch of t . A subset L ⊆ TΓ is called a tree language over Γ .

Now let s, t ∈ TΓ and w ∈ pos(t). The subtree of t at w, denoted by t �w, is
a Γ -tree defined as follows. We let pos(t �w) = {v ∈ N

∗ | wv ∈ pos(t)} and for
v ∈ pos(t�w), we let labelt�w

(v) = t (wv).
The substitution of s into w of t , denoted by t〈s → w〉, is a Γ -tree defined as

follows. We let pos(t〈s → w〉) = (pos(t) \ {v ∈ pos(t) | w ≤P v}) ∪ {wv | v ∈
pos(s)}. For u ∈ pos(t〈s → w〉), we let labelt〈s→w〉(u) = s(v) if u = wv for some
v ∈ pos(s), and otherwise labelt〈s→w〉(u) = t (u).

For a ∈ Γ (m) and trees t1, . . . , tm ∈ TΓ , we also write a(t1, . . . , tm) to denote the
tree t with pos(t) = {ε} ∪ {iw | i ∈ {1, . . . , m}, w ∈ pos(ti)}, labelt (ε) = a, and
labelt (iw) = ti (w). For a ∈ Γ (0), the tree a() is abbreviated by a.

Theory of Computing Systems

For a ranked alphabet Γ , a tree over the alphabet Γ = (Γ ∪ {}, rkΓ ∪ { �→ 0})
is called a Γ -context. Let t ∈ TΓ be a Γ -context and let w1, . . . , wn ∈ pos(t) be
a lexicographically ordered enumeration of all leaves of t labeled . Then we call
t an n-Γ -context and define ♦i (t) = wi for i ∈ {1, . . . , n}. For an n-Γ -context t

and contexts t1, . . . , tn ∈ TΓ , we define t (t1, . . . , tn) = t〈t1 → ♦1(t)〉 · · · 〈tn →
♦n(t)〉 by substitution of t1, . . . , tn into the -leaves of t . We also call a 1-Γ -context
a Γ -word. For a Γ -word s, we define s0 = and sn+1 = s(sn) for n ≥ 0.

A commutative semiring is a tuple , abbreviated by K , with
operations sum ⊕ and product � and constants and such that and

are commutative monoids, multiplication distributes over addition, and
for every κ ∈ K . In this paper, we mainly consider the

following two semirings.

– The Boolean semiring B = ({0, 1},∨,∧, 0, 1) with disjunction ∨ and conjunc-
tion ∧.

– The max-plus semiring Qmax = (Q ∪ {−∞}, max,+,−∞, 0) where the sum
and the product operations are max and +, respectively, extended to Q ∪ {−∞}
in the usual way.

For a commutative semiring and an integer n ≥ 1, the product semir-
ing is defined by componentwise operations and the constants

and . We will usually denote ⊕n and �n simply by
⊕ and �.

Let be a commutative semiring. A weighted bottom-up finite state
tree automaton (short: WTA) over K and Γ is a tuple A = (Q, Γ, μ, ν) where Q is
a finite set (of states), Γ is a ranked alphabet (of input symbols), μ : ⋃rk(Γ)

m=0 Qm ×
Γ (m) ×Q → K (the function of transition weights), and ν : Q → K (the function
of final weights). We define �A = dom(μ). A tuple d ∈ �A is called a transition
and d is called valid if . A state q ∈ Q is called final if .

We call a WTA over the max-plus semiring a max-plus-WTA and a WTA over
the Boolean semiring a finite tree automaton (FTA). We also write a WTA A =
(Q, Γ, μ, ν) over B as a tuple A′ = (Q, Γ, δ, F) where δ = {d ∈ �A | μ(d) = 1}
and F = {q ∈ Q | ν(q) = 1}.

For a tree t ∈ TΓ , a mapping r : pos(t) → Q is called a quasi-run of A on t . For
a quasi-run r on t and a position w ∈ pos(t) with t (w) = a ∈ Γ (m), the tuple

t(t, r, w) = (r(w1), . . . , r(wm), a, r(w))

is called the transition at w. The quasi-run r is called a (valid) run if for every w ∈
pos(t) the transition t(t, r, w) is valid with respect to A. We call a run r accepting if
r(ε) is final. By RunA(t) and AccA(t) we denote the sets of all runs and all accepting
runs of A on t , respectively. For a state q ∈ Q, we denote by RunA(t, q) the set of
all runs r ∈ RunA(t) such that r(ε) = q. For a position w ∈ pos(t), we define the
restriction r�w∈ RunA(t�w) of r to w by r�w (v) = r(wv) for every v ∈ pos(t�w).

For a run r ∈ RunA(t), the weight of r is defined by

wtA(t, r) =
⊙

w∈pos(t)

μ(t(t, r, w)).

Theory of Computing Systems

The behavior of A, denoted by �A�, is the mapping defined for every t ∈ TΓ by

�A�(t) =
⊕

r∈AccA(t)

(wtA(t, r)� ν(r(ε))),

where the sum over the empty set is by convention. The support of a WTA A is
the set . The support of an FTA A is also called
the language accepted by A and denoted by L(A). A subset L ⊆ TΓ is called
recognizable if there exists an FTA A with L = L(A).

For a WTA A = (Q, Γ, μ, ν), a run of A on a Γ -context t is a run of the WTA
A′ = (Q, Γ, μ′, ν) on t , where for all q ∈ Q and μ′(d) = μ(d)

for all d ∈ �A. We denote RunA(t) = RunA′(t) and for r ∈ RunA(t) define
wtA(t, r) = wtA′(t, r). For an n-Γ -context t ∈ TΓ and states q0, . . . , qn, we denote
by RunA(q1, . . . , qn, t, q0) the set of all runs r ∈ RunA(t) such that r(ε) = q0 and
r(♦i (t)) = qi for every i ∈ {1, . . . , n}.

We consider the set Γ ×Q as an alphabet by defining rkΓ×Q(a, q) = rkΓ (a) for
every pair (a, q) ∈ Γ ×Q and identify every tree t ′ ∈ TΓ×Q with the pair (t, r) given
by t = (pos(t ′), πΓ ◦ labelt ′) ∈ TΓ and r = πQ◦ labelt ′ , where πΓ : Γ ×Q → Γ and
πQ : Γ ×Q → Q are the projections. For a Γ -word s ∈ TΓ , a state q ∈ Q, and a run
rs ∈ RunA(q, s, q), we define (s, rs)

0 = (, q) and (s, rs)
n+1 = (s, rs)〈(s, rs)n →

♦1(s)〉 for n ≥ 0. For a Γ -context t ∈ TΓ , a run rt ∈ RunA(t), and a position
w ∈ pos(t) with r(w) = q, we define the insertion of (s, rs) into (t, r) at w by

.
We call a WTA A = (Q, Γ, μ, ν) over K and Γ trim if for every p ∈ Q, there

exist t ∈ TΓ , r ∈ AccA(t), and w ∈ pos(t) with r(w) = p. The trim part of A is
the automaton obtained from A by removing all states p ∈ Q for which no such t , r ,
and w exist. This process obviously has no influence on �A�.

We call A complete if for every m ≥ 0, a ∈ Γ (m), and (q1, . . . , qm) ∈ Qm, there
exists at least one . We call A deterministic or sequential if
for every m ≥ 0, a ∈ Γ (m), and (q1, . . . , qm) ∈ Qm, there exists at most one q ∈ Q

with . If there exists an integer M ≥ 1 such that |AccA(t)| ≤
M for every t ∈ TΓ , we call A M-ambiguous. We call A finitely ambiguous if it
is M-ambiguous for some M ≥ 1 and unambiguous if it is 1-ambiguous. We call
the behavior �A� of A finitely sequential if there exist finitely many deterministic
WTA A1, . . . ,An over K and Γ such that �A� = ⊕n

i=1�Ai�, where the sum is taken
pointwise.

3 The Criterion for Finite Sequentiality

We will show that for a finitely ambiguous max-plus-WTA A, it is decidable whether
its behavior �A� is finitely sequential. Moreover, we will show that if �A� is finitely
sequential, then deterministic max-plus-WTA whose pointwise maximum is equiv-
alent to �A� can be effectively constructed. Our approach is inspired by Bala’s
corresponding proof for finitely ambiguous max-plus word automata [26]. A precise

Theory of Computing Systems

comparison of our methods to those of [26] is difficult, however, as for lack of space,
most proof details had to be left out in [26]. The general outline of our proof can be
summarized as follows.

First, we formulate the separation property, a generalization of Bala’s A-Fork
property. Then we show that it is decidable whether the separation property is satis-
fied and that the behavior of a max-plus-WTA is finitely sequential if and only if the
separation property is not satisfied. For the decidability of the separation property,
we employ Parikh’s Theorem [35, 36] and show that the decidability of the separa-
tion property can be reduced to the satisfiability of systems of linear inequalities over
the rationals with integer solutions. To show that the behavior of a max-plus-WTA A
which satisfies the separation property is not finitely sequential, we assume that �A�
can be represented as a finite maximum of deterministic max-plus-WTA and employ
Ramsey’s Theorem [33] to obtain a contradiction. For the converse, if the separa-
tion property is not satisfied, we show how to construct finitely many unambiguous
max-plus-WTA whose pointwise maximum is equivalent to �A� and which all do not
satisfy the tree fork property. As the behavior of an unambiguous max-plus-WTA
which does not satisfy the tree fork property is finitely sequential [34], we obtain that
�A� is also finitely sequential.

We need some more preparation before we can formulate the separation property.
In the following, let Γ be a ranked alphabet. We begin by recalling the tree fork prop-
erty and the related concepts of rivals, reachers, distinguishers, and forks. Intuitively,
two states of a finitely ambiguous max-plus-WTA A are called rivals if they can be
reached by the same tree u and they can loop in the same Γ -word s but the weights
of these loops differ. The tree u is then called a reacher of p and q and the Γ -word s

a distinguisher for p and q. For two rivals p and q, a Γ -word f is called a p-q-fork
if f can both loop in p and also go from p to q, in a bottom-up sense. We say that A
satisfies the tree fork property if there exist two rivals p and q such that either there
exists a p-q-fork or p and q can occur at prefix-independent positions in some run
of A. Formally, these definitions are as follows.

Definition 1 Let A = (Q, Γ, μ, ν) be a finitely ambiguous max-plus-WTA. Two
states p, q ∈ Q are called rivals if there exists a tree u ∈ TΓ with RunA(u, p) �=
∅ and RunA(u, q) �= ∅ and a Γ -word s with runs rp ∈ RunA(p, s, p) and rq ∈
RunA(q, s, q) such that wtA(s, rp) �= wtA(s, rq). In this case, we call u a p-q-
reacher and s a p-q-distinguisher.

We say that A satisfies the tree fork property if at least one of the following two
conditions is satisfied.

(i) There exist rivals p, q ∈ Q and a Γ -word f with RunA(p, f, p) �= ∅ and
RunA(p, f, q) �= ∅. In this case, we call f a p-q-fork.

(ii) There exist rivals p, q ∈ Q, a 2-Γ -context t ∈ TΓ , and a run r ∈ RunA(t)

with r(♦1(t)) = p and r(♦2(t)) = q. In this case, we call t a p-q-split.

We have the following theorem relating the tree fork property to finite sequential-
ity of unambiguous max-plus-WTA.

Theory of Computing Systems

Theorem 1 [34] The behavior of a trim unambiguous max-plus-WTA A is finitely
sequential if and only if A does not satisfy the tree fork property. If �A� is finitely
sequential, a finitely sequential representation of A can be effectively constructed.

For finitely ambiguous max-plus-WTA, however, the tree fork property does not
capture finite sequentiality. To see why, consider an unambiguous max-plus-WTA A
satisfying the tree fork property [10, 25, 34] and let L be the largest weight used in
A. Then construct a one-state max-plus-WTA B whose every transition weight and
every final weight is L. Clearly, B is deterministic and we have �B� ≥ �A�. By
taking the disjoint union A∪B of A and B, we obtain a 2-ambiguous max-plus-WTA
which satisfies the tree fork property but whose behavior coincides with that of the
deterministic automaton B. In this particular example, the states relevant for the tree
fork property to be satisfied are not relevant at all for the behavior of the automaton.

In order to reduce the finite sequentiality problem of finitely ambiguous max-
plus-WTA to that of unambiguous max-plus-WTA, we decompose every finitely
ambiguous max-plus-WTA A into a maximum of finitely many unambiguous max-
plus-WTA A1, . . . ,AN and then analyze the interplay of these latter automata. We
can do so as in fact, every finitely ambiguous WTA can be decomposed into finitely
many unambiguous WTA [10, 40]. This is a common approach when dealing with
finite ambiguity [10, 41, 42] and is also used by Bala in the corresponding proof
for words [26]. In the simplest case, if A1, . . . ,AN all do not satisfy the tree fork
property, we find a finitely sequential representation of A by constructing such a rep-
resentation for each An and then combining all of these. However, if some An does
satisfy the tree fork property, we have to analyze whether this automaton contributes
enough to the behavior of A for there not to exist a finitely sequential representation
of A. We have the following lemma.

Lemma 1 [40] Let A be a finitely ambiguous WTA over a semiring K and a ranked
alphabet Γ , then we can effectively find an integer M ∈ N and construct finitely
many unambiguous WTAA1, . . . ,AM overK and Γ with �A� = �A1�⊕. . .⊕�AM�.

Proof We provide a short direct proof. We let n be the number of states of A. Then
by [24], A is at most 222 log(rk(Γ)+1)n

-ambiguous. We let M = n · 222 log(rk(Γ)+1)n
. By

pigeonhole principle, we obtain that |RunA(t)| ≤ M holds for every t ∈ TΓ . To con-
struct A1, . . . ,AM , we employ an idea also used in [43] for word automata, namely
a lexicographic ordering on the runs of A. We write A = ({1, . . . , n}, Γ, μ, ν) and
for every tree t ∈ TΓ , define a total order <L on RunA(t) by r1 <L r2 if and only
if there exists w ∈ pos(t) such that r1(w) < r2(w) and for all v ∈ pos(t) with v

<L w we have r1(v) = r2(v). For every i ∈ {1, . . . , M}, we define an unambigu-
ous WTA Ai executing every lexicographically i-th run of A as follows. For every
m ∈ {0, . . . , rk(Γ)}, we define a total order <L on (Q × {1, . . . , M})m × Q by
((q1, n1), . . . , (qm, nm), q0)<L ((q ′1, n′1), . . . , (q ′m, n′m), q ′0) if and only if either q0 <

q ′0 or q0 = q ′0 and for some k ∈ {1, , m} we have nk < q ′0 and for some k ∈ {1, , m}
we have nk < n′k and nl = n′l for all l < k.

For a letter a ∈ Γ (m) and sets V1, . . . , Vm ⊆ Q ×
{ 1, . . . , M}, we let ((q

(1)
1 , n

(1)
1), . . . , (q

(1)
m , n

(1)
m), q

(1)
0) <L . . . <L

Theory of Computing Systems

((q
(N)
1 , n

(N)
1), . . . , (q

(N)
m , n

(N)
m), q

(N)
0) be an enumeration of the set

and
let

ord(V1, . . . , Vm, a) = {((q(k)
1 , n

(k)
1), . . . , (q(k)

m , n(k)
m), (q

(k)
0 , k)) | k ∈ {1, . . . , N}}

and succ(V1, . . . , Vm, a) = {(q(k)
0 , k) | k ∈ {1, . . . , N}}. Then for every i ∈

{1, . . . , M}, we define a WTA Ai = (Q × {1, . . . , M} × P(Q × {1, . . . , M}),
Γ, μ′, νi) over K and Γ by defining for every a ∈ Γ with m = rkΓ (a) and
(q0, n0, V0), . . . , (qm, nm, Vm) ∈ Q× {1, . . . , M} × P(Q× {1, . . . , M})

We let π1 : Q × {1, . . . , M} → Q and π2 : Q × {1, . . . , M} → {1, . . . , M} be the
projections. Then for every tree t ∈ TΓ and every runs r, r1, r2 ∈ RunAi

(t), we have
π1 ◦ r ∈ RunA(t), wtAi

(t, r) = wtA(t, π1 ◦ r), and π1 ◦ r1 <L π1 ◦ r2 if and only if
π2 ◦ r1(ε) < π2 ◦ r2(ε). It follows that every automaton Ai is unambiguous and we
have �A� = �A1�⊕ . . .⊕ �AM�.

In order to analyze the interplay of the unambiguous automata we obtain from
Lemma 1 more easily, we want to join them into a product automaton. For this, it
is necessary that all of these automata coincide on their support. For the max-plus
semiring, this can easily be achieved.

Lemma 2 Let A be a finitely ambiguous max-plus-WTA over Γ , then we can
effectively find an integer M ∈ N and construct unambiguous max-plus-WTA
A1, . . . ,AM over Γ with �A� = maxM

i=1�Ai� and supp(A1) = . . . = supp(AM).

Proof By Lemma 1, we can effectively find an integer M ∈ N and construct unam-
biguous max-plus-WTA A1, . . . ,AM over Γ with �A� = maxM

i=1�Ai�. We write

Ai = (Qi, Γ, μi, νi), let L = ⋃M
i=1 supp(Ai), and let κ be the smallest weight

used in the automata A1, . . . ,AM , i.e., for R = ⋃M
i=1(μi(�Ai

) ∪ νi(Qi)) we let
κ = min(R \ {−∞}).

First, note that each support supp(Ai) is recognizable. This follows from the main
result of [44], but is also easy to see as replacing the weight −∞ by 0 and all other
weights by 1 in Ai yields an FTA recognizing supp(Ai). The tree language L is thus
recognizable, therefore for i ∈ {1, . . . , M}, the tree language Li = L \ supp(Ai)

is also recognizable and there exists a deterministic FTA A′i = (Q′
i , Γ, δ′i , F ′i) with

L(A′i) = Li . We define the max-plus-WTA A′′i = (Q′
i , Γ, μ′′i , ν′′) by

μ′′i (d) =
{

κ if d ∈ δ′i
−∞ otherwise

and ν′′i (q) =
{

κ if q ∈ F ′i
−∞ otherwise.

Theory of Computing Systems

We assume without loss of generality that Qi ∩ Q′
i = ∅ and define A′′′i = (Qi ∪

Q′
i , Γ, μ′′′i , νi ∪ ν′′i) with

μ′′′i (d) =

⎧
⎪⎨

⎪⎩

μi(d) if d ∈ �Ai

μ′′i (d) if d ∈ �A′′
i

−∞ otherwise

as the union of Ai and A′′i . Then A′′′i is unambiguous since Ai is unambiguous, A′′i
is deterministic, and supp(Ai) ∩ supp(A′′i) = ∅. Furthermore, for t ∈ supp(Ai) we
have �A′′′i �(t) = �Ai�(t).

For every t ∈ supp(A′′i), there exists some j ∈ {1, . . . , M} with t ∈ supp(Aj)

and due to the choice of κ we have �Aj �(t) ≥ �A′′i �(t). In conclusion, for all i ∈
{1, . . . , M} we have that A′′′i is unambiguous, supp(A′′′i) = L, and maxM

i=1�A′′′i � =
maxM

i=1�Ai� = �A�.

For our proofs, it will be convenient to assume that all final weights of the
automata we obtain from Lemma 2 are either−∞ or 0, i.e., they only decide whether
a run is accepting or not, but otherwise do not influence the weight of the run. We
can do so by the following lemma.

Lemma 3 [45] Let A = (Q, Γ, μ, ν) be a WTA over a semiring K and a ranked
alphabet Γ . Then we can effectively construct a WTA A′ = (Q′, Γ, μ′, ν′) over K

and Γ with , and |AccA(t)| = |AccA′(t)| for every
t ∈ TΓ .

Proof We define the WTA A′ = (Q′, Γ, μ′, ν′) as follows. We let Q′ = Q× {0, 1}
and define and for all q ∈ Q. For every d =
(p1, . . . , pm, a, p0) ∈ �A, we let μ′((p1, 0), . . . , (pm, 0), a, (p0, 0)) = μ(d) and
μ′((p1, 0), . . . , (pm, 0), a, (p0, 1)) = μ(d)�ν(p0). On all remaining transitions we
define μ′ as .

It is easy to see that for every tree t ∈ TΓ , we have a bijection f : AccA(t) →
AccA′(t) given by (f (r))(ε) = (r(ε), 1) and (f (r))(w) = (r(w), 0) for w ∈ pos(t)\
{ε}, and for this bijection it holds that wtA(t, r)� ν(r(ε)) = wtA′(t, f (r)) for every
r ∈ AccA(t).

For the rest of this paper, let A be a trim finitely ambiguous max-plus-WTA over
the ranked alphabet Γ . We join the automata we obtain for A from Lemma 2 and
Lemma 3 into a product automaton over the product semiring Q

M
max as follows.

Lemma 4 We can effectively find an integer M ∈ N and construct a trim WTA
U = (Q, Γ, μ, ν) over QM

max and Γ such that

– U is unambiguous,
– μ(�U) ⊆ Q

M ∪ {(−∞, . . . ,−∞)} and ν(Q) ⊆ {(0, . . . , 0), (−∞, . . . ,−∞)},
and

– for every t ∈ TΓ we have �A�(t) = maxM
i=1 πi(�U�(t)),

Theory of Computing Systems

where πi : QM
max → Qmax is the projection to the i-th coordinate for every i ∈

{1, . . . , M}.

Proof By combining Lemma 2 and Lemma 3, we can find M ∈ N and unambigu-
ous max-plus-WTA A1, . . . ,AM over Γ such that �A� = maxM

i=1�Ai�, supp(A1) =
. . . = supp(AM), and such that with Ai = (Qi, Γ, μi, νi), we have νi(Qi) ⊆
{0,−∞} for every i ∈ {1, . . . , M}. We define U = (Q, Γ, μ, ν) as the trim part of
the automaton U ′ = (Q′, Γ, μ′, ν′) defined as follows. We let Q′ = Q1 × . . .×QM

and for a ∈ Γ with rkΓ (a) = m and p0, . . . , pm ∈ Q′ with pj = (pj1, . . . , pjM)

we define, with xi = μi(p1i , . . . , pmi, a, p0i) and yi = νi(p0i),

μ′(p1, . . . , pm, a, p0) =
{

(x1, . . . , xM) if (x1, . . . , xM) ∈ Q
M

(−∞, . . . ,−∞) otherwise

ν′(p0) =
{

(y1, . . . , yM) if (y1, . . . , yM) ∈ Q
M

(−∞, . . . ,−∞) otherwise.

It is easy to verify that U defined likes this satisfies all properties from the statement
of the lemma.

Let U be the automaton we obtain for A from Lemma 4. For a tree t ∈ TΓ , a Γ -
word s ∈ TΓ , runs rt ∈ RunU (t), rs ∈ RunU (s), states p, q ∈ Q, and a coordinate
i ∈ {1, . . . , M}, we let wti (t, rt) = πi(wtU (t, rt)), wti (s, rs) = πi(wtU (s, rs)), and
wti (p, s, q) = wti (s, r

q
p) for the unique run r

q
p ∈ RunU (p, s, q).

As we are still concerned with the rivals of the individual automata used to con-
struct U , we define in the following the concepts of rivals, reachers, distinguishers,
and forks for U .

Definition 2 Let i ∈ {1, . . . , M}, p, q ∈ Q, t ∈ TΓ , and r ∈ RunU (t).

– We call p and q i-rivals if there exists a tree u ∈ TΓ such that RunU (u, p) �=
∅ and RunU (u, q) �= ∅ and a Γ -word s such that RunU (p, s, p) �= ∅,
RunU (q, s, q) �= ∅, and wti (p, s, p) �= wti (q, s, q). In this case, we also call u

a p-q-reacher and s an i-p-q-distinguisher.
– We call a Γ -word f an i-p-q-fork if p and q are i-rivals, RunU (p, f, p) �= ∅,

and RunU (p, f, q) �= ∅.
– We say that (t, r) is i-p-q-fork-broken if there exist positions wp, wq ∈ pos(t)

such that wq <P wp, r(wp) = p, r(wq) = q, and (t〈 → wp〉) �wq is an
i-p-q-fork.

– We say that (t, r) is i-p-q-split-broken if p and q are i-rivals and there exist two
prefix-independent positions wp, wq ∈ pos(t) with r(wp) = p and r(wq) = q.

When appropriate, we may drop some of the hyphenated modifiers from the terms
above; for example, we will refer to (t, r) as i-fork-broken if there exist states
p, q ∈ Q such that (t, r) is i-p-q-fork-broken and as i-split-broken if there exist
states p, q ∈ Q such that (t, r) is i-p-q-split-broken. We call (t, r) i-broken if it is
i-fork-broken or i-split-broken.

Theory of Computing Systems

Our concept of brokenness is inspired by Bala’s notion of “broken paths” [26]. Of
course, as his proof is concerned with words, the concept of split-brokenness does
not exist. His notion of brokenness corresponds to our notion of fork-brokenness.
Employing the notion of brokenness, Bala characterizes finite sequentiality of finitely
ambiguous max-plus word automata using the A-Fork property. Translated to tree
automata, the A-Fork property is defined as follows. We say that U satisfies the
A-Fork property if for every constant C > 0, there exists a tree t ∈ TΓ and an
accepting run r ∈ AccU (t) such that for some weight-maximal coordinate i, i.e.,
with wti (t, r) = maxM

j=1 wtj (t, r), we have that (t, r) is i-broken and for every
coordinate j such that (t, r) is not j -broken, we have wtj (t, r) < wti (t, r) − C.
In other words, the A-Fork property is satisfied if broken coordinates are able to
dominate non-broken coordinates by an arbitrarily large margin. Bala shows that a
finitely ambiguous max-plus word automaton is finitely sequential if and only if the
corresponding automaton U does not satisfy the A-Fork property.

For tree automata, however, this criterion does not capture finite sequentiality.
More precisely, if we know that there do not exist a tree t and a run r on t such
that (t, r) is split-broken, then the A-Fork property does capture finite sequentiality
also for tree automata. However, if U satisfies the A-Fork property due to split-
broken coordinates dominating non-broken coordinates, the behavior of A may still
be finitely sequential. This is evidenced by the following example.

Example 1 Consider the scenario for U as defined in Fig. 1. The support of U con-
sists of all trees of the form c(bk(am

i (di)), b
l(an

j (dj))) with i, j ∈ {1, 2}, k, l > 0,
and m, n ≥ 0. A valid run on such a tree necessarily assigns states from {p1, p2, p}
to the left branch of the tree and states from {q1, q2, q} to the right branch of the
tree. Moreover, if a branch begins with a letter di , this branch is assigned states from
{pi, qi, p, q}. In particular, we see that U is unambiguous.

The states p and q are 2-rivals as we see from the p-q-reacher u =
b(a1(d1)) and the 2-p-q-distinguisher s = b(). By considering the trees tn =
c(b(an

1 (d1)), b(an
2 (d2))), we see that runs exist where p and q occur prefix-

independently and the weight of coordinate 2 is arbitrarily larger than the weights
of coordinates 1 and 3 since we have �U�(tn) = (−n, 0,−n). However, in tn the
subtrees below p and q are distinct, thus a deterministic automaton can distinguish
between them.

In fact, if U is given this way, we can construct a finitely sequential representation
of �A� as follows. All trees of the form c(bk(am

1 (d1)), b
l(an

1 (d1))) are assigned the
weight (−m− n+ k + l − 2, k − l, k + l − 2), so coordinate 3 is always dominant.
Similarly, coordinate 1 is dominant for trees of the form c(bk(am

2 (d2)), b
l(an

2 (d2))).
These trees can be handled by the two deterministic max-plus-WTA obtained from U
by removing the states q1 and q2, letting μ(p, p, c,�) = (0, 0, 0), and replacing μ

with π3 ◦μ and π1 ◦μ, respectively. For trees of the form c(bk(am
1 (d1)), b

l(an
2 (d2))),

we remove the states p2 and q1 from U and then construct three deterministic max-
plus-WTA by replacing μ by π1 ◦ μ, π2 ◦ μ, and π3 ◦ μ, respectively. For the trees
c(bk(am

2 (d2)), b
l(an

1 (d1))) we can proceed similarly. The pointwise maximum of the
automata constructed this way is then equivalent to �A�. This example shows in
particular that if U satisfies the A-Fork property, �A� can still be finitely sequential.

Theory of Computing Systems

Fig. 1 A scenario for the automaton U : The automaton ({p1, p2, q1, q2, p, q,�}, Γ, μ, ν) over the ranked
alphabet Γ = {a1, a2, b, c, d1, d2} where c ∈ Γ (2), a1, a2, b ∈ Γ (1), and d1, d2 ∈ Γ (0). All unspecified
weights are assumed to be −∞. The states p and q are 2-rivals

Our fundamental idea to adapt the A-Fork property to tree automata is to for-
mulate our version not for U but for a covering of U . Oversimplifying, a covering
of an automaton is a new automaton obtained by enhancing the states of the origi-
nal automaton with additional capacities to store information. A prominent example
of a covering construction is the Schützenberger covering of an automaton. The
Schützenberger covering in particular has already been employed in a number of
decidability results for max-plus automata [10, 25, 26, 34, 42]. For more background
on the Schützenberger covering and coverings in general, see [46].

Here, we construct from U an unambiguous automaton U with the same behavior
as U and whose states are tuples from Q×P(Q)×P(Q4 ×P(Q2)). Every run r of
U on a tree t ∈ TΓ will correspond uniquely to a run of U on t , given by projecting to
the first entry. For a position w, the second entry of r(w) will be the set of all states
q ∈ Q which can be reached by t�w, i.e., for which RunU (t�w, q) is non-empty. The
third entry of r(w) will consist of all tuples (p, q, p′, q ′, Y) such that (1) there exist
runs rp ∈ RunU (t�w, p) and rq ∈ RunU (t�w, q) where (2) for some position below
w, i.e., some position v ∈ pos(t�w), we have rp(v) = p′ and rq(v) = q ′ and (3) Y

is the set of all pairs of states (rp(vu), rq(vu)) with u ∈ pos(t �wv). Intuitively, the
third entry of r(w) contains a tuple (p, q, p′, q ′, Y) if and only if t �w can reach p

and q with two runs rp and rq , these runs visited p′ and q ′ simultaneously at some
position v in the past, and Y consists of all pairs of states which these runs visited
simultaneously up to v.

Our intention of considering the covering U is to increase the knowledge we have
about each pair of rivals. For two rivals of U , all we know is what the definition of

Theory of Computing Systems

rivals specifies. For two rivals of U on the other hand, we will show that they are
necessarily of the form (p, P, V) and (q, P, V) where p and q are rivals of U . This
allows us to infer statements about the rivals of U which are not necessarily true for
the rivals of U . The precise construction of U is as follows.

Construction 1 We define U = (Q, Γ, μ, ν) as the trim part of the automaton U ′ =
(Q′, Γ, μ′, ν′) defined as follows. We let Q′ = Q × P(Q) × P(Q4 × P(Q2)) and
for subsets P1, . . . , Pm ⊆ Q and a letter a ∈ Γ with rkΓ (a) = m, we let

succ(P1, . . . , Pm, a) = {q0 | ∃(q1, . . . , qm) ∈ P1 × . . . ×
Pm with μ(q1, . . . , qm, a, q0) ∈ Q

M}.
For i ∈ {1, . . . , rkΓ (a)} and a tuple

(p, q, p′, q ′, Y) ∈ Q4 × P(Q2), we let
succ(P1, . . . , Pm, (p, q, p′, q ′, Y), i, a) = succ(P1, . . . , Pi−1, {p}, Pi+1, . . . ,

Pm, a)× succ(P1, . . . , Pi−1, {q}, Pi+1, . . . , Pm, a)× {p′} × {q ′} × {Y }.
For V ⊆ Q4 × P(Q2) and p, q ∈ Q, we let

visited(p, q, V) = {(p′, q ′) | (p, q, p′, q ′, Y) ∈ V for some Y ⊆ Q2}.
Then for a ∈ Γ with rkΓ (a) = m and (p0, P0, V0), . . . , (pm, Pm, Vm) ∈ Q′, we

define ν′(p0, P0, V0) = ν(p0) and

We let π1 : Q → Q, π2 : Q → P(Q), and π3 : Q → P(Q4 × P(Q2)) be the
projections, and let wti and wti be defined for U in the same way we defined wti and
wti for U . Furthermore, we note that the concepts of rivals, reachers, distinguishers,
and forks as defined for U in Definition 2 apply to U in a similar fashion.

We have the following lemma stating that U indeed possesses the properties we
described earlier.

Lemma 5 Let t ∈ TΓ be a tree. Then the following statements hold.

(i) For every run r ∈ RunU (t) and position w ∈ pos(t), we have q ∈ π2 ◦ r(w) if
and only if there exists a run r ∈ RunU (t�w, q).

(ii) For every run r ∈ RunU (t) and position w ∈ pos(t), we have
(p, q, p′, q ′, Y) ∈ π3 ◦ r(w) if and only if there exist runs rp ∈ RunU (t�w, p)

and rq ∈ RunU (t�w, q) such that for some v ∈ pos(t�w) we have rp(v) = p′,
rq(v) = q ′, and Y = {(rp(vu), rq(vu)) ∈ Q2 | u ∈ pos(t�wv)}.

Theory of Computing Systems

(iii) The projection π1 induces a bijection π1 : RunU (t) → RunU (t) by r �→ π1 ◦r.
(iv) U is trim, unambiguous, and satisfies �U� = �U�.
(v) Let p,q ∈ Q be rivals. Then p and q are of the form (p, P, V) and (q, P, V),

respectively, for two states p, q ∈ Q and sets P ⊆ Q, V ⊆ Q4 × P(Q2).
Moreover, for every tree u ∈ TΓ we have RunU (u,p) = ∅ if and only if
RunU (u,q) = ∅.

Proof (i) Let t ∈ TΓ and r ∈ RunU (t) and for contradiction, let w ∈ pos(t) be
a prefix-maximal position for which (i) does not hold. We deduce that (i) holds for
w. We let a = t (w), m = rkΓ (a), and write r(w) = (p0, P0, V0) and r(wi) =
(pi, Pi, Vi) for i ∈ {1, . . . , m}.

First, let q ∈ P0, then there are states (q1, . . . , qm) ∈ P1 × . . . × Pm with
μ(q1, . . . , qm, a, q) �= −∞. By assumption, for every i ∈ {1, . . . , m} we find a run
ri ∈ RunU (t�wi, qi). Then the quasi-run r : pos(t�w) → Q defined by r(ε) = q and
r(iv) = ri(v) is a run of U on t�w with r(ε) = q.

On the other hand, let r ∈ RunU (t �w, q). Then for every i ∈ {1, . . . , m}
we have r �i∈ RunU (t �wi), so by assumption r(i) ∈ Pi . Moreover,
μ(r(1), . . . , r(m), a, q) �= −∞, so q ∈ P0. Thus, (i) holds for w, which is a
contradiction, so w does not exist.

(ii) Let t ∈ TΓ and r ∈ RunU (t) and for contradiction, let w ∈ pos(t) be a prefix-
maximal position for which Lemma 5 does not hold. We deduce that (ii) holds for
w. We let a = t (w), m = rkΓ (a), and write r(w) = (p′′0 , P0, V0) and r(wi) =
(p′′i , Pi, Vi) for i ∈ {1, . . . , m}. Furthermore, we let V = ⋃m

i=1
⋃

(p,q,p′,q ′,Y)∈Vi

succ(P1, . . . , Pm, (p, q, p′, q ′, Y), i, a).
We first make the following observation. If (p, q, p′, q ′, Y) ∈ V , then for

some i ∈ {1, . . . , m} and (pi, qi, p
′, q ′, Y) ∈ Vi we have (p, q, p′, q ′, Y) ∈

succ(P1, . . . , Pm, (pi, qi, p
′, q ′, Y), i, a). Thus, there exist (p1, . . . , pi−1,

pi+1, . . . , pm), (q1, . . . , qi−1, qi+1, . . . , qm) ∈ P1 × . . .× Pi−1 × Pi+1 × . . .× Pm

with μ(p1, . . . , pm, a, p) ∈ Q
M and μ(q1, . . . , qm, a, q) ∈ Q

M . By Lemma
5, there exist runs r

p
j ∈ RunU (t �wj , pj) and r

q
j ∈ RunU (t �wj , qj) for every

j ∈ {1, . . . , m} \ {i}. Furthermore, we assume that (ii) holds for wi, so there exist
runs r

p
i ∈ RunU (t �wi, pi) and r

q
i ∈ RunU (t �wi, qi) and a position v ∈ pos(t �wi)

with r
p
i (v) = p′, r

q
i (v) = q ′, and Y = {(rp

i (vu), r
q
i (vu)) ∈ Q2 | u ∈ pos(t�wiv)}.

Thus, for the runs rp and rq defined by rp(ε) = p, rq(ε) = q, rp(ju) = r
p
j (u),

and rq(ju) = r
q
j (u) for every position ju ∈ pos(t �w), we have rp(iv) = p′,

rq(iv) = q ′, and Y = {(rp(ivu), rq(ivu)) ∈ Q2 | u ∈ pos(t�wiv)}.
♣Now let (p, q, p′, q ′, Y) ∈ V0. If (p, q, p′, q ′, Y) ∈ V , Lemma 5 follows easily

from the observation above. If (p, q, p′, q ′, Y) = (p, q, p, q, Y) with p, q ∈ P0 and
Y = visited(p, q, V) ∪ {(p, q)}, we see by (i) that there exist runs rp ∈ RunU (t�w,
p) and rq ∈ RunU (t�w, q). We show that Y ={(rp(u), rq(u)) ∈ Q2 | u ∈ pos(t�w)}.

Let (p′, q ′) ∈ Y . If (p′, q ′) = (p, q), we have (p′, q ′) = (rp(ε), rq(ε)). Oth-
erwise, there exists Y ′ ⊆ Q2 with (p, q, p′, q ′, Y ′) ∈ V . The observation above
together with the unambiguity of U then yields i ∈ {1, . . . , m} and v ∈ pos(t �wi)

with (rp(iv), rq(iv)) = (p′, q ′).

Theory of Computing Systems

Now let u ∈ pos(t�w), pi = rp(i), and qi = rq(i) for every i ∈ {1, . . . , m}. For
every i ∈ {1, . . . , m}, we have rp�i , rq �i∈ RunU (t�wi), so we have pi, qi ∈ Pi by
Lemma 5. For u = ε, we have (rp(u), rq(u)) = (p, q) ∈ Y . Otherwise, we have
u = iv for some i ∈ {1, . . . , m}. It follows that (rp(u), rq(u)) = (rp�i (v), rq�i (v)).
We assume that (ii) holds for wi, so we have (pi, qi, r

p(u), rq(u), Y ′) ∈ Vi for
some Y ′ ⊆ Q2. Since μ(p1, . . . , pm, a, p) ∈ Q

M and μ(q1, . . . , qm, a, q) ∈ Q
M ,

we see that (p, q, rp(u), rq(u), Y ′) ∈ V . In particular, we have (rp(u), rq(u)) ∈
visited(p, q, V) ⊆ Y .
♣ Conversely, we let (p, q, p′, q ′, Y) ∈ Q4 × P(Q2) satisfying that there exist

runs rp ∈ RunU (t�w, p) and rq ∈ RunU (t�w, q) such that for some v ∈ pos(t�w) we
have rp(v) = p′, rq(v) = q ′, and Y = {(rp(vu), rq(vu)) ∈ Q2 | u ∈ pos(t�wv)}.
We let pi = rp(i) and qi = rq(i) for i ∈ {1, . . . , m}. For v �= ε, we have v =
iv′ for some i ∈ {1, . . . , m}. We assume that Lemma 5 holds for wi, so we have
(pi, qi, p

′, q ′, Y) ∈ Vi . By (i), we see that (p1, . . . , pm), (q1, , . . . , qm) ∈ P1× . . .×
Pm, so (p, q, p′, q ′, Y) ∈ succ(P1, . . . , Pm, (pi, qi, p

′, q ′, Y), i, a) ⊆ V0.
For v = ε, we note that we have (p, q, p, q, visited(p, q, V) ∪ {(p, q)}) ∈

V0. We show Y = visited(p, q, V) ∪ {(p, q)}. Let u ∈ pos(t �w). For u =
ε, we have (rp(u), rq(u)) = (p, q). Otherwise, we have u = iu′ for some
i ∈ {1, . . . , m}. We assume that (ii) holds for wi, so for some Y ′ ⊆ Q2 we
have (pi, qi, r

p(u), rq(u), Y ′) ∈ Vi . It follows that (p, q, rp(u), rq(u), Y ′) ∈
V , so (rp(u), rq(u)) ∈ visited(p, q, V). On the other hand, for (p′′, q ′′) ∈
visited(p, q, V), there exists (p, q, p′′, q ′′, Y ′) ∈ V . The observation above together
with the unambiguity of U thus yields i ∈ {1, . . . , m} and v′ ∈ pos(t �wi) with
(rp(iv′), rq(iv′)) = (p′′, q ′′).

(iii) ow Let t ∈ TΓ . By definition of μ, it is clear that for r ∈ RunU (t) we have
π1 ◦ r ∈ RunU (t). The injectivity of π1 : RunU (t) → RunU (t) follows from (i) and
(ii), as all runs on t coincide on their second and third entries. For surjectivity, note
that given a run r ∈ RunU (t), the definition of μ provides an obvious way to define
a run r ∈ RunU (t) with π1 ◦ r = r .

(iv) U is trim by definition. Let t ∈ TΓ . By definition of μ, for every run
r ∈ RunU (t) we have wtU (t, r) = wtU (t, π1 ◦ r). By definition of ν, we also have
ν(r(ε)) = ν(π1 ◦ r(ε)). By (iii), we thus have |AccU (t)| = |AccU (t)| ≤ 1, which
means that U is unambiguous, and �U�(t) = �U�(t).

(v) Let p,q ∈ Q be rivals and let u ∈ TΓ be a p-q-reacher. Then there exist
runs rp ∈ RunU (u,p) and rq ∈ RunU (u,q). We write p = (p, Pp, Vp) and q =
(q, Pq, Vq). From (i) and Lemma (ii), we obtain Pp = π2 ◦ rp(ε) = π2 ◦ rq(ε) = Pq

and Vp = π3 ◦ rp(ε) = π3 ◦ rq(ε) = Vq . Moreover, by (i), we see that p ∈ Pp and
q ∈ Pq .

For the second statement, let u ∈ TΓ such that rp ∈ RunU (u,p) exists. Since
q ∈ Pq = Pp, we see by (i) that there exists a run rq ∈ RunU (u, q). By (iii), there
thus exists a run rq ∈ RunU (u) with π1 ◦ rq(ε) = q. From (i) and Lemma (ii), we
obtain π2 ◦ rq(ε) = Pp = Pq and π3 ◦ rq(ε) = Vp = Vq , so we have rq(ε) = q. By
symmetry, the stated equivalence holds.

Finally, we introduce our version of the A-Fork property. To allow for easier
proofs, we use a different formulation and consequently a different name. But in fact,

Theory of Computing Systems

U satisfies the separation property if and only if it satisfies the A-Fork property in
the way we translated it to trees earlier.

Definition 3 Let C ∈ N. We call a set I ⊆ {1, . . . , M} C-separable if there exists a
tree t ∈ TΓ and a run r ∈ AccU (t) such that

(i) if i ∈ I , then (t, r) is i-broken and
(ii) if j ∈ {1, . . . , M} \ I , then wtj (t, r) ≤ wti (t, r)− C for all i ∈ I .

In this case, we also say that (t, r) is I -C-separated. We call I separable if it is
C-separable for every C ∈ N and define I as the set of all separable subsets I ⊆
{1, . . . , M}. If I is non-empty, we say that U satisfies the separation property or, for
short, that U is broken.

Our main result is to prove the following theorem relating the separation property
to the finite sequentiality problem of finitely ambiguous max-plus-WTA.

Theorem 2 The behavior �A� of A is finitely sequential if and only if U is not
broken. Moreover, it is decidable whether U is broken. In particular, it is decidable
whether �A� is finitely sequential.

We separate the proof of Theorem 2 into three parts. We show in Section 3.1 that
it is decidable whether U is broken. In Section 3.2, we show that if U is broken,
then �A� is not finitely sequential. Finally, in Section 3.3, we show how to construct
finitely many deterministic max-plus-WTA whose pointwise maximum is equivalent
to �A� in case that U is not broken.

For all of our proofs, it will be crucial that for every two states of U , we can
decide whether they are rivals [47, Section 4], [48, Section 5.4]. For two rivals of
an unambiguous automaton, it is in fact quite easy to give an upper bound on the
size of their smallest distinguisher. The same applies to reachers and forks. Thus,
deciding whether two states are rivals reduces to checking for finitely many trees
whether they can reach both states and checking for finitely many Γ -words whether
they are a distinguisher for these two states. For Section 3.3, we require an even more
precise statement, namely that if s is a distinguisher for two rivals p and q, then
we can obtain a p-q-distinguisher of height at most 4|Q|2 by removing loops from
the unique runs looping in p and q. For this, we employ the notion of a truncation.
Simply put, for a Γ -word s and a run r on s, a truncation of (s, r) is any pair (s′, r′)
of a Γ -word s′ and a run r′ on s′ which can be obtained by repeatedly cutting loops
from (s, r).

Definition 4 Let s, s′ ∈ TΓ be Γ -words, r ∈ RunU (s), and r′ ∈ RunU (s′). We
say that (s′, r′) is a truncation of (s, r), denoted by , if there exists a
mapping g : pos(s′) → pos(s) such that g(ε) = ε, g(♦1(s

′)) = ♦1(s), and for all
w ∈ pos(s′) and l ∈ rkΓ(s

′(w)) we have t(s′, r′, w) = t(s, r, g(w)) and g(w)l ≤P

g(wl).

Theory of Computing Systems

We observe as follows that removing a loop from a pair (s, r) yields a truncation,
that “being a truncation of” is a transitive relation, and that every truncation is the
result of removing loops from a pair (s, r).

Lemma 6 Let s ∈ TΓ be a Γ -word and r ∈ RunU (s), then the following holds.

(i) For every two positions w1, w2 ∈ pos(s) with w1 ≤P w2 and r(w1) = r(w2)

and (s′, r′) = (s, r)〈(s, r) �w2→ w1〉, we have by defining
g : pos(s′) → pos(s) through g(w) = w2v if w = w1v for some v ∈ N

∗ and
g(w) = w otherwise.

(ii) If and , then by concate-
nating the mappings g : pos(s′) → pos(s) and g′ : pos(s′′) → pos(s′) to
g ◦ g′ : pos(s′′) → pos(s).

(iii) If and g : pos(s′) → pos(s) a respective mapping, then

wtU (s, r) = wtU (s′, r′)+∑
w∈pos(s′)

∑rkΓ (s′(w))

l=1 wtU ((s, r)〈(, r(g(wl))) →
g(wl)〉�g(w)l).

Proof (ii) We only show the last condition for g ◦ g′. Let s ∈ pos(s′′) and l ∈
rkΓ(s

′′(w)), then g′(w)l ≤P g′(wl), so g′(wl) = g′(w)ll1 · · · ln. It follows that g(g′
(w))l ≤P g(g′(w)l) ≤P g(g′(w)l)l1 ≤P g(g′(w)ll1) ≤P . . . ≤P g(g′(w)ll1 · · · ln) =
g(g′(wl)).

(iii) First, we show that g is injective. Let v′, w′ ∈ pos(s′) with v′ �= w′, let u′ be
the longest common prefix of v′ and w′, and let v′ = u′k1 · · · km and w′ = u′l1 · · · ln.
Then g(u′)k1 ≤P g(u′k1) ≤P g(u′k1)k2 ≤P g(u′k1k2) ≤P . . . ≤P g(u′k1 · · · km) =
g(v′) and similarly g(u′)l1 ≤P g(w′). If v′ <P w′, we have g(v′)l1 ≤P g(w′), so
g(v′) �= g(w′). If v′ and w′ are prefix-independent, we obtain g(v′) �= g(w′) from
k1 �= l1.

Now let w ∈ pos(s) with w /∈ g(pos(s′)). We show that there exists exactly
one w′ ∈ pos(s′) with g(w′) ≤P w and ¬(g(w′k) ≤P w), where k ∈
{1, . . . , rkΓ(s

′(w′))} is such that g(w′)k ≤P w. Let w′ ∈ pos(s′) such that g(w′)
is prefix-maximal in the set {v ∈ g(pos(s′)) | v ≤P w}; note that this set is non-
empty due to g(ε) = ε ≤P w. Since w /∈ g(pos(s′)), we have g(w′)k ≤P w for
some k ∈ {1, . . . , rkΓ(s

′(w′))}, and since g(w′) is prefix-maximal and g(w′) <P

g(w′)k ≤P g(w′k), we have ¬(g(w′k) ≤P w).
Now assume that v′ ∈ pos(s′) with g(v′) ≤P w and v′ �= w′ and let l ∈ {1, . . . ,

rkΓ(s
′(v′))} such that g(v′)l ≤P w. We show that g(v′l) ≤P g(w′) which together

with g(w′) ≤P w implies g(v′l) ≤P w. For the longest common prefix u′ of v′
and w′, we have v′ = u′k1 · · · km and w′ = u′l1 · · · ln. As above, it follows that
g(u′)k1 ≤P g(v′) and g(u′)l1 ≤P g(w′). Since g(v′) ≤P w and g(w′) ≤P w, both
g(v′) and g(w′) are prefix-dependent, so this can only hold if either m = 0 or n = 0.
For n = 0, the prefix-maximal choice of g(w′) implies g(w′) = g(u′) <P g(u′)k1 ≤P

g(v′) ≤P g(w′), so m = 0 holds. From g(v′)l1 = g(u′)l1 ≤P g(w′) ≤P w and
g(v′)l ≤P w, we see that l1 = l. We obtain g(v′l) = g(u′l1) ≤P g(u′l1)l2 ≤P

g(u′l1l2) ≤P . . . ≤P g(u′l1 · · · ln) = g(w′).

Theory of Computing Systems

♣ Due to the injectivity of g, we obtain

wtU (s′, r′) =
∑

w′∈pos(s′)\{♦1(s
′)}

μ(t(s′, r′, w′))

=
∑

w′∈pos(s′)\{♦1(s
′)}

μ(t(s, r, g(w′)))

=
∑

w∈g(pos(s′))\{♦1(s)}
μ(t(s, r, w)).

Let w′ ∈ pos(s′), l ∈ {1, . . . , rkΓ(s
′(w′))}, and W(w′, l) = {w ∈ pos(s) |

g(w′)l ≤P w ∧ ¬(g(w′l) ≤P w)}. We have
∑

w∈W(w′,l)
μ(t(s, r, w)) = wtU ((s, r)〈(, r(g(w′l))) → g(w′l)〉�g(w′)l).

By the observation above, we have pos(s) \ g(pos(s′)) = ⋃
w′∈pos(s′)

⋃rkΓ (s′(w′))
l=1

W(w′, l) and this union is disjoint. We obtain

wtU (s, r)

=
∑

w∈g(pos(s′))\{♦1(s)}
μ(t(s, r, w))+

∑

w∈pos(s)\g(pos(s′))
μ(t(s, r, w))

= wtU (s′, r′)+
∑

w′∈pos(s′)

rkΓ (s′(w′))∑

l=1

∑

w∈W(w′,l)
μ(t(s, r, w))

= wtU (s′, r′)+
∑

w′∈pos(s′)

rkΓ (s′(w′))∑

l=1

wtU ((s, r)〈(, r(g(w′l))) → g(w′l)〉�g(w′)l).

We can use truncations to bound the size of distinguishers as follows.

Lemma 7 [48, Lemma 5.10], [34] Let p,q ∈ Q be i-rivals for some i ∈ {1, . . . ,

M}, let s ∈ TΓ be an i-p-q-distinguisher, and let rp ∈ RunU (p, s,p) and rq ∈
RunU (q, s,q). Then there exists an i-p-q-distinguisher s′ with height(s′) ≤ 4|Q|2
such that for the runs r′p ∈ RunU (p, s′,p) and r′q ∈ RunU (q, s′,q), (s′, r′p) is a
truncation of (s, rp) and (s′, r′q) is a truncation of (s, rq).

Proof Let p,q, s, rp, rq be as in the statement of the lemma. If height(s) ≤ 4|Q|2,
the statement is clear as both (s, rp) and (s, rq) are each truncations of themselves.
Otherwise, we let w ∈ pos(s) such that |w| = height(s) > 4|Q|2 and we let
w′ ∈ pos(s) be the longest common prefix of w and ♦1(s). Then either |w′| > 2|Q|2
or |w| − |w′| > 2|Q|2, or both. In the first case, there exist two disjoint simulta-
neous loops in rp and rq above ♦1(s). More precisely, by pigeonhole principle we
can find positions w1 <P w2 ≤P w3 <P w4 with w4 ≤P w′ ≤P ♦1(s) for which
(rp(w1), rq(w1)) = (rp(w2), rq(w2)) and (rp(w3), rq(w3)) = (rp(w4), rq(w4)).

Theory of Computing Systems

In the second case, there exist two disjoint simultaneous loops in rp and rq which
are prefix-independent from ♦1(s). That is, there exist positions w1 <P w2 ≤P

w3 <P w4 with w′ <P w1 and w4 ≤P w in pos(s) for which (rp(w1), rq(w1)) =
(rp(w2), rq(w2)) and (rp(w3), rq(w3)) = (rp(w4), rq(w4)).

We let x = wtU (s, rp) and y = wtU (s, rq), we let x12 and x34 be the weights
of the loops in the run rp, and we let y12 and y34 be the weights of the loops in
the run rq. We obtain truncations of (s, rp) and (s, rq) by removing either one of
the two loops or both loops as follows. If x − x12 �= y − y12, we remove the w1-
w2 loop by (s, rp)〈(s, rp) �w2→ w1〉 and (s, rq)〈(s, rq) �w2→ w1〉. Otherwise, if
x − x34 �= y − y34, we remove the w3-w4 loop in the same fashion. If we have both
x−x12 = y−y12 and x−x34 = y−y34, we obtain that 2x−x12−x34 = 2y−y12−y34.
From x �= y, it follows that x−x12−x34 �= y−y12−y34, so we remove both loops.
We continue this procedure until we arrive at truncations of height at most 4|Q|2. The
transitivity of truncations ensures that the distinguisher and runs we obtain eventually
are indeed truncations of the original distinguisher and runs.

Using similar arguments, we can also bound the sizes of reachers and forks.

Lemma 8 ([34]) Let p,q ∈ Q be rivals, u ∈ TΓ be a p-q-reacher, and f ∈ TΓ be a
p-q-fork. Then there exists a p-q-reacher u′ with height(u′) ≤ |Q|2 and a p-q-fork f ′
with height(f ′) ≤ 2|Q|2. In particular, for every two states p,q ∈ Q, it is decidable
whether p and q are rivals.

3.1 Decidability

In this section, we show that it is decidable whether U is broken. For this, we
employ Parikh’s Theorem and the decidability of the satisfiability of systems of linear
inequalities over the rationals with integer solutions [37, 38]. Note that this part of the
proof does not follow any idea from [26] as in his proof, Bala reduces the decidabil-
ity of the A-Fork property to the decidability of a decidable fragment of Presburger
arithmetic. We begin by recalling Parikh’s Theorem and the concepts it involves.

Let Σ = {a1, . . . , an} be an alphabet. The Parikh vector p(w) ∈ N
n of a word

w ∈ Σ∗ is the vector p(w) = (|w|a1 , |w|a2, . . . , |w|an). For a language L ⊆ Σ∗, the
Parikh image of L is the set p(L) = {p(w) | w ∈ L}.

A set of vectors J ⊆ N
n is called linear if there exist k ≥ 0, a vector α, and a

matrix β ∈ N
n×k such that

J = {α + βX̄ | X̄ ∈ N
k}.

The set J is called semilinear if it is the union of finitely many linear subsets of Nn.
A context-free grammar (short: CFG) [49] is a tuple (N, Σ, P, S) where (1) N

is a finite set of nonterminal symbols, (2) Σ is a finite set of terminal symbols with
N ∩ Σ = ∅, (3) P ⊆ N × (N ∪ Σ)∗ is a finite set of productions or rules, and (4)
S ∈ N is the initial symbol. We usually denote a rule (A, w) ∈ P by A → w.

Let G = (N, Σ, P, S) be a context-free grammar. For u, v ∈ (N ∪ Σ)∗ we write
u ⇒G v if there exists u′, u′′ ∈ (N ∪ Σ)∗ and a production A → w ∈ P such

Theory of Computing Systems

that u = u′Au′′ and v = u′wu′′. The language generated by G is the language
L(G) =
{w ∈ Σ∗ | ∃n ≥ 1 ∃u1, . . . , un ∈ (N ∪ Σ)∗ : S ⇒G u1 ⇒G . . . ⇒G un ⇒G w}.

A language L ⊆ Σ∗ is called context-free if there exists a context-free grammar
G with L = L(G). By Parikh’s Theorem, the Parikh image of every context-free
language is semilinear.

Theorem 3 [35, Theorem 2], [36] For every context-free language L, the set p(L)

is semilinear. Furthermore, integers k, k1, . . . , kk , vectors α(l), and matrices β(l) ∈
N

n×kl (l ∈ {1, . . . , k}) with

p(L) =
k⋃

l=1

{α(l) + β(l)X̄ | X̄ ∈ N
kl }

can be effectively found from every context-free grammar generating L.

We will employ Parikh’s Theorem to show that the image �U�(TΓ) of TΓ under
�U� is the image of a semilinear set under a matrix over the rationals. From this
matrix, we will be able to infer a constant C̃ such that every set I ⊆ {1, . . . , M}
is separable if and only if it is C̃-separable. We then reduce the C̃-separability of
such a set I to deciding the satisfiability of finitely many systems of inequalities over
the rationals with an integer solution. As the latter problem is decidable [37, 38],
deciding the brokenness of U boils down to deciding the C̃-separability of every set
I ⊆ {1, . . . ,M}. We will employ the following notion of the Parikh image of an
automaton.

In the following, let B = (QB, Γ, μB, νB) be a WTA over a commutative semiring
and Γ and let d1, . . . , dD be an enumeration of �B. For a run

r of B on a tree t , we define the transition Parikh vector of (t, r) by

p(t, r) = (|{w ∈ pos(t) | t(t, r, w) = d1}|, . . . , |{w ∈ pos(t) | t(t, r, w) = dD}|).
We define the Parikh image of B as the set p(B) = {p(t, r) | t ∈ TΓ , r ∈ AccB(t)}.
As the following lemma shows, the Parikh image of every WTA coincides with the
Parikh image of a context-free language.

Lemma 9 There exists a context-free language L over the alphabet �B such that
p(L)=p(B). A context-free grammar G generating L can be found effectively from B.

Proof We define the context-free grammar G = (QB ∪ {S}, �B, P , S), where S is a
new symbol, by

Then L = L(G) is context-free and we see as follows that p(L) = {p(t, r) | t ∈
TΓ , r ∈ AccB(t)}.

Theory of Computing Systems

“⊆”: Let w ∈ L. We construct a tree t ∈ TΓ and a run r ∈ AccB(t) such that
p(w) = p(t, r). Since w ∈ L, we find words u1, . . . , un ∈ (QB ∪ �B)∗ such
that un = w and S ⇒G u1 ⇒G . . . ⇒G un. We construct by induction for every
i ∈ {1, . . . , n} a Γ -context ti ∈ TΓ and a run ri ∈ RunB(ti) such that
and for every p ∈ Q and d ∈ �B we have

|ui |p = |{v ∈ pos(t) | ti (v) = and ri(v) = p}|
|ui |d = |{v ∈ pos(t) | t(t, r, w) = d}|.

For i = 1, we know by the definition of G that u1 = p with , so we
let t1 = and r1(ε) = p. Now assume we have constructed ti and ri with the
properties above. We have ui ⇒G ui+1, so by definition of G, there exists a transition
d = (p1, . . . , pm, a, p) ∈ �B with and words u′, u′′ ∈ (QB∪�B)∗ such
that ui = u′pu′′ and ui+1 = u′dp1 · · ·pmu′′. Thus |ui |p ≥ 1, so by induction we
find v ∈ pos(ti) with ti (v) = and ri(v) = p. We let ti+1 = ti〈a(, . . . ,) → v〉
and define ri+1 by ri+1(v

′) = ri(v
′) for v′ ∈ pos(ti) and ri+1(vj) = pj for j ∈

{1, . . . , m}. It is easy to check that ti+1 and ri+1 satisfy all of the above properties.
Since un = w ∈ �∗

B, the Γ -context tn is actually a Γ -tree, the run rn ∈ RunB(tn)

is an accepting run of B on tn, and we have p(w) = p(un) = p(tn, rn). Thus, we
have p(L) ⊆ {p(t, r) | t ∈ TΓ , r ∈ AccB(t)}.

“⊇”: Now let t ∈ TΓ and r ∈ AccB(t). We construct a word w ∈ L with p(w) =
p(t, r). For this, we construct by induction for every v ∈ pos(t) words u1, . . . , un

such that r(v) ⇒G u1 ⇒G . . . ⇒G un, un ∈ �∗
B, and p(un) = p(t �v, r �v). We

proceed by a reverse induction on the length of v. For |v| = height(t), we let n = 1
and u1 = t(t, r, v), then we have r(v) ⇒G u1, un ∈ �∗

B, and p(un) = p(t�v, r�v).
For |v| < height(t), we assume that t(t, r, v) = d = (p1, . . . , pm, a, p) and that

for every i ∈ {1, . . . , m} we have words u
(i)
1 , . . . , u

(i)
ni

with pi ⇒G u
(i)
1 ⇒G . . . ⇒G

u
(i)
ni

, u(i)
ni
∈ �∗

B, and p(u
(i)
ni

) = p(t�vi , r�vi). Since , we have ,
so by the definition of G, we have p ⇒G dp1 · · ·pm. Thus, we see that

p ⇒G dp1 · · ·pm

⇒G du
(1)
1 p2 · · ·pm ⇒G . . . ⇒G du(1)

n1
p2 · · ·pm

⇒G du(1)
n1

u
(2)
1 p3 · · ·pm ⇒G . . . ⇒G du(1)

n1
u(2)

n2
p3 · · ·pm

...

⇒G du(1)
n1
· · · u(m−1)

m−1 u
(m)
1 ⇒G . . . ⇒G du(1)

n1
· · · u(m)

nm
.

From this, we obtain words u1, . . . , un ∈ (QB ∪ �B)∗ with p ⇒G u1 ⇒G

. . . ⇒G un such that un = du
(1)
n1 · · · u(m)

nm
∈ �∗

B, and therefore p(un) = p(d) +
∑m

i=1 p(u
(i)
ni

) = p(d)+∑m
i=1 p(t�vi , r�vi) = p(t�v, r�v).

For v = ε, we thus obtain words u1, . . . , un such that r(ε) ⇒G u1 ⇒G . . . ⇒G

un, un ∈ �∗
B, and p(un) = p(t, r). Due to r ∈ AccB(t) we have , which

means that S ⇒G r(ε). Therefore un ∈ L, which shows that p(L) ⊇ {p(t, r) | t ∈
TΓ , r ∈ AccB(t)}.

Lemma 9 shows in particular that the Parikh image of a WTA is semilinear.

Theory of Computing Systems

Lemma 10 The set p(B) is semilinear and integers k, k1, . . . , kk , vectors α(l) ∈ N
D ,

and matrices β(l) ∈ N
D×kl (l ∈ {1, . . . , k}) with

p(A) =
k⋃

l=1

{α(l) + β(l)X̄ | X̄ ∈ N
kl }

can be effectively found from B. Furthermore, with Ω = (μB(d1), . . . , μB(dD)) ∈
KD we have wtB(t, r) = Ω · p(t, r) for every t ∈ TΓ and every r ∈ AccB(t).

Proof It follows from Theorem 3 and Lemma 9 that p(B) is semilinear. The second
statement follows from the definition of wtB and the commutativity of ⊕.

In fact, we do not apply Lemma 10 directly to U but to a covering of U . For this
covering, we add a mechanism to U to detect the broken coordinates of a run. More
precisely, we add to each state of Q one entry containing all states reachable on the
current subtree, one entry containing all states visited on the current run, one entry
containing all pairs (p,q) of states such that q is reachable by a run which visited p at
a position where our current run also visited p, and one entry containing a record of
all broken coordinates. This allows us to infer the brokenness of a run directly from
the state at its root. The precise construction is as follows.

Construction 2 Let Q̄ = Q × P(Q) × P(Q) × P(Q2) × {0, 1}M . For subsets
P1, . . . , Pm ⊆ Q and a letter a ∈ Γ with rkΓ (a) = m, we let succ(P1, . . . , Pm, a) =
{q0 | ∃(q1, . . . ,qm) ∈ P1 × . . . × Pm with μ(q1, . . . ,qm, a,q0) ∈ Q

M }. For a
set W ⊆ Q2 and l ∈ {1, . . . , m}, we let succ(P1, . . . , Pm, W, l, a) = ⋃

p∈Q{p} ×
succ(P1, . . . , Pl−1, {p′ | (p,p′) ∈ W }, Pl+1, . . . , Pm, a). Then we define the weight
functions of the new automaton Ū = (Q̄, Γ, μ̄, ν̄) by

μ̄((q1, P1, V1, W1, ā1), . . . , (qm, Pm, Vm, Wm, ām), a, (q0, P0, V0, W0, ā0)) =
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ(q1, . . . , qm, a,q0) if P0 = succ(P1, . . . , Pm, a) and V0 = {q0} ∪ ⋃m
l=1 Vl

and W0 = {(q0,q0)} ∪ ⋃m
l=1 succ(P1, . . . , Pm, Wl, l, a)

and for all i ∈ {1, . . . , M} we have ā0[i] = 1 if

either āl[i] = 1 for some l ∈ {1, . . . , m}
or for somei − rival p of q0 we have (p,p) ∈ W0

or there are l1, l2 ∈ {1, . . . , m} with l1 �= l2 and

p ∈ Vl1 ,q ∈ Vl2 such that p and q are i − rivals

and ā0[i] = 0 otherwise

−∞ otherwise

ν̄(q0, P0, V0, W0, ā0) = ν(q0).

We have the following lemma stating that the additional entries of the states of Ū
realize the intuition behind its construction described earlier.

Theory of Computing Systems

Lemma 11 Let t ∈ TΓ , r̄ ∈ RunŪ (t), w ∈ pos(t), and r̄(w) = (q, P , V, W, ā).
Then the following statements hold.

(i) P = {p ∈ Q | RunU (t�w,p) �= ∅}
(ii) V = {πQ ◦ r̄(wv) | v ∈ pos(t�w)}, where πQ : Q̄ → Q is the projection to the

first coordinate.
(iii) W = {(p1,p2) ∈ Q2 | for some v ∈ pos(t�w) we have πQ ◦ r̄(wv) = p1 and

RunU (p1, t〈 → wv〉�w,p2) �= ∅}
(iv) ā[i] = 1 if and only if (t, πQ ◦ r̄)�w is i-broken.
(v) πQ : AccŪ (t) → AccU (t) is a bijection preserving weights of runs.

Proof (i) See the proof of Lemma 5(i).
(ii) Let t ∈ TΓ and r̄ ∈ RunŪ (t) and for contradiction, let w ∈ pos(t) be a prefix-

maximal position for which (ii) does not hold. We deduce that (ii) holds for w. We
let a = t (w), m = rkΓ (a), and write r̄(w) = (q0, P0, V0, W0, ā0) and r̄(wl) =
(ql , Pl, Vl, Wl, āl) for l ∈ {1, . . . , m}.

First, let q ∈ V0. If q = q0, then q = πQ ◦ r̄(w). Otherwise, there exists l ∈
{1, . . . , m} with q∈Vl . We assume that (ii) holds for wl, so there exists v∈pos(t�wl)

with πQ ◦ r̄(wlv) = q.
On the other hand, let v ∈ pos(t�w). For v = ε, we have πQ ◦ r̄(wv) = q0 ∈ V0.

Otherwise, we have v = lv′ for some l ∈ {1, . . . , m}. We assume that (ii) holds
for wl, so we have πQ ◦ r̄(wlv′) ∈ Vl ⊆ V0. Thus, (i) holds for w, which is a
contradiction, so w does not exist.

(iii) Let t ∈ TΓ and r̄ ∈ RunŪ (t) and for contradiction, let w ∈ pos(t) be a
prefix-maximal position for which (iii) does not hold. We deduce that (iii) holds
for w. We let a = t (w), m = rkΓ (a), and write r̄(w) = (q0, P0, V0, W0, ā0) and
r̄(wl) = (ql , Pl, Vl, Wl, āl) for l ∈ {1, . . . , m}.

First, let (p,p′) ∈ W0. If (p,p′) = (q0,q0), we choose v = ε. Then πQ ◦ r̄(wv) =
q0 = p and RunU (p, t〈 → wv〉�w,p′) = RunU (q0,,q0) �= ∅. Otherwise, there
exists l ∈ {1, . . . , m} with (p,p′) ∈ succ(P1, . . . , Pm, Wl, l, a). Thus, there exist
(p,pl) ∈ Wl and (p1, . . . ,pl−1,pl+1, . . . ,pm) ∈ P1× . . .×Pl−1×Pl+1× . . .×Pm

with μ(p1, . . . ,pm, a,p′) ∈ Q
M . By (i), there exists rj ∈ RunU (t�wj ,pj) for every

j ∈ {1, . . . , m} \ {l}. We assume that (iii) holds for wl, so there exists v ∈ pos(t�wl)

with πQ ◦ r̄(wlv) = p and rl ∈ RunU (p, t〈 → wlv〉�wl,pl). Thus, we can define
r ∈ RunU (p, t〈 → wlv〉�w,p′) through r(ε) = p′ and r(jv) = rj (v).

On the other hand, let (p,p′) ∈ Q2 such that there exists v ∈ pos(t �w) with
πQ ◦ r̄(wv) = p and r ∈ RunU (p, t〈 → wv〉 �w,p′). If v = ε, it follows that
p′ = p = πQ ◦ r̄(w) = q0, so (p,p′) ∈ W0. Otherwise, we have v = lv′ for some
l ∈ {1, . . . , m}. We assume that (iii) holds for wl, we have πQ ◦ r̄(wlv′) = p, and
r�l∈ RunU (p, t〈 → wlv′〉�wl, r(l)), so we have (p, r(l)) ∈ Wl . Moreover, we have
r�j∈ RunU (t�wj) for every j ∈ {1, . . . , m} \ {l}, so by (iii) we have r(j) ∈ Pj for
every j ∈ {1, . . . , m}\{l}. It follows that (p,p′) ∈ succ(P1, . . . , Pm, Wl, l, a) ⊆ W0.
Thus, (iii) holds for w, which is a contradiction, so w does not exist.

(iv) Let t ∈ TΓ and r̄ ∈ RunŪ (t) and for contradiction, let w ∈ pos(t) be a prefix-
maximal position for which (iv) does not hold. We deduce that (iv) holds for w. We

Theory of Computing Systems

let a = t (w), m = rkΓ (a), and write r̄(w) = (q0, P0, V0, W0, ā0) and r̄(wl) =
(ql , Pl, Vl, Wl, āl) for l ∈ {1, . . . , m}.

First, assume that ā0[i] = 1. If āl[i] = 1 for some l ∈ {1, . . . , m}, then (t, πQ ◦
r̄)�wl is i-broken since we assume that (iv) holds for wl, so (t, πQ ◦ r̄)�w is i-broken
as well. If there exists an i-rival p of q0 with (p,p) ∈ W0, we see by (iii) that there
exists v ∈ pos(t �w) with πQ ◦ r̄(wv) = p and RunU (p, t〈 → wv〉�w,p) �= ∅.
It follows that t〈 → wv〉�w is an i-p-q0-fork, so (t, πQ ◦ r̄)�w is i-fork-broken.
If there are l1, l2 ∈ {1, . . . , m} with l1 �= l2 and p ∈ Vl1 ,q ∈ Vl2 such that p and
q are i-rivals, we see by (ii) that there exist positions v1 ∈ pos(t �wl1) and v2 ∈
pos(t �wl2) with p = πQ ◦ r̄(wl1v1) and q = πQ ◦ r̄(wl2v2). Thus, (t, πQ ◦ r̄)�w
is i-split-broken.

On the other hand, assume that (t, πQ ◦ r̄)�w is i-broken. If (t, πQ ◦ r̄)�w is i-
fork-broken, there exist two i-rivals p,q ∈ Q and positions wp, wq ∈ pos(t�w) such
that wq <P wp, πQ ◦ r̄(wwp) = p, πQ ◦ r̄(wwq) = q, and (t〈 → wwp〉)�wwq

is an i-p-q-fork. It follows that RunU (p, (t〈 → wwp〉) �wwq ,p) �= ∅, so for
r̄(wwq) = (q, P , V, W, ā), we have (p,p) ∈ W by (iii). It follows that ā[i] = 1,
so by construction of μ̄, also ā0[i] = 1. If (t, πQ ◦ r̄) �w is i-split-broken, there
exist two i-rivals p,q ∈ Q and two prefix-independent positions wp, wq ∈ pos(t�w)

with πQ ◦ r̄(wwp) = p and πQ ◦ r̄(wwq) = q. We let w′ be c wp and wq and
write wp = w′jpvp, wq = w′jqvq , r̄(ww′) = (q′, P ′, V ′, W ′, ā′), and r̄(ww′j) =
(q′j , P ′j , V ′j , W ′

j , ā
′
j) (j ∈ {jp, jq}). By (ii), we have p ∈ V ′jp

and q ∈ V ′jq
, so

ā′[i] = 1. By construction of μ̄, we thus have ā0[i] = 1. Thus, (iv) holds for w,
which is a contradiction, so w does not exist.

(v) See the proofs of Lemma 5(iii) and Lemma 5(iv).

Finally, we show the decidability of the separation property by applying Lemma 10
to Ū .

Theorem 4 There exists an integer C̃ such that every set of coordinates I ⊆
{1, . . . , M} is separable if and only if it is C̃-separable. Moreover, it is decidable for
every such I whether it is C̃-separable. In particular, it is decidable whether U is
broken.

Proof We let d1, . . . , dD be an enumeration of �Ū and for Ū , let k, k1, . . . , kk ∈
N, α(l) ∈ N

D, β(l) ∈ N
D×kl , Ω ∈ Q

M×D (l ∈ {1, . . . , k}) be as in
Lemma 10. Furthermore, we let ω1, . . . , ωM be the rows of Ω , let C̃ =
1 + �max{|ωiα

(l) − ωjα
(l)| | i, j ∈ {1, . . . , M}, l ∈ {1, . . . , k}}�, and for I ⊆

{1, . . . , M}, let DI =
{l ∈ {1, . . . , D} | dl = (q̄1, . . . , q̄m, ā, (q, P , V, W, ā)) ∈ �Ū with

ā[i] = 1 for all i ∈ I and ā[j] = 0 for all j ∈ {1, . . . , M} \ I }.
Let I ⊆ {1, . . . , M} and J = {1, . . . , M} \ I . First, assume that I is C̃-separable

and let t ∈ TΓ and r ∈ AccU (t) such that (t, r) is I -C̃-separated. Let r̄ be the unique
accepting run of Ū on t . Then for some l ∈ {1, . . . , k} and some X̄ ∈ N

kl we have
p(t, r̄) = α(l) + β(l)X̄.

Theory of Computing Systems

We let α(l)[1], . . . , α(l)[D] be the entries of α(l) and β(l)[1], . . . , β(l)[D] be the
rows of β(l). Since (t, r) is i-broken exactly for the coordinates i ∈ I , we have∑

d∈DI
α(l)[d]+β(l)[d]X̄ ≥ 1 and

∑
I�I ′⊆M

∑
d∈DI ′ α

(l)[d]+β(l)[d]X̄ = 0. More-

over, for every two i ∈ I and j ∈ J we have ωjα
(l) + ωjβ

(l)X̄ = wtj (t, r) ≤
wti (t, r) − C̃ = ωiα

(l) + ωiβ
(l)X̄ − C̃. In conclusion, we see that there exists

l ∈ {1, . . . , k} such that the following system of linear inequalities possesses an
integer solution.

∑

d∈DI

β(l)[d]X̄ ≥ 1−
∑

d∈DI

α(l)[d]

−
∑

I�I ′⊆M

∑

d∈DI ′
β(l)[d]X̄ ≥

∑

I�I ′⊆M

∑

d∈DI ′
α(l)[d]

(ωiβ
(l) − ωjβ

(l))X̄ ≥ ωjα
(l) − ωiα

(l) + C̃ (i ∈ I, j ∈ J)

X̄ ≥ 0

Conversely, assume that there exists l ∈ {1, . . . , k} such that the above system of
linear inequalities possesses an integer solution X̄. Let C ∈ N and let Ȳ be the scalar
multiplication of X̄ with C̃+C. Then there exists a tree t ∈ TΓ and an accepting run
r̄ ∈ AccŪ (t) such that p(t, r̄) = α(l)+β(l)Ȳ . Let r = πQ◦r̄ ∈ AccU (t) be the unique
accepting run of U on t . By choice of C̃ and the linearity of matrix multiplication,
we see that for every i ∈ I and every j ∈ J we have

(ωiβ
(l) − ωjβ

(l))Ȳ = (C̃ + C)(ωiβ
(l) − ωjβ

(l))X̄

≥ (C̃ + C)(ωjα
(l) − ωiα

(l) + C̃)

≥ C̃ + C

≥ ωjα
(l) − ωiα

(l) + C.

It follows that wtj (t, r) = ωjα
(l) + ωjβ

(l)Ȳ ≤ ωiα
(l) + ωiβ

(l)Ȳ − C =
wti (t, r) − C for every i ∈ I and every j ∈ J . Moreover, since all entries in
α(l) and β(l) are non-negative, we see that also

∑
d∈DI

α(l)[d] + β(l)[d]Ȳ ≥ 1 and
∑

I�I ′⊆M

∑
d∈DI ′ α

(l)[d] + β(l)[d]Ȳ ≤ 0 holds, so (t, r) is i-broken exactly for the
coordinates i ∈ I . Thus, I is C-separable. As C was arbitrary, I is separable.

In conclusion, we see on the one hand that if I is C̃-separable, then for some
l ∈ {1, . . . , k} the above system of linear inequalities possesses an integer solution.
On the other hand, if for some l ∈ {1, . . . , k} the above system of linear inequalities
possesses an integer solution, then I is separable. In particular, I is separable iff it
is C̃-separable iff the above system of linear inequalities possesses an integer solu-
tion. The satisfiability of systems of linear inequalities over the rationals with integer
solutions is a decidable problem ([37, 38], Theorem 3.4). As there are only finitely
many such systems to consider, it is decidable whether I is separable. To decide
whether U is broken, it suffices to check whether there exists a separable subset
I ⊆ {1, . . . , M}.

Theory of Computing Systems

3.2 Necessity

In this section, we show that if U is broken, then �A� is not finitely sequential. For
this, we employ Ramsey’s Theorem, so we briefly recall Ramsey’s Theorem and the
related concepts.

Let H, c ∈ N be integers. For a set X, we denote by
[

X
H

]
the set of all subsets of

X of cardinality H , i.e.,
[

X
H

] = {Y ⊆ X | |Y | = H }. A set Y ∈ [
X
H

]
is also called an

H -subset of X. An H -c-coloring of X is a mapping g : [
X
H

] → {1, . . . , c}. We have
Ramsey’s Theorem as follows.

Theorem 5 ([33]) Let H, c, n ∈ N. Then there exists an integer R(H, c, n) ∈ N such
that for every set X of cardinality at least R(H, c, n) and every H -c-coloring g of
X, there exists a subset Y ⊆ X of cardinality n such that |g(

[
Y
H

]
)| = 1, i.e., all sets

in
[

Y
H

]
are colored by the same color.

Although not stated explicitly, Bala’s proof for words [26] most likely also
involves some form of Ramsey’s Theorem as his proof of U being broken imply-
ing �A� to not be finitely sequential “deals with colorings of finite hypercubes”. In
our proof for tree automata, we are able to handle fork-brokenness without employ-
ing Ramsey’s Theorem. This suggest that applying our approach to word automata
yields a proof which is simpler than the corresponding one used in [26]. The reason
for this is that our separation property considers sets of coordinates instead of the
single coordinates which the A-Fork property considers. For the separable sets I ∈ I
which are minimal with respect to set inclusion, we are able to prove a statement for
I -C-separated pairs (t, r) which greatly facilitates dealing with fork-brokenness and
enables us to deal with split-brokenness in the first place. Namely, if (t, r) is I -C-
separated for a sufficiently large C and no subset of I is separable, then the weights
of all coordinates in I coincide for every loop which loops in a state occurring in r.

To prove this statement, we define Υ as the size of the largest Γ -word of height
at most 4|Q|2 and we define ξ as the smallest difference between the weights of two
coordinates of a loop in a Γ -word of height at most 4|Q|2. That is, we let

Υ = max{|t | | t ∈ TΓ with height(t) ≤ 4|Q|2},
X = {|wti (p, s,p)− wtj (q, s,q)| | p,q ∈ Q, i, j ∈ {1, . . . , M},

s is a Γ -word with height(s) ≤ 4|Q|2,
RunU (p, s,p) �= ∅, RunU (q, s,q) �= ∅},

and ξ = min X \ {0}. Moreover, we let μmax ∈ Q be a positive upper bound on the
weights occurring in U , i.e., for R = {|πi(x̄)| | i ∈ {1, . . . , M}, x̄ ∈ (μ(�U) ∪
ν(Q)) \ {(−∞, . . . ,−∞)}}, we let μmax = max R. Then we have the following
lemma.

Lemma 12 Let I ∈ I be minimal with respect to set inclusion, let C̃ be as in Theo-
rem 4, and let n = �2MC̃ξ−1�. Furthermore, let C ≥ 2μmaxnΥ and let t ∈ TΓ and

Theory of Computing Systems

r ∈ AccU (t) be such that (t, r) is I -C-separated. Then for every p ∈ r(pos(t)), every
Γ -word s with height(s) ≤ 4|Q|2 and RunU (p, s,p) �= ∅, and every two coordinates
i, j ∈ I we have wti (p, s,p) = wtj (p, s,p).

Proof Let I, C, n, t, r be as in the statement of the lemma. First, we see as follows
that for every two i, j ∈ I we have |wti (t, r) − wtj (t, r)| ≤ MC̃. Let i1, . . . , i|I |
be an enumeration of I such that wti1(t, r) ≤ . . . ≤ wti|I |(t, r). If for some k ∈
{1, . . . , |I |−1}we had wtik+1(t, r) ≥ wtik (t, r)+C̃, then clearly I ′ = I \{i1, . . . , ik}
would be C̃-separable. By Theorem 4, we would therefore have I ′ ∈ I, which would
be a contradiction to the minimality of I . Thus, we have wti|I |(t, r) − wti1(t, r) ≤
(|I | − 1)C̃ ≤ MC̃.

Now assume for contradiction that there exists a state p ∈ r(pos(t)), a Γ -word s of
height at most 4|Q|2, and two coordinates i, j ∈ I such that RunU (p, s,p) �= ∅ and
wti (p, s,p) �= wtj (p, s,p). We may assume that wti (p, s,p) < wtj (p, s,p). Then
by our choice of ξ , we have wti (p, s,p) ≤ wtj (p, s,p)− ξ . Let rp ∈ RunU (p, s,p),
w ∈ pos(t) with r(w) = p, and let . Then r′ ∈ AccU (t ′)
satisfies

wti (t ′, r′) = wti (t, r)+ nwti (p, s,p)

≤ wti (t, r)+ n(wtj (p, s,p)− ξ)

≤ wtj (t, r)+MC̃ + nwtj (p, s,p)− 2MC̃

= wtj (t ′, r′)−MC̃.

Now let i1, . . . , i|I | be an enumeration of I such that wti1(t
′, r′) ≤ . . . ≤

wti|I |(t
′, r′). Since wtj (t ′, r ′) − wti (t ′, r ′) ≥ MC̃, there must exist some k ∈

{1, . . . , |I | − 1} with wtik+1(t, r) ≥ wtik (t, r) + C̃. Furthermore, for every ι ∈
{1, . . . , M} \ I we have

wtι(t ′, r′) ≤ wtι(t, r)+ μmax|sn| ≤ wtι(t, r)+ μmaxnΥ

and similarly

wtik (t
′, r′) ≥ wtik (t, r)− μmax|sn| ≥ wtik (t, r)− μmaxnΥ .

By choice of C, we thus have

wtι(t ′, r′) ≤ wtι(t, r)+ μmaxnΥ ≤ wtik (t, r)− μmaxnΥ ≤ wtik (t
′, r′),

so I ′ = I \ {i1, . . . , ik} is C̃-separable. By Theorem 4, we therefore have I ′ ∈ I,
which is a contradiction to the minimality of I .

We are now ready to prove the main result of this section, i.e., that �A� is not
finitely sequential if U is broken. We will assume that a finitely sequential repre-
sentation �A� = maxN

n=1�An� of A exists, choose a C-separated pair (t, r) for a
sufficiently large C, and then deduce a contradiction depending on whether (t, r) is
fork-broken or split-broken.

Theory of Computing Systems

Due to Lemma 12, our method to deal with fork-brokenness is quite similar to
the method used to deal with fork-brokenness in [25] and [34]. As in those proofs,
we construct from (t, r) new trees and runs with increasingly more alterations of
forks and distinguishers and then show that at least N + 1 deterministic max-plus-
WTA are necessary to assign the correct weight to all of these trees. The challenge
we face in adapting the proof from [34] to our situation is that, in order to obtain a
contradiction, we have to ensure that in the runs we construct the coordinates from
I dominate the other coordinates. In our constructions we may therefore only make
“small” modifications to (t, r). Our solution involves constructing more than the N+
1 trees sufficient for the proofs in [25, 34].

Dealing with split-brokenness is much more complicated and is in fact the only
reason we have to use the covering automaton U instead of U . As split-brokenness
does not apply to words, this was not an issue in [26]. We provide a detailed intuition
of this part of our proof when we consider the case that (t, r) is split-broken. We
prove the following lemma.

Lemma 13 If U is broken, A does not possess a finitely sequential representation.

Proof For contradiction, we assume that �A� = maxM
i=1 πi(�U�) is the maximum

of the deterministic max-plus-WTA A1, . . . ,AN . For n ∈ {1, . . . , N}, we write
An = (Qn, Γ, μn, νn) and let L = maxN

n=1 maxx∈μn(�An)\{−∞} |x| and |Q•| =
maxN

n=1 |Qn|.
Due to the determinism of A1, . . . ,AN , the set RunAn

(t) is either empty or a
singleton for every n ∈ {1, . . . , N} and t ∈ TΓ . We may even assume that RunAn

(t)

is always a singleton, i.e., that each An is complete. If An is not complete, we can
simply add a dummy state with final weight −∞ to Qn which the automaton can
transition into whenever no valid transition is available.

We warn the reader that the roles of the constants defined in the following are
likely not apparent until these constants are actually used. It may thus be wise to only
take note of which constants are defined and then later verify the correctness of their
choice. We let Ξ = Q1 × . . .×QN ×Q2 and

Υ ′ = max{|t | | t ∈ TΓ with height(t) ≤ |Ξ |2}.
For H ∈ {1, . . . , M} we let RH be the Ramsey number R(2H, MN, 2H + 2) from
Theorem 5, i.e., such that for every set X of cardinality at least RH and every 2H -
MN-coloring of X, there exists a subset Y ⊆ X of cardinality 2H + 2 whose
2H -subsets are all colored with the same color. Then we let R̄ = max{R1, . . . , RM}.
Furthermore, we let D = N |Q•|2+1 and define natural numbers N1, . . . , ND induc-
tively as follows. We let ND = 0 and if Nk1+1, . . . , ND are defined, we choose Nk1

such that for all k2 ∈ {k1 + 1, . . . , D} we have

Nk1 · ξ > L
(
(k2 − k1)Υ + Υ

k2∑

l=k1+1

Nl

)
+ (k2 − k1)μmaxΥ + (μmaxΥ

k2∑

l=k1+1

Nl).

Theory of Computing Systems

Let I ∈ I be minimal with respect to set inclusion, let C̃ be as in Theorem 4 and
for some

C ≥ max{ 2μmaxΥ �2MC̃ξ−1�, 2μmaxΥ

D∑

l=1

(Nl + 1),

4μmaxM|Ξ |Υ R̄ + 2μmax(Υ + Υ ′ +M|Ξ |Υ)+ 1},
choose t ∈ TΓ and r ∈ AccU (t) such that (t, r) is I -C-separated. We consider two
cases.

Case 1: For some i ∈ I and i-rivals p,q ∈ Q, (t, r) is i-p-q-fork-broken.

In this case, there exist two positions wp, wq ∈ pos(t) such that wq <P wp,
r(wp) = p, r(wq) = q, and f ′ = (t〈 → wp〉)�wq is an i-p-q-fork. By Lemma 7
and Lemma 8, there exists an i-p-q-distinguisher s with height(s) ≤ 4|Q|2 and a
p-q-fork f with height(f) ≤ 2|Q|2. We let u = t �wp and û = t〈 → wq〉, i.e.,
we have t = û(f ′(u)). We let s0 = u and for k ∈ {1, . . . , D − 1}, we let sk =
sNk (f (sk−1)). Then for k ∈ {1, . . . , D}, we let tk = û(sNk (f ′(sk−1))). For clarity,
for words we would have t1 = uf ′sN1 û and tk = uf sN1 · · · f sNk−1f ′sNk û. For each
k ∈ {k1 + 1, . . . , D}, we let rk be the unique accepting run of U on tk .

Due to the choice of I and C, the heights of s and f , and Lemma 12, we
have wti (p, f,p) = wtj (p, f,p), wti (p, s,p) = wtj (p, s,p), and wti (q, s,q) =
wtj (q, s,q) for every two i, j ∈ I . Let i ∈ I such that wti (t, r) ≥ wtj (t, r) for all
j ∈ I . Then, for every k ∈ {1, . . . , D} and every j ∈ I , we have

wtj (tk, rk)

= wtj (t, r)+ (k − 1)wtj (p, f,p)+ wtj (p, s,p)

k−1∑

l=1

Nl +Nkwtj (q, s,q)

≤ wti (t, r)+ (k − 1)wti (p, f,p)+ wti (p, s,p)

k−1∑

l=1

Nl +Nkwti (q, s,q)

= wti (tk, rk).

Furthermore, for every k ∈ {1, . . . , D} and j ∈ {1, . . . , M} \ I , we have by choice
of C that

wtj (tk, rk)

= wtj (t, r)+ (k − 1)wtj (p, f,p)+ wtj (p, s,p)

k−1∑

l=1

Nl +Nkwtj (q, s,q)

≤ wtj (t, r)+ (k − 1)μmaxΥ + μmaxΥ

k∑

l=1

Nl

Theory of Computing Systems

≤ wtj (t, r)+ μmaxΥ

D∑

l=1

(Nl + 1)

≤ wti (t, r)− μmaxΥ

D∑

l=1

(Nl + 1)

≤ wti (t, r)− (k − 1)μmaxΥ − μmaxΥ

k∑

l=1

Nl

≤ wti (tk, rk).

Thus, we have maxM
j=1 wtj (tk, rk) = wti (tk, rk) for every k ∈ {1, . . . , D}. By choice

of N1, . . . , ND , it follows that for every two k1, k2 ∈ {1, . . . , D} with k2 > k1 we
have

|�A�(tk2)− �A�(tk1)|
= | M

max
j=1

wtj (tk2 , rk2)−
M

max
j=1

wtj (tk1 , rk1)|

= |wti (tk2 , rk2)− wti (tk1 , rk1)|
= |Nk1(wt

i (p, s,p)− wti (q, s,q))+ (k2 − k1)wti (p, f,p)

+wti (p, s,p)

k2−1∑

l=k1+1

Nl +Nk2wt

i (q, s,q)|

≥ Nk1 |wti (p, s,p)− wti (q, s,q)| − (k2 − k1)|wti (p, f,p)|

−|wti (p, s,p)|
k2−1∑

l=k1+1

Nl −Nk2 |wti (q, s,q)|

≥ Nk1ξ − (k2 − k1)μmaxΥ − μmaxΥ

k2∑

l=k1+1

Nl

> L
(
(k2 − k1)Υ + Υ

k2∑

l=k1+1

Nl

)
(♠).

Here, the first inequality is an application of the reverse triangle inequality. We
assume that �A� = maxN

n=1�An�, so for every k ∈ {1, . . . , D} there exists some
nk ∈ {1, . . . , N} with �A�(tk) = �Ank

�(tk). For every k ∈ {1, . . . , D}, we let rk ∈
RunAnk

(tk) be the unique run of Ank
on tk . Furthermore, we let v̂ = ♦1(û) and

vk = ♦1(û(sNk (f ′))). We have D = N |Q•|2+1 many trees and every automaton An

has at most |Q•|many states, so by pigeonhole principle there are at least two distinct
indices k1, k2 ∈ {1, . . . , D} such that (nk1, rk1(v̂), rk1(vk1)) = (nk2 , rk2(v̂), rk2(vk2)).

Theory of Computing Systems

We may assume that k2 > k1. We let n = nk1 , then due to the assumption that An is
deterministic, we have

|�A�(tk2)− �A�(tk1)| = |�An�(tk2)− �An�(tk1)|

≤ L(k2 − k1)|f | + L|s|
k2−1∑

l=k1

Nl + L|s|(Nk2 −Nk1)

≤ L
(
(k2 − k1)Υ + Υ

k2∑

l=k1+1

Nl

)
.

Clearly, this is a contradiction to (♠) above.

Case 2: For some i ∈ I and i-rivals p,q ∈ Q, (t, r) is i-p-q-split-broken.
As the proof for this case is rather involved, we first provide an intuitive descrip-

tion of the main ideas behind our approach. First, assume that M = N = 1 and that
two rivals p,q occur at prefix-independent positions wp, wq ∈ pos(t) as in Fig. 2.
We let s be a p-q-distinguisher and u a p-q-reacher. Then we substitute the subtrees
at wp and wq in t by the tree s|Q•|(u) to obtain a tree t ′ as in Fig. 2. We easily obtain
an accepting run r′ of U on t ′ and this run loops s in p below wp with some weight
x and it loops s in q below wq with some weight y such that x �= y.

Since M = N = 1, we have wtU (t ′, r′) = �A1�(t
′). As A1 is deterministic,

the one accepting run of A1 on t ′ is identical on the subtrees below wp and wq .
Furthermore, as A1 has at most |Q•| states, this run loops some sub-Γ -word sn of
s|Q•| in a state of A1. We let z be the weight of this loop in A1. Then we consider
the tree t+p obtained by substituting the subtree at wp in t ′ by s|Q•|+n(u) and the
tree t+q obtained by substituting the subtree at wq in t ′ by s|Q•|+n(u), see also Fig. 2.
Clearly, we have �A1�(t

+p) = �A1�(t
+q) = �A1�(t

′)+ z.
We also easily obtain accepting runs r+p, r+q of U on the trees t+p and t+q and

for these runs we have wtU (t+p, r+p) = wtU (t ′, r′) + nx and wtU (t+q, r+q) =
wtU (t ′, r′)+ ny. Again, since M = N = 1, we obtain �A1�(t

′)+ z = �A1�(t
+p) =

wtU (t ′, r′)+nx = �A1�(t
′)+nx and �A1�(t

′)+z = �A1�(t
+q) = wtU (t ′, r′)+ny =

�A1�(t
′)+ ny, i.e., nx = z = ny. This is a contradiction to x �= y.

For M = 1 and N arbitrary, our earlier argument breaks as we cannot guaran-
tee anymore that exactly one deterministic automaton assigns the maximum weight
to the trees t ′, t+p, and t+q . There are two approaches to solve this problem. One
is described in [34], the other employs Ramsey’s theorem. We outline the latter

Fig. 2 The tree t and the trees obtained by substituting the subtrees at wp and wq by powers of s

Theory of Computing Systems

approach as it is easier to generalize to the scenario where M is arbitrary. As above,
we substitute the trees below wp and wq by the tree s|Q•|N (u). By considering the
runs of all the deterministic automata on t ′ in parallel, we see that some sub-Γ -word
sn of s|Q•|N loops in all the deterministic automata in parallel. More precisely, there
exist integers m and n such that each automaton Ai , after reading sm(u), is in a
state qi which loops in sn. For each automaton Ai , we let zi be the weight of Ai’s
loop in sn.

We then consider the Ramsey number R = R(2, N, 4), i.e., for every set X of
cardinality at least R and every 2-N-coloring of X, there exists a subset Y ⊆ X of
cardinality 4 whose 2-subsets are all colored with the same color. For every 2-subset
{ζ1, ζ2} ⊆ {1, . . . , R} with ζ1 < ζ2, we define the tree tζ1,ζ2 by substituting the

subtree below wp by s|Q•|N+ζ1n(u) and the subtree below wq by s|Q•|N+ζ2n(u). We
let rζ1,ζ2 be the unique accepting run of U on tζ1,ζ2 and define the color of {ζ1, ζ2}
as the smallest index i ∈ {1, . . . , N} such that wtU (tζ1,ζ2 , rζ1,ζ2) = �Ai�(tζ1,ζ2).
By choice of R, we find 4 integers ζ1 < ζ2 < ζ3 < ζ4 in {1, . . . , R} such that
{ζ1, ζ3}, {ζ2, ζ3}, and {ζ1, ζ4} are all colored with the same color i ∈ {1, . . . , N}.
We derive that (ζ2 − ζ1)zi = �Ai�(tζ2,ζ3) − �Ai�(tζ1,ζ3) = wtU (tζ2,ζ3 , rζ2,ζ3) −
wtU (tζ1,ζ3 , rζ1,ζ3) = (ζ2 − ζ1)nx and similarly (ζ4 − ζ3)zi = �Ai�(tζ1,ζ4) −
�Ai�(tζ1,ζ3) = wtU (tζ1,ζ4, rζ1,ζ4) − wtU (tζ1,ζ3 , rζ1,ζ3) = (ζ4 − ζ3)ny. As above, we
obtain the contradiction x = y.

Assume that both M and N are arbitrary. For M = 1, we substituted the subtrees
below wp and wq by the same tree s|Q•|N (u) to make use of the fact that each deter-
ministic automaton then treats both subtrees in the same way. However, if M > 1, the
subtrees present below wp and wq may be indispensable to ensure that the weights
of the coordinates not in I are small. That is, replacing these subtrees may cause a
coordinate for which p and q are not rivals to become dominant. This is evidenced
by the automaton in Example 1, where we cannot simply replace these subtrees. To
overcome the problem of not being able to substitute the subtrees, we employ the
properties of U proved in Lemma 5 and construct a run of U into which we insert
powers of distinguishers. The general outline of our approach is depicted in Fig. 3.

First, we realize that it suffices to substitute only one subtree. By Lemma 5(v), the
subtree tp at wp is a p-q-reacher. Thus, substituting tp and the subtree tq at wq by
a tree of the form sm(tp) allows us to create a scenario as above while changing the
weights below wp only “slightly”, i.e., dependent only on sm. However, depending
on the sizes of tp and tq , this operation may still significantly change the coordinate-
wise weights below wq . This is the case for the automaton from Example 1. We thus
need to bound the size of both the substituting and the substituted tree below wq .

Fig. 3 The general outline of our proof of case 2

Theory of Computing Systems

Our idea to bound the size of the substituted tree is to move parts of tq from tq to
tp, thereby shrinking tq . More precisely, we want to cut loops from rq

q ∈ RunU (tq ,q)

and insert them into rp
p ∈ RunU (tp,p). If tq is of height at least |Q|2, there exists a

loop in rq
q , so we can shrink tq to height |Q|2 by moving loops. However, in order

for this to work, the state rq
q loops in has to occur in rp

p. This is not always the case,
as seen in the automaton from Example 1. We resolve this problem as follows. We
let rq

p ∈ RunU (tp,q) and rp
q ∈ RunU (tq ,p), such runs exist by Lemma 5(v), and let

r
p
p , r

q
p, r

q
q , r

p
q be the projections of rp

p, rq
p, rq

q, rp
q to the first coordinate. Then from

Lemma 5(ii), we see that {(rp
p (w), r

q
p(w)) | w ∈ pos(tp)} = {(rp

q (w), r
q
q (w)) |

w ∈ pos(tq)}. Thus, if we have a simultaneous loop in rp
q and rq

q , i.e., two posi-
tions w1 <P w2 in pos(tq) with (rp

q (w1), r
q
q(w1)) = (rp

q (w2), r
q
q(w2)), then this is

also a simultaneous loop in r
p
q and r

q
q and there exists a position w ∈ pos(tp) with

(r
p
p (w), r

q
p(w)) = (r

p
q (w1), r

q
q (w1)) at which we can insert this loop into both runs

on tp. This approach would work if we could guarantee that rp
q (w1) and rq

q(w1) are
never rivals, as then, the simultaneous loops in rp

q and rq
q coincide on their weights

and removing a loop from rq
q and moving the simultaneous loop from r

p
q to r

p
p would

be weight-preserving.
In fact, our only concern is to not reduce the gap between the weights of the coor-

dinates in I and the non-broken coordinates. Therefore, we consider all positions
w ∈ pos(tq) such that rp

q (w) and rq
q(w) are i-rivals for some i ∈ I , let vq be prefix-

maximal among these positions, and shrink only the subtree at vq in the way just
described, see also Fig. 4. By Lemma 5(ii), there exists a position vp ∈ pos(tp) such
that (r

p
p (vp), r

q
p(vp)) = (r

p
q (vq), r

q
q (vq)) and {(rp

p (vpu), r
q
p(vpu)) | u ∈ pos(tp�vp

)} = {(rp
q (vqu), r

q
q (vqu)) | u ∈ pos(tq �vq)}. We let τq, ρ

p
q , ρ

q
q, ρ

p
q , ρ

q
q be the

restrictions of tq , rp
q , rq

q, r
p
q , r

q
q to vq and we let τp, ρ

p
p, ρ

q
p, ρ

p
p , ρ

q
p be the restric-

tions of tp, rp
p, rq

p, r
p
p , r

q
p to vp. Thus, if we have two positions u1 <P u2 in pos(τq)

with (ρ
p
q (u1), ρ

q
q(u1)) = (ρ

p
q (u2), ρ

q
q(u2)), there exists a position up ∈ pos(τp)

with (ρ
p
p (up), ρ

q
p(up)) = (ρ

p
q (u1), ρ

q
q (u1)), see also Fig. 5. Moreover, the weights

of the simultaneous loops in ρ
p
q and ρ

q
q now coincide by construction for all

coordinates in I .
In particular, removing a loop from ρ

q
q and moving the corresponding simulta-

neous loop from ρ
p
q to ρ

p
p does not influence the weights for the coordinates in I .

We let J = {j1, . . . , jH } be the set of all coordinates such that for some position
w ∈ pos(τq), the state ρ

q
q(w) is a j -rival. We note that I ⊆ J due to ε ∈ pos(τq) and

Lemma 12.

Fig. 4 The subtrees tp at wp and tq at wq of t are both p-q-reachers, so there exist runs rp
p, rq

p on tp
reaching p and q, respectively, and runs rp

q , rq
q on tq reaching p and q, respectively. The position vq ∈

pos(tq) is prefix-maximal among all positions w for which rp
q (w) and rq

q (w) are i-rivals

Theory of Computing Systems

Fig. 5 Top: There exists a position vp ∈ pos(tp) such that (r
p
p (vp), r

q
p(vp)) = (r

p
q (vq), r

q
q (vq)) and such

that for every uq ∈ pos(tq �vq), there exists a position up ∈ pos(tp �vp) with (r
p
p (vpup), r

q
p(vpup)) =

(r
p
q (vquq), r

q
q (vquq)). Bottom: Moving a loop from ρ

p
q and ρ

q
q on τq to ρ

p
p and ρ

q
p on τp

Assume that by moving loops as above we have transformed our trees and runs
τq, τp, ρ

p
p , ρ

q
p into trees and runs τ ′q, τ ′p, ρ

p′
p , ρ

q′
p where now height(τ ′q) ≤ |Q|2. Intu-

itively, we will now shrink the tree τ ′p and replace τ ′q by the resulting tree. However,
we still need to ensure that for every coordinate j ∈ J , there exists some position
w in pos(τ ′p) such that ρ

p′
p (w) and ρ

q′
p (w) are j -rivals and such that for some j -

ρ
p′
p (w)-ρq′

p (w)-distinguisher s, all deterministic automata reach w with a state which
can loop in s. We do so by choosing for every jk ∈ J a position w such that ρ

p′
p (w)

and ρ
q′
p (w) are jk-rivals and a jk-ρp′

p (w)-ρq′
p (w)-distinguisher sk and inserting s

|Ξ |
k

at w, where we recall that Ξ = Q1× . . . QN ×Q2. This results in a tree τ ′′p with runs

ρ
p′′
p and ρ

q′′
p . We assume the deterministic automata A1, . . . ,AN to be complete,

so each deterministic automaton An possesses a run ρn on τ ′′p . We consider the runs

ρ1, . . . , ρN , ρ
p′′
p , ρ

q′′
p in parallel as a quasi-run ρ̄ on τ ′′p with states in Ξ . By pigeon-

hole principle, for each jk the quasi-run ρ̄ loops with a state p̄k in a Γ -word s̄k = s
nk

k

with 1 ≤ nk ≤ |Ξ |, see also Fig. 6.
For our final substitution, we remove loops from ρ̄ while ensuring that such a

removal does not influence the set of states visited by our quasi-run. This allows us
to shrink τ ′′p and ρ̄ to a tree τ ′′′p of height at most |Ξ |2 and a quasi-run ρ̄′.

In t , we substitute τ ′′p into vp and τ ′′′p into vq to obtain a tree t ′ with an accepting run

r ′ ∈ AccU (t ′). The runs on the substituted subtrees are given by ρ
p′′
p and the last entry

Theory of Computing Systems

Fig. 6 Some power s̄k of sk loops a state p̄k in all runs ρ1, . . . , ρN , ρ
p′′
p , ρ

q′′
p simultaneously. Each state

p̄k still occurs in ρ̄′ after removing loops from ρ̄ to obtain from τ ′′p a tree τ ′′′p of height at most |Ξ |2

of ρ̄′. For every jk ∈ J , there exist positions u
p
k ∈ pos(τ ′′p) and u

q
k ∈ pos(τ ′′′p) such

that s̄k is a jk-r ′(wpvpu
p
k)-r ′(wqvqu

q
k)-distinguisher, each deterministic automaton

An reaches wpvpu
p
k and wqvqu

q
k with the same state, and each An loops in this

state with s̄k . We then consider the Ramsey number R = R(2|J |, MN, 2|J | + 2),
i.e., for every set X of cardinality at least R and every 2|J |-MN-coloring of X,
there exists a subset Y ⊆ X of cardinality 2|J | + 2 whose 2|J |-subsets are all col-
ored with the same color. For every 2|J |-subset ζ = {ζ1, . . . , ζ2|J |} ⊆ {1, . . . , R}
with ζ1 < . . . < ζ2|J |, we define the tree tζ by inserting s̄

ζ2k−1
k at wpvpu

p
k

and s̄
ζ2k

k at wqvqu
q
k for each jk ∈ J . Then we define the color of ζ as the pair

(j, n) ∈ {1, . . . , M} × {1, . . . , N} such that the unique accepting run of U on tζ
has its maximum weight in coordinate j and such that An assigns the maximum
weight to tζ among all the deterministic automata. We can show that in fact, all col-
ors assigned this way are from J × {1, . . . , N}. By choice of R, we find 2|J | + 2
integers ζ1 < · · · < ζ2|J |+2 in {1, . . . , R} such that {ζ1, · · · , ζ2|J |+2} \ {ζ2k, ζ2k+2},
{ζ1, · · · , ζ2|J |+2} \ {ζ2k−1, ζ2k+2}, and {ζ1, · · · , ζ2|J |+2} \ {ζ2k, ζ2k+1} are all col-
ored with the same color (jk, n). With the same reasoning as earlier, we obtain the
contradiction that s̄k is not a jk-distinguisher.

We now give a more detailed presentation of the proof. By assumption, there exist
two prefix-independent positions wp, wq ∈ pos(t) with r(wp) = p and r(wq) = q.
We may assume that wp <L wq . We let (tp, rp

p) = (t, r)�wp and (tq , rq
q) = (t, r)�wq .

Furthermore, by Lemma 5(v) we may write p = (p, P, V) and q = (q, P, V) with
p, q ∈ Q, P ⊆ Q, and V ⊆ Q4 × P(Q2).

By Lemma 5(v), there exist runs rq
p ∈ RunU (tp,q) and rp

q ∈ RunU (tq ,p). We
consider the set {w ∈ pos(tq) | rp

q (w) and rq
q(w) are i-rivals for some i ∈ I } and

let vq be a prefix-maximal position from this set. Note that this set is non-empty as
it contains ε. We let τq = tq �vq , ρ

p
q = rp

q �vq , and ρ
q
q = rq

q �vq . Furthermore, we
let p′ = ρ

p
q (ε), q′ = ρ

q
q(ε), p′ = π1(p′), and q ′ = π1(q′), see also Fig. 4. Also,

we let J = {j ∈ {1, . . . , M} | there exists u ∈ pos(τq) such that ρ
p
q (u) and ρ

q
q(u)

are j -rivals}. Note that p′ and q′ are i-rivals for some i ∈ I , so by Lemma 7 there

Theory of Computing Systems

exists an i-p′-q′-distinguisher of height at most 4|Q|2. Thus, we obtain I ⊆ J from
Lemma 12.

We let r
q
q = π1 ◦ rq

q , r
p
q = π1 ◦ rp

q , and Y = {(rp
q (vqu), r

q
q (vqu)) ∈ Q2 |

u ∈ pos(τq)}, then by Lemma 5(ii) we have (p, q, p′, q ′, Y) ∈ V . Therefore,
again by Lemma 5(ii), there exist runs r

p
p ∈ RunU (tp, p) and r

q
p ∈ RunU (tp, q)

and a position vp ∈ pos(tp) with r
p
p (vp) = p′ and r

q
p(vp) = q ′ such that

Y = {(rp
p (vpu), r

q
p(vpu)) ∈ Q2 | u ∈ pos(tp�vp)}.

Since U is unambiguous, the sets RunU (tp, p) and RunU (tp, q) are singletons. It
follows that r

p
p = π1 ◦ rp

p and r
q
p = π1 ◦ rq

p.
We let τp = tp �vp , ρ

p
p = r

p
p �vp , and ρ

q
p = r

q
p �vp . Then in conclusion, we

see that for every position uq ∈ pos(τq), there exists a position up ∈ pos(τp) with
(ρ

p
p (up), ρ

q
p(up)) = (ρ

p
q (uq), ρ

q
q (uq)), see also Fig. 5.

♣ We now remove cycles from ρ
p
q and ρ

q
q in parallel as follows. If height(τq) ≤

|Q|2, we do nothing. Otherwise, by pigeonhole principle, there exist two posi-
tions u1, u2 ∈ pos(τq) with u1 <P u2 such that (ρ

p
q (u1), ρ

q
q(u1)) = (ρ

p
q (u2),

ρ
q
q(u2)). On the Γ -word s = τq〈 → u2〉�u1 , we thus obtain two runs looping in a

state by defining ρp(w) = ρ
p
q (u1w) and ρq(w) = ρ

q
q(u1w).

We let ρp = π1 ◦ ρp and ρq = π1 ◦ ρq , then there exists up ∈ pos(τp) with
(ρ

p
p (up), ρ

q
p(up)) = (ρp(ε), ρp(ε)). We insert the Γ -word s into τp at up to obtain

a tree τ ′p and two runs ρ
p′
p and ρ

q′
p on τ ′p by

and . Moreover, we remove the loops on s

from the runs on τq by (τ ′q, ρ
p′
q) = (τq, ρ

p
q)〈(τq, ρ

p
q) �u2→ u1〉 and (τ ′q, ρ

q′
q) =

(τq, ρ
q
q)〈(τq, ρ

q
q)�u2→ u1〉.

For every i ∈ {1, . . . , M} \ J , we have wti (s, ρp) = wti (s, ρq). Likewise, by
choice of vq , we have wti (s, ρp) = wti (s, ρq) for every i ∈ I . This implies in
particular that for every i ∈ I ∪ ({k1 + 1, . . . , M} \ J) we have wti (τ ′p, ρ

p′
p) +

wti (τ ′q, ρ
q′
q) = wti (τp, ρ

p
p)+ wti (τq, ρ

q
q).

We continue this procedure of moving loops until we arrive at a tree τ ′q with

height(τ ′q) ≤ |Q|2. We then have two runs ρ
p′
q ∈ RunU (τ ′q,p′) and ρ

q′
q ∈ RunU

(τ ′q,q′) on τ ′q and a tree τ ′p with runs ρ
p′
p ∈ RunU (τ ′p, p′) and ρ

q′
p ∈ RunU (τ ′p, q ′).

♣ We let j1, . . . , jH be an enumeration of J . We let k ∈ {1, . . . , H } and let
u ∈ pos(τq) be position such that ρ

p
q (u) and ρ

q
q(u) are jk-rivals. Then by Lemma 7,

there exists a jk-ρp
q (u)-ρq

q(u)-distinguisher sk with height(sk) ≤ 4|Q|2. We let
rp
k ∈ RunU (ρ

p
q (u), sk, ρ

p
q (u)) and rq

k ∈ RunU (ρ
q
q(u), sk, ρ

q
q(u)). Furthermore, we

let uk ∈ τ ′p be a position with (ρ
p′
p (uk), ρ

q′
p (uk)) = (ρ

p
q (u), ρ

q
q (u)). We know that

such a position exists from the way we obtained τ ′p, ρ
p′
p , and ρ

q′
p from τp, ρ

p
p , and ρ

q
p.

We may assume that j1, . . . , jH are ordered such that u1 ≤L . . . ≤L uH .
Then for every k ∈ {1, . . . , H }, we insert (sk, π1 ◦ rp

k)|Ξ | into (τ ′p, ρ
p′
p) and

(sk, π1 ◦ rq
k)|Ξ | into (τ ′p, ρ

q′
p) at uk by

and
. For sake of simplicity, we assume that the Γ -words we inserted

are still below the positions u1, . . . , uH .

Theory of Computing Systems

♣ We assume that the deterministic automata A1, . . . ,AN are all complete,
thus for every n ∈ {1, . . . , N} there exists a run ρn ∈ RunAn

(τ ′′p). We define

ρ̄ : pos(τ ′′p) → Ξ by ρ̄(w) = (ρ1(w), . . . , ρN(w), ρ
p′′
p (w), ρ

q′′
p (w)) and let vk =

♦1(sk). For every k ∈ {1, . . . , H }, we can find by pigeonhole principle two integers
m, n ∈ {0, . . . , |Ξ |} with m < n such that ρ̄(ukv

m
k) = ρ̄(ukv

n
k). We let u

p
k = ukv

m
k ,

p̄k = ρ̄(ukv
m
k), nk = m − n, and s̄k = s

nk

k , see also Fig. 6. We remove loops
from τ ′′p and ρ̄ as follows. If height(τ ′′p) ≤ |Ξ |2, we do nothing. Otherwise, we let
seen(w) = {ρ̄(ww′) | w′ ∈ pos(τ ′′p �w)} for w ∈ pos(τ ′′p) and choose w ∈ pos(τ ′′p)

with |w| = height(τ ′′p) > |Ξ |2. Then for every two positions w1, w2 ∈ pos(τ ′′p)

with w1 <P w2, we have ∅ �= seen(w2) ⊆ seen(w1) ⊆ Ξ . Thus, there exist by
pigeonhole principle two positions w1, w2 ∈ pos(τ ′′p) such that w1 <P w2 ≤P w

and (ρ̄(w1), seen(w1)) = (ρ̄(w2), seen(w2)). We cut this cycle from τ ′′p by defining
(τ ′′′p , ρ̄′) = (τ ′′p, ρ̄)〈(τ ′′p, ρ̄)�w2→ w1〉. We continue this procedure until we obtain a

tree τ ′′′p with height(τ ′′′p) ≤ |Ξ |2 together with a quasi-run ρ̄′. We note that by con-
struction, we have ρ̄′(pos(τ ′′′p)) = ρ̄(pos(τ ′′p)), so for every k ∈ {1, . . . , H }, there
exists u

q
k ∈ pos(τ ′′′p) with ρ̄′(uq

k) = p̄k . We denote the projections on Ξ to the respec-
tive coordinates by π1, . . . , πN+2. Then we also have πn ◦ ρ̄′ ∈ RunAn

(τ ′′′p) for every
n ∈ {1, . . . , N}, πN+1 ◦ ρ̄′ ∈ RunU (τ ′′′p , p′), and πN+2 ◦ ρ̄′ ∈ RunU (τ ′′′p , q ′).

We now consider the tree t ′ and the accepting run r ′ ∈ AccU (t ′) defined by
(t ′, r ′) = (t, π1 ◦ r)〈(τ ′′p, ρ

p′′
p) → wpvp〉〈(τ ′′′p , πN+2 ◦ ρ̄′) → wqvq〉. Let k ∈

{0, . . . , H }. We have (r ′(wpvpu
p
k), r ′(wqvqu

q
k)) = (πN+1◦ρ̄(u

p
k), πN+2◦ρ̄′(uq

k)) =
(π1◦rp

k (ε), π1◦rq
k (ε)). Moreover, for every n ∈ {1, . . . , N}we see that for the unique

run rn of An on t ′ we have (rn(wpvpu
p
k), rn(wqvqu

q
k)) = (πn◦ρ̄(u

p
k), πn◦ρ̄′(uq

k)) =
(πn(p̄k), πn(p̄k)). Also, the Γ -word s̄k loops in πn(p̄k).

We consider the weight of r ′ on t ′. By construction, we have for every i ∈
{1, . . . , M} that wti (t, r)−wti (τp, ρ

p
p)−wti (τq, ρ

q
q) = wti (t ′, r ′)−wti (τ ′′p, ρ

p′′
p)−

wti (τ ′′′p , πN+2 ◦ ρ̄′). Let i ∈ I ∪ ({1, . . . , M} \ J), then we have

wti (τ
′
p, ρ

p′
p)+ wti (τ ′q, ρ

q′
q) = wti (τp, ρ

p
p)+ wti (τq, ρ

q
q)

and

|wti (τ
′
p, ρ

p′
p)− wti (τ

′′
p, ρ

p′′
p)| ≤ μmax

H∑

k=1

|Ξ | · |sk| ≤ μmaxM|Ξ |Υ .

Thus, we see that

|wti (t
′, r ′)− wti (t, r)| = |wti (t

′, r ′)− wti (τ
′′
p, ρ

p′′
p)− wti (τ

′′′
p , πN+2 ◦ ρ̄′)

+wti (τ
′′
p, ρ

p′′
p)+ wti (τ

′′′
p , πN+2 ◦ ρ̄′)

−wti (t, r)+ wti (τp, ρ
p
p)+ wti (τq, ρ

q
q)

−wti (τp, ρ
p
p)− wti (τq, ρ

q
q)|

Theory of Computing Systems

= |wti (τ
′′
p, ρ

p′′
p)+ wti (τ

′′′
p , πN+2 ◦ ρ̄′)

−wti (τp, ρ
p
p)− wti (τq, ρ

q
q)|

= |wti (τ
′′
p, ρ

p′′
p)+ wti (τ

′′′
p , πN+2 ◦ ρ̄′)

−wti (τ
′
p, ρ

p′
p)− wti (τ ′q, ρ

q′
q)|

≤ μmax(Υ + Υ ′ +M|Ξ |Υ).

We write (κ1, . . . , κM) = wtU (t ′, r ′) and recall that I ⊆ J . Then for every i ∈ I

and i′ ∈ {1, . . . , M} \ J , we have by choice of C that

κi′ − κi = (κi′ − wti′(t, r))+ (wti′(t, r)− wti (t, r))+ (wti (t, r)− κi)

≤ (wti′(t, r)− wti (t, r))+ 2μmax(Υ + Υ ′ +M|Ξ |Υ)

≤ −4μmaxM|Ξ |Υ R̄ − 1.

We consider the Ramsey number RH as above and the set {1, . . . , RH }. For every
2H -subset ζ ⊆ {1, . . . , RH }, we define a color in {1, . . . ,M} × {1, . . . , N} as fol-
lows. We assume that ζ = {ζ1, . . . , ζ2H } with ζ1 < . . . < ζ2H and let tζ be the

tree obtained from t ′ by inserting the Γ -word s̄
ζ2k−1
k at wpvpu

p
k and the Γ -word s̄

ζ2k

k

at wqvqu
q
k for every k ∈ {1, . . . , H }. Then writing �U�(tζ) = (κ

ζ
1 , . . . , κ

ζ
M), we

let the color of ζ be the pair (j, n) consisting of the smallest j ∈ {1, . . . , M} with
κ

ζ
j = max{κζ

1 , . . . , κ
ζ
M} and the smallest n ∈ {1, . . . , N} with �An�(tζ) = κ

ζ
j . We

note that for every i ∈ {1, . . . , M}, we have

|κi − κ
ζ
i | ≤ μmax

H∑

k=1

|s̄k|(ζ2k−1 + ζ2k)

≤ μmaxM|Ξ |Υ · 2R̄.

Thus, for every i ∈ I and i′ ∈ {1, . . . , M} \ J , we have

κ
ζ

i′ = (κ
ζ

i′ − κi′)+ (κi′ − κi)+ (κi − κ
ζ
i)+ κ

ζ
i

≤ 2μmaxM|Ξ |Υ R̄ − 4μmaxM|Ξ |Υ R̄ − 1+ 2μmaxM|Ξ |Υ R̄ + κ
ζ
i

= κ
ζ
i − 1.

In particular, all 2H -subsets are colored with a color from J × {1, . . . , N}.
By assumption on RH , there now exists a subset Y ⊆ {1, . . . , RH } of cardinality

2H +2 whose 2H -subsets are all colored with the same color. Let ζ1 < . . . < ζ2H+2
be the an enumeration of Y and let (j, n) ∈ J × {1, . . . , N} such that all 2H -subsets
of Y are colored by (j, n).

We let k ∈ {1, . . . , H } with jk = j and let ζ = {ζ1, . . . , ζ2H+2} \ {ζ2k, ζ2k+2}.
Furthermore, we let ζ+p = {ζ2k}∪ ζ \ {ζ2k−1} and ζ+q = {ζ2k+2}∪ ζ \ {ζ2k+1}. With
z = wtAn

(πn(p̄k), s̄k, πn(p̄k)), we then have

(ζ2k − ζ2k−1)z = �An�(tζ+p)− �An�(tζ)

= κ
ζ+p

j − κ
ζ
j

= (ζ2k − ζ2k−1)nkwtj (sk, r
p
k)

Theory of Computing Systems

and

(ζ2k+2 − ζ2k+1)z = �An�(tζ+q)− �An�(tζ)

= κ
ζ+q

j − κ
ζ
j

= (ζ2k+2 − ζ2k+1)nkwtj (sk, r
q
k).

Thus, we obtain nkwtj (sk, r
p
k) = z = nkwtj (sk, r

q
k), which is a contradiction to the

choice of sk .

3.3 Sufficiency

In this section, we show that if U is not broken, then �A� is finitely sequential.
Although our approach is inspired by an idea in [26], we are not sure whether we
employ this idea in the same way. Our general strategy is to show that, if U is not
broken, then we can construct M unambiguous max-plus-WTA which all do not sat-
isfy the tree fork property and whose pointwise maximum is equivalent to �A�. By
Theorem 1, we obtain a finitely sequential representation of A by constructing one
for each of the unambiguous max-plus-WTA. We essentially construct the unam-
biguous automata by removing problematic runs from U and then projecting to the
coordinates 1, . . . , M .

Our fundamental idea is the following. Assume that p and q are i-rivals, that (t, r)
is i-p-q-broken, and that the maximum of wtU (t, r) is in coordinate i. Furthermore,
assume that in r, some i-p-q-distinguisher s loops N times in p, where N ∈ N is
some integer, and that s loops in p with a smaller weight, in coordinate i, than in
q. By removing the loops of s in p from (t, r) and inserting them back as loops in
q, we increase the weight of coordinate i, but leave the weights of all non-broken
coordinates unchanged. If height(s) ≤ 4|Q|2, we can even assert that the weight of
coordinate i increases by Nξ , where ξ is defined as in Section 3.2. Thus, in this latter
case, coordinate i then dominates all non-broken coordinates by a margin of at least
Nξ . We know that i cannot dominate all non-broken coordinates by an arbitrarily
large margin, so N cannot be arbitrarily large. In turn, this means that if N is suffi-
ciently large, then wtU (t, r) cannot take its maximum weight in coordinate i. This
implies that the weight of coordinate i can be discarded if some distinguisher loops
in both of its rivals too many times.

We employ this idea in the following way. First, we identify an integer N such
that looping in an i-distinguisher more than N times ensures coordinate i to be dom-
inated by other coordinates. Then we construct for every coordinate an automaton
which checks every run of U for i-brokenness and detects for every i-distinguisher
of height at most 4|Q|2 whether it is looped N + 1 times. Finally, we restrict the runs
of U to those which are not detected, simply using a product construction, and apply
the i-th projection to all weight vectors. As we will show, the resulting automata are
unambiguous and do not satisfy the tree fork property. We do not need to detect loops
of arbitrarily large distinguishers since by Lemma 7, every large distinguisher con-
tains a distinguisher of height at most 4|Q|2 by truncating. We begin by introducing
the following notions.

Theory of Computing Systems

We define the set R = {(i,p,q, s) ∈ {1, . . . , M} ×Q2 × TΓ | i ∈ {1, . . . ,M}, s

is an i-p-q-distinguisher, height(s) ≤ 4|Q|2}, let C̃ be as in Theorem 4, let ξ be as in
Section 3.2, and define the constant N = �MC̃ξ−1�.

Definition 5 Let t ∈ TΓ , r ∈ RunU (t), (i,p,q, s) ∈ R, rp ∈ RunU (p, s,p), and
rq ∈ RunU (q, s,q). We call (t, r)

– (i,p,q, s)-fork-broken if there exist positions up, vp, wp, wq, uq, vq ∈ pos(t)
with vq <P uq ≤P wq <P wp ≤P vp <P up such that (t, r)〈(, r(up)) →

r(wq) = q, and t〈 → wp〉�wq is a p-q-fork.
– (i,p,q, s)-split-broken if there exist positions up, vp, uq, vq ∈

pos(t) such that vp <P up, vq <P uq, vp and vq are
prefix-independent, (t, r)〈(, r(up)) → , and

.

For an illustration, see also Fig. 7.

The first observation we make is that if some (t, r) is (i,p,q, s)-broken for a tuple
(i,p,q, s) ∈ R, then the weight of coordinate i is strictly dominated by another
coordinate.

Lemma 14 Let t ∈ TΓ and r ∈ AccU (t). If (t, r) is (i,p,q, s)-broken for some
(i,p,q, s) ∈ R, then wti (t, r) < �A�(t).

Proof Let t ∈ TΓ and r ∈ AccU (t) be such that (t, r) is (i,p,q, s)-broken
for (i,p,q, s) ∈ R. Furthermore, let up, vp, uq, vq ∈ pos(t) be as in the
definition of (i,p,q, s)-brokenness. We may assume that wti (p, s,p) <

wti (q, s,q), let rp ∈ RunU (p, s,p), rq ∈ RunU (q, s,q), and let g : pos(sN+1) →
pos((t, r)〈(,p) → up〉 �vp) be as in the definition of a truncation. We let
(s1, r1), . . ., (sn, rn) be an enumeration of the family

(
(t, r)〈(, r(vpg(wl))) →

vpg(wl)〉�vpg(w)l

)
w∈pos(sN+1),l∈{1,...,rkΓ (sN+1(w))} and we let (t ′, r′) =

(t, r)〈(t, r)�up→ vp〉. Then by Lemma 6(iii), we have wtU (t, r) = wtU (t ′, r′)
+ (N + 1)wtU (s, rp) + ∑n

k=1 wtU (sk, rk). Note that by the definition of

Fig. 7 An illustration of (i,p,q, s)-fork-brokenness and (i,p,q, s)-split-brokenness

Theory of Computing Systems

a truncation, we have rk(ε) = rk(♦1(sk)) for all k ∈ {1, . . . , n}. By con-
struction, for every k ∈ {1, . . . , n}, there exists a position uk ∈ pos(s)
such that rk(ε) = rp(uk). We may assume that u1 ≤L . . . ≤L un

and let . Then with
we have wtU (t, r) = wtU (t ′′, r′′)+NwtU (s, rp).

By choice of t and r, there exists a position v ∈ pos(t ′′) with r′′(v) = q. We
let . Then we have wti (t ′′′, r′′′) = wti (t, r) +
N(wti (q, s,q) − wti (p, s,p)) ≥ wti (t, r) +MC̃. Since (t ′′′, r′′′) is i-p-q-broken,
r′′′ ∈ AccU (t ′′′), and we assume U to not be broken, there exists a coordinate j ∈
{1, . . . , M} such that (t ′′′, r′′′) is not j -broken and wtj (t ′′′, r′′′) > wti (t ′′′, r′′′)−MC̃;
otherwise, we could construct a C̃-separable set I like in the proof of Lemma 12,
which by Theorem 4 would imply that U is broken. Since (t, r′′′) is not j -p-q-broken,
we have wtj (t, r) = wtj (t ′′′, r′′′) > wti (t ′′′, r′′′)−MC̃ ≥ wti (t, r).

Next, we show that for every i ∈ {1, . . . , M}, it is a recognizable property whether
for a run r ∈ RunU (t) on a tree t ∈ TΓ , (t, r) is (i,p,q, s)-broken for some
(i,p,q, s) ∈ R. More precisely, we show the following lemma.

Lemma 15 For every i ∈ {1, . . . , M}, there exists a complete and deterministic FTA
Bi over the alphabet Γ × Q which accepts a tree (t, r) ∈ TΓ×Q if and only if there
does not exist (i,p,q, s) ∈ R such that (t, r) is (i,p,q, s)-broken.

Proof We employ the generalization of Büchi’s theorem to trees [50–52], namely
that a tree language is definable using the MSO logic given by the grammar

β ::= label(a,p)(x) | edgel(x, y) | x ∈ X | ¬β | β ∨ β | ∃x.β | ∃X.β

if and only if it is recognizable by a (complete and deterministic) FTA over Γ × Q.
Here (a,p) ∈ Γ × Q, l ∈ {1, . . . , rk(Γ)}, x, y are first order variables, and X is a
second order variable, and (t, r) as above corresponds to the structure with universe
pos(t) where the interpretation of label(a,p) is the set {w ∈ pos(t) | (t (w), r(w)) =
(a,p)} and the interpretation of edgel is the set {(w, wl) | w, wl ∈ pos(t)} for every
l ∈ {1, ..., rk(Γ)}. We note that the prefix order ≤P is definable using this logic, so
we may use it as well as its strict version <P in our formulas.

We let (i,p,q, s) ∈ R, rp ∈ RunU (p, s,p), and rq ∈ RunU (q, s,q). We
let (s′, r′p) = (s, rp)N+1 and (s′, r′p) = (s, rq)N+1. We let d1, . . . , d|D| be an

enumeration of D = {d ∈ �U | μ(d) ∈ Q
M} and let w1, . . . , wn be an enu-

meration of pos(s′). Furthermore, we let D(q) = {(q1, . . . ,qm, a,q) ∈ D} and
Dl(q) = {(q1, . . . ,qm, a,q0) ∈ D | ql = q} for q ∈ Q and l ∈ {1, . . . , rk(Γ)}. We
first define a formula fork(yq, yp) which checks for two positions yq, yp ∈ pos(t)
that r(yq) = q, r(yp) = p, and that p can loop in the Γ -word t〈 → yp〉�yq by

(yq <P yp) ∧∨
a,b∈Γ label(a,p)(yp) ∧ label(b,q)(yq)

∧ ∃Yd1 . . . ∃Yd|D|

Theory of Computing Systems

∀y
(

(yq ≤P y ∧ ¬(yp <P y)) →
(

∨

d=(q̄,a,q0)∈D

∨

p0∈Q
(y ∈ Yd ∧ label(a,p0)(y) ∧ ¬

∨

d ′∈D\{d}
y ∈ Yd ′))

∧ ∀x
∧

q0∈Q

rk(Γ)∧

l=1

∧

d∈Dl(q0)

(
(y ∈ Yd ∧ edgel(y, x) ∧ ¬(yp <P x))

→
∨

d ′∈D(q0)

x ∈ Yd ′
))

∧
∨

d∈D(p)

yq ∈ Yd ∧
∨

d∈D(p)

yp ∈ Yd .

Then we define the formula ϕ(s,p,q) to check for (i,p,q, s)-brokenness by

∃zw1 . . . ∃zwn∃xw1 . . . ∃xwn(∧

w∈pos(s′)\{♦1(s
′)}

label(s′(w),r′q(w))(zw) ∧ label(s′(w),r′p(w))(xw)

∧
∨

a,b∈Γ

label(a,q)(z♦1(s
′)) ∧ label(b,p)(x♦1(s

′))

∧
∧

w∈pos(s′)

rkΓ (s′(w))∧

l=1

∀z∀x(edgel (zw, z) ∧ edgel (xw, x) →
z ≤P zwl ∧ x ≤P xwl

∧
∨

a,b∈Γ

label(a,r′q(wl))(z) ∧ label(b,r′p(wl))(x))

∧(
(¬(xε ≤P zε) ∧ ¬(zε ≤P xε))

∨ ∃yq∃yp(fork(yq, yp) ∧ z♦1(s
′) ≤P yq ∧ yp ≤P xε)

))
.

Finally, we let ϕi = ¬∨
(i,p,q,s)∈R ϕ(s,p,q) and we let Bi be a complete and deter-

ministic FTA with L(ϕi) = L(Bi), then Bi accepts (t, r) if and only if there does not
exist (i,p,q, s) ∈ R such that (t, r) is (i,p,q, s)-broken.

In the following, we define M max-plus-WTA C1, . . . , CM over Γ which we claim
to all not satisfy the tree fork property and whose pointwise maximum we claim to
be equivalent to �A�.

Construction 3 For i ∈ {1, . . . , M}, we let Bi = (Bi, Γ ×Q, δi, Fi) be the automa-
ton we find by Lemma 15. We define Ci = (Ci, Γ, μi, νi) over Qmax as the trim part
of the automaton C′i = (Q × Bi, Γ, μ′i , ν′i) defined for a ∈ Γ with rkΓ (a) = m and
(q0, b0), . . . , (qm, bm) ∈ Q× Bi by

μ′i ((q1, b1), . . . , (qm, bm), a, (q0, b0)) =
{

πi(μ(q1, . . . ,qm, a,q0)) if (b1, . . . , bm, (a,q0), b0) ∈ δi and b0 ∈ Fi

−∞ otherwise

ν′i (q0, b0) = πi(ν(q0)).

Theory of Computing Systems

We let πQ : Q× Bi → Q and πBi
: Q× Bi → Bi be the projections.

We make the following observations about C1, . . . , CM .

Proposition 1 For every tree t ∈ TΓ and every r ∈ RunCi
(t), we have πQ ◦ r ∈

RunU (t), wtCi
(t, r) = wti (t, πQ◦r), and πBi

◦r is the unique run of Bi on (t, πQ◦r).
In particular, we have �Ci�(t) ≤ πi(�U�(t)).

We first show that maxM
i=1�Ci� = �A�.

Lemma 16 For every t ∈ TΓ , we have maxM
i=1�Ci�(t) = �A�(t).

Proof Let t ∈ TΓ . By construction of U we have �A�(t) = maxM
i=1 πi(�U�(t)). If

�A�(t) = −∞, we have −∞ = maxM
i=1 πi(�U�(t)) ≥ maxM

i=1�Ci�(t). If �A�(t) �=
−∞, there exists a run r ∈ RunU (t) and an index j ∈ {1, . . . , M} with wtj (t, r) =
πj (�U�(t)) = �A�(t). By Lemma 14, this implies that (t, r) is not (j,p,q, s)-broken
for any (j,p,q, s) ∈ R. From the definition of (j,p,q, s)-brokenness, it is easy
to see that the same is true for every subtree (t, r) �w with w ∈ pos(t). As Bj is
complete, there exists a run rBj

∈ RunBj
(t, r). As Bj is deterministic and accepts

every subtree of (t, r), it follows that rBj
(w) ∈ Fj for every w ∈ pos(t). Thus, we

can define a run rj ∈ RunCj
(t) by rj (w) = (r(w), rBj

(w)) and for this run we have
wtCi

(t, rj) = wtj (t, r) = �A�(t). Thus, we have �Cj �(t) ≥ wtCj
(t, rj) = �A�(t) and

we have �Ci�(t) ≤ πi(�U�(t)) ≤ �A�(t) by construction for every i ∈ {1, . . . , M}.
Therefore, maxM

i=1�Ci�(t) = �A�(t).

Finally, we show that the automata C1, . . . , CM do not satisfy the tree fork property
and therefore possess finitely sequential representations.

Lemma 17 The automata C1, . . . , CM do not satisfy the tree fork property.

Proof We prove the statement by contradiction and assume that for some i ∈
{1, . . . , M}, the automaton Ci satisfies the tree fork property. Then there exist rivals
(p, b), (q, c) ∈ Q × Bi which satisfy one of the conditions of the tree fork property
together with a (p, b)-(q, c)-distinguisher s ∈ TΓ . From the definition of Ci , it is
easy to see that s is now also an i-p-q-distinguisher of U . We let rp ∈ RunU (p, s,p)

and rq ∈ RunU (q, s,q). Then by Lemma 7, there exists an i-p-q-distinguisher
s′ ∈ TΓ with height(s′) ≤ 4|Q|2 and with runs r′p ∈ RunU (p, s′,p) and r′q ∈
RunU (q, s′,q) such that and . We then also
have and . Moreover, there
exists a reacher u ∈ TΓ with RunCi

(u, (p, b)) �= ∅ and RunCi
(u, (q, c)) �= ∅. We

consider two cases.
If Ci satisfies condition 1 of the tree fork property for (p, b) and (q, c), there

exists a (p, b)-(q, c)-fork f ∈ TΓ . Then f is also an i-p-q-fork in U . We
let t = sN+1(f (sN+1(u))), vq = ε, wq = uq = ♦1(s)

N+1, wp = vp =
wq♦1(f), and up = vp♦1(s)

N+1. By assumption, the sets RunCi
((p, b), s, (p, b)),

RunCi
((q, c), s, (q, c)), and RunCi

((p, b), f, (q, c)) are all non-empty, so there

Theory of Computing Systems

exists a unique run ri ∈ RunCi
(t, (q, c)). We consider the run r = πQ ◦ ri ,

then we have
(s′, r′q)N+1, r(wp) = p, r(wq) = q, and t〈 → wp〉�wq is a p-q-fork. Thus, (t, r) is
(i,p,q, s′)-broken and for the unique run rBi

∈ RunBi
(t, r), we have rBi

(ε) /∈ Fi . It
follows that πBi

◦ ri(ε) /∈ Fi which implies that ri is not valid in contradiction to our
assumption.

If Ci satisfies condition 1 of the tree fork property for (p, b) and(q, c), there exists
a 2-Γ -context t ′ ∈ TΓ and a run r ′i ∈ RunCi

(t ′) with r ′i (♦1(t
′)) = (p, b) and

r ′i (♦2(t
′)) = (q, c). We let t = t ′(sN+1(u), sN+1(u)), vp = ♦1(t

′), vq = ♦2(t
′),

up = vp♦1(s)
N+1, and uq = vq♦1(s)

N+1. By our assumptions, there exists a unique
run ri ∈ RunCi

(t) with ri(ε) = r ′i (ε). We consider the run r = πQ ◦ ri , then vp
and vq are prefix-independent and we have
and . As in the previous case, we see that
(t, r) is (i,p,q, s′)-broken and thus for the unique run rBi

∈ RunBi
(t, r), we have

rBi
(ε) /∈ Fi . Therefore, πBi

◦ ri(ε) /∈ Fi which implies that ri is not valid in
contradiction to our assumption.

To conclude, the proof of Theorem 2, we construct for every i ∈ {1, . . . , M}
deterministic max-plus-WTA A(i)

1 , . . . ,A(i)
ni

with maxni

j=1�A
(i)
j � = �Ci�, which is

possible by Theorem 1. Then �A� = maxM
i=1�Ci� = maxM

i=1 maxni

j=1�A
(i)
j �, so �A� is

finitely sequential.

Funding Open Access funding enabled and organized by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Schützenberger, M.-P.: On the definition of a family of automata. Inf. Control. 4(2-3), 245–270 (1961)
2. Salomaa, A., Soittola, M.: Automata-theoretic aspects of formal power series, Texts and Monographs

in Computer Science. Springer (1978)
3. Kuich, W., Salomaa, A.: Semirings, automata, languages, vol. 5. EATCS Monographs in Theoretical

Computer Science. Springer (1986)
4. Berstel, J., Reutenauer, C.: Rational series and their languages, EATCS Monographs in Theoretical

Computer Science, vol 12. Springer (1988)
5. Droste, M., Kuich, W., Vogler, H. (eds.): Handbook of weighted automata, EATCS Monographs in

Theoretical Computer Science. Springer, Berlin (2009)
6. Simon, I.: Limited subsets of a free monoid. In: 19th Annual Symposium on Foundations of Computer

Science (FOCS), pp. 143–150. IEEE Computer Society (1978)

http://creativecommons.org/licenses/by/4.0/

Theory of Computing Systems

7. Simon, I.: Recognizable sets with multiplicities in the tropical semiring. In: Chytil, M.P., Janiga, L.,
Koubek, V. (eds.) 13th International Symposium on Mathematical Foundations of Computer Science
(MFCS), Lecture Notes in Computer Science, vol. 324, pp. 107–120. Springer (1988)

8. Krob, D.: The equality problem for rational series with multiplicities in the tropical semiring is
undecidable. Int. J. Algebra Comput. 4(3), 405–426 (1994)

9. Hashiguchi, K., Ishiguro, K., Jimbo, S.: Decidability of the equivalence problem for finitely
ambiguous finance automata. Int. J. Algebra Comput. 12(3), 445–461 (2002)

10. Klimann, I., Lombardy, S., Mairesse, J., Prieur, C.: Deciding unambiguity and sequentiality from a
finitely ambiguous max-plus automaton. Theor. Comput. Sci. 327(3), 349–373 (2004)

11. Björklund, J., Drewes, F., Zechner, N.: An efficient best-trees algorithm for weighted tree automata
over the tropical semiring. In: Dediu, A.-H., Formenti, E., Martı́n-Vide, C., Truthe, B. (eds.) 9th Inter-
national Conference on Language and Automata Theory and Applications (LATA), Lecture Notes in
Computer Science, vol. 8977, pp. 97–108. Springer (2015)

12. Daviaud, L., Guillon, P., Merlet, G.: Comparison of max-plus automata and joint spectral radius of
tropical matrices. In: Larsen, K.G., Bodlaender, H.L., Raskin, J.-F. (eds.) 42nd International Sympo-
sium on Mathematical Foundations of Computer Science (MFCS), Leibniz International Proceedings
in Informatics (LIPIcs), vol. 83, pp. 19:1–19:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik
(2017)

13. Filiot, E., Jecker, I., Lhote, N., Pérez, G.A., Raskin, J.-F.: On delay and regret determinization of
max-plus automata. In: 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS),
pp. 1–12. IEEE Computer Society (2017)

14. Mazowiecki, F., Riveros, C.: Pumping lemmas for weighted automata. In: Niedermeier, R., Vallée,
B. (eds.) 35th Symposium on Theoretical Aspects of Computer Science (STACS), Leibniz Inter-
national Proceedings in Informatics (LIPIcs), vol. 96, pp. 50:1–50:14. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik (2018)

15. Hashiguchi, K.: Algorithms for determining relative star height and star height. Inf. Comput. 78(2),
124–169 (1988)

16. Waldmann, J.: Weighted automata for proving termination of string rewriting. J. Autom. Lang.
Combin. 12(4), 545–570 (2007)

17. Komenda, J., Lahaye, S., Boimond, J.-L., van den Boom, T.: Max-plus algebra in the history of
discrete event systems. Annu. Rev. Control. 45, 240–249 (2018)

18. Mohri, M.: Finite-state transducers in language and speech processing. Comput. Linguist. 23(2), 269–
311 (1997)

19. Rabin, M.O., Scott, D.S.: Finite automata and their decision problems. IBM J. Res Dev 3(2), 114–125
(1959)

20. Kirsten, D., Lombardy, S.: Deciding unambiguity and sequentiality of polynomially ambiguous min-
plus automata. In: Albers, S., Marion, J.-Y. (eds.) 26th International Symposium on Theoretical
Aspects of Computer Science (STACS), Leibniz International Proceedings in Informatics (LIPIcs),
vol. 3, pp. 589–600. Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2009)

21. Kirsten, D.: A Burnside approach to the termination of Mohri’s algorithm for polynomially ambiguous
min-plus-automata. Inf. Théor. Appl. 42(3), 553–581 (2008)

22. Blattner, M., Head, T.: Automata that recognize intersections of free submonoids. Inf. Control. 35(3),
173–176 (1977)

23. Weber, A., Seidl, H.: On the degree of ambiguity of finite automata. Theor. Comput. Sci. 88(2), 325–
349 (1991)

24. Seidl, H.: On the finite degree of ambiguity of finite tree automata. Acta Inf. 26(6), 527–542 (1989)
25. Bala, S., Koniński, A.: Unambiguous automata denoting finitely sequential functions. In: Dediu, A.-

H., Martı́n-Vide, C., Truthe, B. (eds.) 7th International Conference on Language and Automata Theory
and Applications (LATA), Lecture Notes in Computer Science, vol. 7810, pp. 104–115. Springer
(2013)

26. Bala, S.: Which finitely ambiguous automata recognize finitely sequential functions? (extended
abstract). In: Chatterjee, K., Sgall, J. (eds.) 38th International Symposium on Mathematical Foun-
dations of Computer Science (MFCS), Lecture Notes in Computer Science, vol. 8087, pp. 86–97.
Springer (2013)

27. Alexandrakis, A., Bozapalidis, S.: Weighted grammars and Kleene’s theorem. Inf. Process. Lett. 24(1),
1–4 (1987)

28. Berstel, J., Reutenauer, C.: Recognizable formal power series on trees. Theor. Comput. Sci. 18, 115–
148 (1982)

Theory of Computing Systems

29. Ésik, Z., Kuich, W.: Formal tree series. J. Autom. Lang. Combin. 8(2), 219–285 (2003)
30. Fülöp, Z., Vogler, H.: Weighted tree automata and tree transducers. In: Droste, M., Kuich, W., Vogler,

H. (eds.) Handbook of Weighted Automata, EATCS Monographs in Theoretical Computer Science,
pp. 313–403. Springer (2009)

31. Koprowski, A., Waldmann, J.: Max/plus tree automata for termination of term rewriting. Acta Cybern.
19(2), 357–392 (2009)

32. Petrov, S.: Latent variable grammars for natural language parsing. In: Coarse-to-Fine Natural Lan-
guage Processing, Theory and Applications of Natural Language Processing, pp. 7–46. Springer
(2012)

33. Ramsey, F.P.: On a problem of formal logic. Proc. Lond. Math. Soc. series 2, 30, 264–286 (1930)
34. Paul, E.: Finite sequentiality of unambiguous max-plus tree automata. In: Niedermeier, R., Paul,

C. (eds.) 36th International Symposium on Theoretical Aspects of Computer Science (STACS), Leib-
niz International Proceedings in Informatics (LIPIcs), vol. 126, pp. 55:1–55:17. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik (2019)

35. Parikh, R.J.: On context-free languages. J. ACM 13(4), 570–581 (1966)
36. Esparza, J., Ganty, P., Kiefer, S., Luttenberger, M.: Parikh’s theorem: A simple and direct automaton

construction. Inf. Process. Lett. 111(12), 614–619 (2011)
37. Nemhauser, G.L., Wolsey, L.A.: Integer and combinatorial optimization. Wiley (1988)
38. Bockmayr, A., Weispfenning, V., Maher, M.: Solving numerical constraints. In: Robinson, A.,

Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. 1, pp. 751–842. Elsevier and MIT Press
(2001)

39. Paul, E.: Finite sequentiality of finitely ambiguous max-plus tree automata. In: Czumaj, A., Dawar,
A., Merelli, E. (eds.) Leibniz International Proceedings in Informatics (LIPIcs), vol. 168, pp. 137:1–
137:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)

40. Paul, E.: On finite and polynomial ambiguity of weighted tree automata. In: Brlek, S., Reutenauer,
C. (eds.) Lecture Notes in Computer Science, vol. 9840, pp. 368–379. Springer (2016)

41. Kreutzer, S., Riveros, C.: Quantitative monadic second-order logic. In: 28th Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS), pp. 113–122. IEEE Computer Society (2013)

42. Paul, E.: The equivalence, unambiguity and sequentiality problems of finitely ambiguous max-
plus tree automata are decidable. In: Larsen, K.G., Bodlaender, H.L., Raskin, J.-F. (eds.) Leibniz
International Proceedings in Informatics (LIPIcs), vol. 83, pp. 53:1–53:13. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik (2017)

43. Droste, M., Gastin, P.: Aperiodic weighted automata and weighted first-order logic. In: Rossmanith, P.,
Heggernes, P., Katoen, J.-P. (eds.) Leibniz International Proceedings in Informatics (LIPIcs), vol. 138,
pp. 76:1–76:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)

44. Kirsten, D.: The support of a recognizable series over a zero-sum free, commutative semiring is
recognizable. Acta Cybern. 20(2), 211–221 (2011)

45. Borchardt, B.: A pumping lemma and decidability problems for recognizable tree series. Acta Cybern.
16(4), 509–544 (2004)

46. Sakarovitch, J.: Elements of automata theory. Cambridge University Press (2009)
47. Allauzen, C., Mohri, M.: Efficient algorithms for testing the twins property. J. Autom. Lang. Combin.

8(2), 117–144 (2003)
48. Büchse, M., May, J., Vogler, H.: Determinization of weighted tree automata using factorizations. J.

Autom. Lang. Combin. 15(3/4), 229–254 (2010)
49. Gécseg, F., Steinby, M.: Tree automata (2015)
50. Thatcher, J.W., Wright, J.B.: Generalized finite automata theory with an application to a decision

problem of second-order logic. Math. Syst. Theory 2(1), 57–81 (1968)
51. Doner, J.: Tree acceptors and some of their applications. J. Comput. Syst. Sci. 4(5), 406–451 (1970)
52. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Löding, C., Lugiez, D., Tison, S., Tommasi,

M.: Tree Automata Techniques and Applications. Available on: https://www.grappa.univ-lille3.fr/tata
(2008)

53. Larsen, K.G., Bodlaender, H.L., Raskin, J.-F. (eds.): 42nd international symposium on mathematical
foundations of computer science (MFCS), Leibniz International Proceedings in Informatics (LIPIcs),
vol. 83. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Berlin (2017)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://www.grappa.univ-lille3.fr/tata

	Finite Sequentiality of Finitely Ambiguous Max-Plus Tree Automata
	Abstract
	Introduction
	Preliminaries
	The Criterion for Finite Sequentiality
	Decidability
	Necessity
	Case 1:
	Case 2:

	Sufficiency

	References

