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Abstract. We consider the problem of testing whether a given system of equations
over a fixed finite semigroup S has a solution. For the case where S is a monoid, we
prove that the problem is computable in polynomial time when S is commutative
and is the union of its subgroups but is NP-complete otherwise. When S is a monoid
or a regular semigroup, we obtain similar dichotomies for the restricted version of
the problem where no variable occurs on the right-hand side of each equation.

We stress connections between these problems and constraint satisfaction
problems. In particular, for any finite domain D and any finite set of relations �
over D, we construct a finite semigroup S� such that CSP(�) is polynomial-time
equivalent to the satifiability problem for systems of equations over S� .

1. Introduction

Goldmann and Russell studied in [10] the relationship between the algebraic properties
of a finite group and the complexity of determining the solvability of an equation or a
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system of equations over that fixed group. In particular, they showed that determining
whether a system of equations over G has a solution is NP-complete for any non-Abelian
G and polynomial-time computable for any Abelian G. Partial results concerning the
complexity of the more general problem of solving equations over finite semigroups
were obtained in [1], [23] and [24] for the case of a single equation.

This paper, on the other hand, is concerned with the complexity of solving systems
of equations over a fixed finite semigroup. Formally, an equation over a finite semigroup
S is given as s1s2 · · · sk = t1t2 · · · tn where each si or ti is either a constant c ∈ S or
a variable xj . We further say that an equation is a target-equation if its right-hand side
contains no variable.

The SYSTEM OF EQUATIONS SATISFIABILITY problem for the finite semigroup S
(denoted1 EQN∗

S) is to determine whether a given system of equations over S has a
solution. We also consider the restriction of EQN∗

S where each equation is a target-
equation and denote this problem T-EQN∗

S .
Our motivation for studying this question is twofold. On one hand, the deep links

between finite semigroup theory and automata theory have led to a number of algebraic
characterizations of complexity classes ([2] and [12] among many others) and this has
given increased importance to the study of problems whose computational complexity is
parametrized by the properties of an underlying algebraic structure [1], [10], [24], [25].

Our second motivation relates to constraint satisfaction problems (or CSPs) which
provide a unified framework for the study of many combinatorial problems. A conjecture
of Feder and Vardi [9] states that every CSP is either in P or NP-complete and such
dichotomies have been established in a number of special cases (e.g. [3], [10], [11] and
[22]). Both EQN∗

S and T-EQN∗
S can be viewed as special cases of CSP’s and they present

an interesting case study since most of the recent progress towards this conjecture has
relied heavily on universal algebra methods (e.g. [3]–[6] and [8]).

Using these techniques, Larose and Zádori have recently studied the complexity
of solving equations over arbitrary finite algebras rather than just semigroups and ob-
tained very broad results [17] which overlap some of our work about finite monoids.
Furthermore, the complexity of the counting problem associated with EQN∗

S has been
investigated by Nordh and Jonsson [20], also using a universal algebra point of view.
Nordh has also considered the problem of testing if two systems are equivalent (i.e.
have the same set of solutions) or isomorphic (i.e. equivalent up to a permutation of the
variables) [19].

We are able to classify completely the complexity of EQN∗
S and T-EQN∗

S for very
wide classes of semigroups. Specifically, we obtain the three following dichotomy results:

Main Dichotomy Theorems.

– If M is a finite monoid then EQN∗
M is computable in polynomial time if M is

commutative and is the union of its subgroups and is NP-complete otherwise.

1 We follow the notation of [1], [18] and [24]. In these papers the superscript ∗ is used to distinguish the
problems of checking the satisfiability of a single equation (EQNS) and checking the satisfiability of a system
of equations (EQN∗

S).
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– If M is a finite monoid then T-EQN∗
M is computable in polynomial time if M

divides the direct product of an Abelian group with a monoid satisfying the
identities x2 = x and xyxzx = xyzx , and is NP-complete otherwise.

– If S is a finite regular semigroup then T-EQN∗
S is computable in polynomial time

if S divides the direct product of an Abelian group with a semigroup satisfying
the identities x2 = x and xyxzx = xyzx , and is NP-complete otherwise.

We cannot as of yet provide a similar dichotomy for T-EQN∗
S when S is not a monoid

or a regular semigroup or a dichotomy for EQN∗
S when S is not a monoid. We obtain

partial results but also show that the questions cannot be resolved unless we settle the
long-standing conjecture about the complexity of CSPs. More precisely, we show:

Theorem 7. For every constraint satisfaction problem �, there exists a semigroup S�
such that � is polynomial-time equivalent to T-EQN∗

S� .

Theorem 8. For every constraint satisfaction problem �, there exists a semigroup S�
such that � is polynomial-time equivalent to EQN∗

S� .

Thus, the dichotomy questions for EQN∗
S , T-EQN∗

S and CSPs are equivalent. We fur-
ther show that if P �= NP (which we assume throughout this paper) then the class
of semigroups for which T-EQN∗

S or EQN∗
S lies in P is not closed under subsemi-

groups or homomorphic images, a fact which is bound to hamper the progress of further
investigations.

In Section 2 we give a short introduction to CSPs and present the fundamental results
from semigroup theory which are necessary for the development of our discussion. In Sec-
tion 3 we prove a number of sufficient algebraic conditions for the NP-hardness of EQN∗

S
and T-EQN∗

S while Section 4 presents polynomial-time algorithms for solving systems of
equations over “easy” classes of semigroups. In Section 5 our three dichotomy theorems
are proved as corollaries to the results of the two preceding sections. Finally, in Section 6,
we prove Theorems 7 and 8 showing that the complete classification of the complexity
of either T-EQN∗

T or EQN∗
S would result in a classification of the complexity of CSPs.

Some of our results require rather technical semigroup theory and we have postponed
some of the more tedious proofs to the Appendix to improve the paper’s readability.

Some of the results appeared in the proceedings of MFCS ’01 [18] and in two of
the authors’ Ph.D. theses [15], [24].

2. Background

2.1. Constraint Satisfaction Problems

Let D be a finite domain and let � be a finite set of relations on D. To each pair D, �
corresponds a CONSTRAINT SATISFACTION PROBLEM (CSP): an instance of CSP(�) is
a list of constraints, i.e. of pairs (Ri , Si ) where Ri ∈ � is a k-ary relation and Si , the
scope of Ri , is an ordered list of k variables (with possible repetitions) and we want to
determine whether the variables can be assigned values in D such that each constraint
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is satisfied. For example GRAPH k-COLORABILITY is the CSP where the domain consists
of the k colors, � contains the single binary relation encoding inequality and constraints
correspond to edges in the graph.

This class of combinatorial decision problems has received much attention because
of the wide variety of problems which it encompasses and because constraint satisfaction
problems arise so naturally in artificial intelligence. Deep connections with database
theory and finite model theory have also been uncovered [9].

For a finite semigroup S, the problem EQN∗
S can be seen as a CSP problem over the

domain S with� being the class of relations which are the solution set of an equation over
S. There is a technical caveat: since we place no bound on the arity of these equations,
� is a priori not finite but we argue in Section 4 that the arity can in fact be bounded
to 3 without loss of generality. Such a construction is impossible for T-EQN∗

S and this
problem can only be considered a CSP in a looser sense, unless we forcibly restrict the
arity of equations. Still, this technicality has no bearing on our discussion.

For any D, �, CSP(�) lies in NP and is easily seen to be NP-complete in general so
one seeks to identify tractable restrictions of the problem. One can choose, for instance,
to impose certain conditions on the structure of constraints appearing in a given instance.
Much research has also dealt with identifying necessary and sufficient conditions on �
such that CSP(�) is tractable. This approach was pioneered by Schaefer [22] who studied
the CSP problem on Boolean domains. In this case the problem is usually known as
GENERALIZED SATISFIABILITY and Schaefer proved that this problem was NP-complete
unless it was one of six tractable special cases: 2-SAT, 0-valid SAT, 1-valid SAT, affine-
SAT, Horn-SAT and anti-Horn SAT. Affine-SAT is the case where each relation is the
solution set of a system of equations over the cyclic group C2. The only other two-
element monoid is U1, the semilattice with two elements {1, 0} whose multiplication is
given by 1x = x1 = x and 0x = x0 = 0. Interestingly, we can relate the last two of
Schaefer’s tractable cases to systems of equations over U1.

Lemma 1. A Boolean relation is Horn or anti-Horn, i.e. expressible as tuples satisfy-
ing a conjunction of disjuncts containing each at most one un-negated (resp. negated)
variable, if and only if it is the set of solutions of a system of equations over U1.

Proof. Identify the element 1 of U1 with TRUE and 0 with FALSE. Then the Horn clause
X1 ∧ X2 ∧ · · · ∧ Xn → Y is satisfied when one of the Xi ’s is FALSE or when all Xi ’s
and Y are TRUE. These are exactly the tuples which satisfy the equation

X1 X2 · · · Xn = X1 · · · XnY

over U1.
Conversely, the equation X1 · · · Xn = Y1 · · · Ym corresponds to the Horn formula:

∧

1≤i≤m

(X1 ∧ · · · ∧ Xn → Yi ) ∧
∧

1≤i≤n

(Y1 ∧ · · · ∧ Yn → Xi ).

If on the other hand we choose to identify 1 with FALSE and 0 with TRUE, a similar
argument shows the relationship of U1 systems to anti-Horn formulas.
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Our hardness results in Section 3 use reductions from 3SAT, 1-3SAT (where we
require that every clause contains exactly one literal set TRUE) and the restriction of the
latter where each clause contains at least one negated and one unnegated literal. The
NP-completeness of the three problems is given by Schaefer’s theorem [22].

Recently, tools from universal algebra [5], [6], group theory and relational database
theory [9] have been used to identify “islands of tractability”, i.e. classes of relations for
which CSP is tractable. As noted in our Introduction, it is conjectured that for any domain
D and any set of relations � the problem CSP(�) either lies in P or is NP-complete. We
define a k-ary operation to be any function f : Dk → D and say that a relation R ∈ Dt

is closed under f if for any k t-tuples lying in R,

(d1
1 , d1

2 , . . . , d1
t ), . . . , (d

k
1 , dk

2 , . . . , dk
t )

we also have the t-tuple

( f (d1
1 , . . . , dk

1 ), . . . , f (d1
t , . . . , dk

t ))

in R. The algebraic properties of the operations that preserve every relation in � can
be studied to determine the complexity of CSP(�) [5]. Using this approach, Bulatov
obtained a dichotomy theorem similar to the one of Schaefer for domains of size three
[3]. Furthermore, two known islands of tractability are defined with the help of semi-
groups.

Theorem 1 [4]. Let S be a finite semigroup and let �S be the set of relations which are
closed under the multiplication in S then CSP(�S) is tractable if S is a so-called “block
group” and is NP-complete otherwise.

Theorem 2 [9]. If G is a group and � is a set of relations such that for each R ∈ �
of arity t we have R a coset of Gt , then over the domain G the problem CSP(�) can be
solved in polynomial time.

Notice that a subset of Gt forms a coset if and only if it is closed under the ternary
operation x · y−1 · z. Although our results are incomparable with these two theorems,
the mechanics of some of our upper bounds, as we will point out, are quite similar.

For a digraph G, we define the DIGRAPH RETRACT PROBLEM (or DRPG) as follows:
given an input digraph H containing G as a subgraph, is there a surjective graph homo-
morphism from H to G which is the identity on G? Equivalently, DRPG can be viewed
as a CSP whose domain consists of the vertices of G and a set of relations consisting of
one binary relation (corresponding to edges in G) and for each element d in the domain,
the unary relation consisting of the singleton {d}.

Theorem 3 [9]. For every set of relations� there exists a digraph G� such that CSP(�)
is polynomial-time equivalent to DRPG�

.

2.2. Semigroups

We give here a brief introduction to the theory of finite semigroups and present the
necessary definitions and results. Although the paper is mostly self-contained, we refer
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the reader to, e.g. [13] and [21] for a more thorough overview. In particular, the latter
reference stresses connections to automata theory and computer science.

Recall that a semigroup S is a set with a binary associative operation, which we
write multiplicatively (save one noted exception in the proof of Lemma 23). A monoid
M is a semigroup with a distinguished identity element. We are solely concerned with
finite semigroups and monoids and in the rest of this paper S and M always denote
respectively a finite semigroup and a finite monoid.

We denote by S1 the monoid obtained from S by adding an identity element if there
is none in S. The left, right and two-sided ideals generated by an element x ∈ S are
the sets S1x = {sx : s ∈ S1}, x S1 = {xs: s ∈ S1} and S1x S1 = {sxt : s, t ∈ S1},
respectively. For any semigroup S, we introduce five equivalence relations known as
Green’s relations which describe whether two elements generate the same ideals in S.
Formally:

– x J y iff S1x S1 = S1 yS1;
– x L y iff S1x = S1 y;
– x R y iff x S1 = yS1;
– x H y iff both x R y and x L y;
– x D y iff x R ◦ L y, that is there exists z such that x R z and z L y.

It can be shown thatR is a left-congruence (i.e. x R y implies cx R cy for all c) and that
L is a right-congruence. Moreover, R and L commute (i.e. D = R ◦ L = L ◦R) and
so all five of these relations are indeed equivalence relations. Moreover, the relations J
and D coincide for any finite S. Since we are only interested in the structure of finite
semigroups, we consequently always refer to the J -relation.

For an element x of S, we denote by Jx (resp. Rx , Lx , Hx ) the J -class (resp. R-,
L-,H-class) of x . We also define natural pre-orders≤J ,≤R,≤L on S with, e.g. x ≤J y
if and only if S1x S1 ⊆ S1 yS1. We say that “x is (strictly) J -above y” if x ≥J y (resp.
x >J y), and similarly for ≤R and ≤L. Note that x ≤J y if and only if there exists
u, v ∈ S1 such that x = uyv. Similarly, x ≤R y if and only if there is u with x = yu
and x ≤L y if and only if there is u with x = uy. One can easily prove:

Lemma 2. For any a, b ∈ S such that a J b, if a ≤R b (resp. a ≤L b) then in fact
a R b (resp. a L b).

The following lemma is the fundamental result about Green’s relations:

Lemma 3 (Green’s Lemma). Suppose a and b are two elements of the same R-class,
i.e. there exist u, v such that au = b and bv = a. Denote by ρu : S → S the function
defined by ρu(s) = su. Then ρu and ρv are inverse bijections from La to Lb and from
Lb to La , respectively, and they preserveH-classes.

The basic properties of Green’s relations lead to the so-called “egg-box” represen-
tation of (finite) semigroups. Each J -class of the semigroup is represented as a table
where rows correspond toR-classes, columns to L-classes and cells toH-classes. From
Green’s lemma, we also know that all the cells of a given J -class contain the same
number of elements. When writing out the egg-box representation, the J -classes are
often laid out with respect to the ≤J preorder (see later examples).
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We say that e ∈ S is idempotent if e2 = e. Idempotents play an important role in
the structure of semigroups: in particular, the identity element 1M is an idempotent of
M . We say that S has a zero if there is an element 0 ∈ S such that 0s = s0 = 0 for all
s ∈ S. Note that 0 is also idempotent.

Lemma 4. Let e = e2 be an idempotent of S. Then a ≤R e if and only if ea = a.
Similarly, a ≤L e if and only if ae = a.

Lemma 5. Let a, b ∈ S with a J b. Then ab ∈ Ra ∩Lb if and only ifLa ∩Rb contains
an idempotent e = e2. Otherwise, ab <J a.

The subsemigroup generated by an element s of S is finite of course, so there must
exist t, p such that st+p = st and the subsemigroup can be shown to have a unique
idempotent. We denote by ω the exponent of S, that is the smallest integer such that sω

is idempotent for all s ∈ S. For any idempotent e ∈ S, the set eSe forms a monoid of S
with identity e which we call the local submonoid of S associated with e.

Groups are a well-known special case of monoids. Recall that a monoid G is a
group if every element g ∈ G has an inverse g−1 such that gg−1 = g−1g = 1G . Every
idempotent in S forms a trivial subgroup of S. Note also that by Lemma 5 an H-class
containing an idempotent is closed under multiplication and, more generally, one can
show:

Lemma 6. Let H be any H-class of S, then H contains an idempotent if and only if
H is a maximal subgroup of S.

Consequently everyH-class contains at most one idempotent. Using Green’s lemma,
one can further show that any two maximal subgroups of a common J -class are iso-
morphic. If every maximal subgroup of S is trivial then S is said to be aperiodic or
group-free. An important consequence of Lemma 6 is:

Lemma 7. A semigroup S is aperiodic if and only if all itsH-classes contain a single
element.

A J -class is said to be regular if it contains an idempotent. It can be shown in fact
that a regular J -class contains at least one idempotent in each of itsR and L classes. A
semigroup is regular if all its J -classes are regular. We further say that S is a union of
groups if each H-class contains an idempotent and thus forms a maximal subgroup of
S. This is equivalent to the requirement that sω+1 = s for each s ∈ S.

A semigroup is completely simple if it consists of a single J -class. Note that, by
Lemma 5, a J -class of S forms a completely simple subsemigroup if and only if all its
H-classes are subgroups.

We denote as E(S) the subsemigroup generated by the idempotents of S: if E(S)
contains only idempotent elements then we say that S is orthodox. It can be shown that
if S is a union of groups then S is orthodox if and only if all its J -classes are completely
simple orthodox subsemigroups [13].
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We say that the semigroup T divides S if T is the morphic image of a subsemigroup
of S. A class of finite semigroups is a (pseudo)-variety2 if it is closed under finite direct
product and division. For two varieties V,W, we denote by V ∨ W the smallest variety
containing both V and W: it consists of the semigroups which divide a direct product
S × T with S ∈ V and T ∈ W.

Some varieties will bear particular importance for this work, mainly subvarieties of
the variety of bands, i.e. semigroups in which every element is idempotent. In particular,
we consider the varieties of regular bands RB satisfying xyxzx = xyzx , normal bands
NB satisfying xyzx = xzyx and semilattices SL satisfying xy = yx . Clearly, SL ⊆
NB ⊆ RB. In a semilattice, the ≤J forms a partial order and multiplication in the
semigroup corresponds to the semilattice meet (∧). Note that two elements might not
have a join (∨), i.e. a least upper bound but if they do then it is unique. Note also that
every band is aperiodic and is a union of (trivial) groups.

We further denote Ab the variety of Abelian groups, UG the variety of unions of
groups and DS the variety of semigroups whose regular J -classes form completely
simple subsemigroups (note that UG ⊆ DS). Mostly, we look at semigroups S in UG
and it is worth mentioning that over such S, the J -relation is a congruence and the
quotient S/J is a semilattice.

Definition 1. If B is a variety of bands and H is a variety of groups, we say that S is
a strong B band of H-groups if there exists a band E ∈ B, a family of disjoint groups
{Ge | e ∈ E}, all of which lie in H, and for every e, f ∈ E such that e ≥J f (in the
J -order of E) a group homomorphism ϕe, f : Ge → G f such that:

1. S is the union of the Ge;
2. ϕe,e = idGe for all e ∈ E ;
3. for any e ≥J f ≥J d we have ϕ f,d ◦ ϕe, f = ϕe,d ;
4. for x ∈ Ge and y ∈ G f the multiplication in S is given by the formula

x · y = ϕe,e f (x) · ϕ f,e f (y).

One can verify that the multiplication defined above is associative so that S is indeed a
semigroup.

The proof of the next lemma is included in the Appendix.

Lemma 8. For a semigroup S, a variety of bands B and a variety of groups H, the
following are equivalent:

1. S is a strong B-band of H-groups.
2. S belongs to B ∨ H.
3. S is an orthodox union of groups, all of which lie in H, such that E(S) is a band

in B andH is a congruence. In particular, the idempotents form a subsemigroup
and S/H ≡ E(S).

2 In this paper we use the term variety as a shorthand for the more technically correct pseudo-variety.



The Complexity of Solving Systems of Equations over Semigroups 271

3. Hardness Results

One would intuitively expect that solving a system of equations over some semigroup S
is no easier than solving a system of equations over a subsemigroup of S or a morphic
image of S. As we will see in Section 6, this intuition is unfortunately incorrect but the
following definition allows us to salvage it partly. We say that a subset T of S is inducible
if there exists some expression E over S (i.e. a product of variables and constants) whose
image is exactly T .

Lemma 9. If T is an inducible subsemigroup of S, then EQN∗
T ≤P EQN∗

S and
T-EQN∗

T ≤P T-EQN∗
S .

This simple fact was established in [10]. We make extensive use of it and note
that, in particular, the following subsets of S are always inducible: every local monoid
eSe, the set of idempotents of S and the semigroup E(S) which they generate and the
subsemigroup I of elements lying in or J -below some regular J -class J of S (and
similarly forR and L classes). For the latter, we use the expression xey where x, y are
variables and e is some idempotent in J . Note that I is the two-sided ideal generated
by e. Often, we simply write that we “force a variable x to be idempotent” to mean that
each of its occurrences is replaced by xω.

When establishing our lower bounds, it is often convenient to think of a certain
variable, say x , as being restricted to a set of particular values T ⊆ S. This can clearly
be done without loss of generality as long as there exists a system of (target-)equations
E with variables x, y1, . . . , yk such that s is in T if and only if E has a solution when x
is set to s. We say that such T are (target)-definable in S. Of course, we have:

Lemma 10. If T is a definable (resp. target-definable) subsemigroup of S then
EQN∗

T ≤P EQN∗
S (resp. T-EQN∗

T ≤P T-EQN∗
S).

In particular, if J is a regularJ -class containing the idempotent e, the target-equation
uxv = e defines the set {x | x ≥J e}. The proof of the next lemma serves as a good
example to illustrate the usefulness of the above observations.

Lemma 11. If S contains a non-Abelian subgroup, then T-EQN∗
S is NP-complete.

Proof. As we mentioned in our Introduction, it has been shown that T-EQN∗
G is NP-

complete for any non-Abelian group G [10]. Let e be the idempotent of a non-Abelian
subgroup H of S. The local semigroup eSe is inducible and its subgroup H can be
defined (as a subset of eSe) by the target-equation xω = e. We thus have

T-EQN∗
H ≤P T-EQN∗

eSe ≤P EQN∗
S,

yielding our result.

Recall that a band is said to be normal if it satisfies xyzx = xzyx . In the Appendix
we prove the following technical result:
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Lemma 12. A band S is normal if and only if all its local monoids are semilattices.

Lemma 13. If S is a band but is not a normal band, then EQN∗
S is NP-complete.

Proof. Since every local monoid of S is inducible, it suffices, by Lemma 12, to prove
the NP-completeness of EQN∗

M for a non-commutative, idempotent monoid M . Let a, b
in M be such that ab �= ba. We can choose a, b such that a is a J -maximal element
which is not central in M (i.e. which does not commute with every element) and b is a
J -maximal element which does not commute with a. We now obtain a reduction from
3SAT. For each Boolean variable Xi in the formula, we create variables xi , x̄i , yi , ȳi and
equations

xi x̄i = a, (1)

x̄i xi = a, (2)

yi ȳi = b, (3)

ȳi yi = b, (4)

xi ȳi = ȳi xi , (5)

x̄i yi = yi x̄i . (6)

Also, for each 3SAT clause, e.g. X1 ∨ X2 ∨ X3, we add an equation

x1 x̄2x3 = a. (7)

Given a satisfying assignment to the formula, we can construct a solution to the above
system by setting xi = a, x̄i = 1, yi = b and ȳi = 1 whenever Xi is TRUE, and xi = 1,
x̄i = a, yi = 1, ȳi = b whenever Xi is FALSE.

Conversely, suppose the system of equations is satisfiable. Equation (1) shows that
both xi and x̄i lie J -above a. Since a and b do not commute, a cannot be the product of
two elements commuting with b. However, any element strictly J -above a is central so
at least one of xi , x̄i must be J -equivalent to a. Moreover, (1) and (2) ensure that xi , x̄i

are both L-above and R-above a, so if xi J a (say) we must also have x H a and thus
x = a by aperiodicity. So at least one of xi , x̄i must be a. Similarly at least one of yi , ȳi

must be b, since any elements strictly J -above b commute with a.
If xi = a, then ȳi commutes with a by (5). Thus ȳi must be strictly J -above b. If

yi = b, then x̄i commutes with b by (6), so x̄i is strictly J -above a. We can thus obtain
a consistent truth assignment to the literals by setting Xi to TRUE if and only if xi = a
and yi = b and Xi to TRUE if and only x̄i = a and ȳi = b.

Since every element strictly J -above a is central but a is not, a cannot be a product
of elements J -above it. Therefore, if x1 x̄2x3 = a then at least one of x1, x̄2, x3 must be
a and the corresponding 3SAT clause is satisfied.

Lemma 14. If S does not lie in DS, then T-EQN∗
S is NP-complete.

Proof. If S is not in DS, then it contains a regular J -class K which is not a subsemi-
group. Equivalently, some H-class of K does not contain an idempotent. We will work
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over the inducible subsemigroup of elements that lie in or J -below K . In this subsemi-
group K is a maximalJ -class and since we can force each variable to be idempotent and
define with a target equation the set of elements lying in or above K , we can ensure that
each variable is one of the idempotents of K . Let I be the set of idempotents of K : by
introducing additional target-equations, we define a small subset of I whose properties
allow us to build our reduction.

Let G = (V, E) be the undirected graph such that V = I and E = {(ei , ej ) | ei ej �∈
K or ej ei �∈ K }. Note that by Lemma 5 the edge (ei , ej ) is in E if and only if ei ej ei is
strictly J -below K . Since we assume that K is not a subsemigroup, the graph contains
at least one edge.

Suppose that there are distinct idempotents ei , ej , ek ∈ V such that (ei , ej ) ∈ E but
neither (ei , ek) nor (ej , ek) are in E . By definition, we have ei ek ∈ K and thus ei ekLek .
Similarly ekej R ek . So by Lemma 5 we know that ei ekej = (ei ek)(ekej ) also lies in
K because the intersection of the L-class of ei ek and the R-class of ekej contains the
idempotent ek . Symmetrically we also have ej ekei ∈ K .

Now the pair of target-equations

ei xej = ei ej , ej xei = ej ei

is satisfied when x is ei or ej . However, one of ei ej or ej ei lies outside K and so x = ek

is not a solution. In other words, this pair of equations defines a set of elements that
contains ei and ej but not ek .

Next, suppose that the graph G contains a triangle with vertices ei , ej , ek . We dis-
tinguish two cases. Suppose first that (ei ej ei )

ω = (ei ekei )
ω. Then the target-equation

(ei xei )
ω = (ei ej ei )

ω

is satisfied for x = ej and x = ek but not x = ei . If on the other hand we have
(ei ej ei )

ω �= (ei ekei )
ω then we can assume without loss of generality that in fact (ei ej ei )

ω

does not lieR-above (ei ekei )
ω. (Indeed, if the two values are bothR-related andL-related

then they must be equal for each H-class contains at most one idempotent.) Then the
equation

(ei xei )
ωw = (ei ekei )

ω

can be satisfied by setting x = ei and w = (ei ekei )
ω or x = ek and w = ei . However,

one cannot choose x = ej since we assumed that (ei ej ei )
ω does not lie R-above our

target (ei ekei )
ω. In all cases we can introduce an equation defining a set of elements

containing only two of the three idempotents ei , ej , ek .
By iteratively adding such constraints, we can thus define smaller and smaller

subsets of I and we can continue until the corresponding graph is such that for any
three points ei , ej , ek , two out of the three possible edges are present. It is easy to see
that this means that the graph is a complete bipartite graph. Note also that the graph
still contains at least an edge. In other words, we have defined a subset H of I with
H = {e1, . . . , es, f1, . . . , ft } such that any product of ei ’s or any product of fi ’s lies in
K but both ei f j ei and f j ei f j lie outside K , for any i, j .
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We can now show the NP-completeness of T-EQN∗
S with a very simple reduction

from 3SAT. Of course, we begin by constraining the variables, as we just described, so
that each of them lies in H and for every Boolean literal Xi , we then pose the equations

exix̄ie = efe, (8)

fxix̄if = fef (9)

(where, say, e = e1 and f = f1) and for a clause X1 ∨ X2 ∨ X3 the equation

( f x1 x̄2x3 f )ω = ( f e f )ω. (10)

If the formula is satisfiable then one can verify that the system is satisfied by setting
xi = e and x̄i = f when Xi is TRUE and xi = f and x̄i = e otherwise.

Conversely, (8) and (9) force exactly one of xi , x̄i to be some ej and the other to be
some fk . If we set each Boolean literal to TRUE iff the corresponding variable is some ej

then (10) will ensure that each clause contains at least one true literal since any product
ffrfsftf lies in K .

Lemma 15. If M is a monoid which is not a union of groups, then T-EQN∗
M is NP-

complete.

Proof. There must exist some m ∈ M which is not part of a subgroup and thus, by
Lemma 5, such that m2 lies strictlyJ -below m. Let us choose aJ -maximal such m: Any
element t >J m is an element of a subgroup and thus satisfies tω+1 = t . In particular,
for any two elements s, t lying strictly above m we cannot have st = ts = m for then s
and t commute and so

mω+1 = (st)ω+1 = sω+1tω+1 = st = m,

a contradiction. Furthermore, if u, v are J -related to m with uv = m, then we have
u R m and v L m and this implies that we cannot have uv = vu = m: In that case,
we would have u, v ∈ Hm but the product of any two elements of Hm must lie strictly
J -below m.

We use these observations to obtain the following reduction from 1-3SAT: for each
Boolean variable Xi in the formula, we introduce variables xi , x̄i and equations

xi x̄i = m, (11)

x̄i xi = m. (12)

Moreover, for each clause of the formula, e.g. (X1 ∨ X2 ∨ X3), we add the equation

x1 x̄2x3 = m. (13)

Suppose first that the 1-3SAT formula is satisfiable. Then one can check that the
resulting system of equations is satisfied by setting xi = m and x̄i = 1 whenever Xi is
TRUE, and xi = 1 and x̄i = m whenever Xi is FALSE.
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Conversely, suppose that this system of equations is satisfiable. Our initial obser-
vations show that (11) and (12) can only be satisfied if exactly one of xi , x̄i lies strictly
J -above m while the other is J -related to m. We thus obtain a consistent truth assign-
ment by setting Xi (resp. Xi ) to TRUE if and only if xi (resp. x̄i ) is J -related to m. We
claim that this truth assignment satisfies the 1-3SAT formula.

In any solution to the system, we have xi ≥R m by (11) and xi m = xi x̄i xi = mxi

from (11) and (12). We claim that if xi >J m then in fact xi m H m. Indeed, xi H xωi
since it lies strictly J -above m and by Lemma 4 xωi m = m. So xi m L m. Furthermore,
xi m = mxi ≤R m and thus xi m R m by Lemma 2. By Green’s lemma, we can infer
that xiHm = Hm .

This allows us to conclude that if an equation of type (13), say x1 x̄2x3 = m, is
satisfied, then it cannot be that x1, x̄2, x3 are all J -above m for then, by our previous
claim, m2 = x1 x̄2x3m ∈ Hm , a contradiction. Similarly, if any two of these variables lie
inHm then the product must lie strictlyJ -below m and so exactly one of them lies inHm

while the other two lie strictlyJ -above m. Thus, exactly one literal of the corresponding
clause is true.

The last three hardness results of this section require rather technical arguments and
their complete proofs have been postponed to the Appendix. Nevertheless, we illustrate
each of them using a concrete semigroup and a reduction very similar to the more general
construction described later.

Lemma 16. If S is a union of groups such that H is not a congruence on S, then
T-EQN∗

S is NP-complete.

Example 1. Let S be the four-element semigroup {a, a2, e, ae} with multiplication
specified by a2e = e, ex = e for all x and a3 = a. This semigroup (in fact a monoid
since a2 is an identity) consists of two J -classes: the top one contains the two element
group {a, a2} and the bottom one two idempotents e, ae which areL-related, as pictured
in Figure 1. Thus S is indeed a union of groups butH is not a congruence since we have
a H a2 but ae �H a2e = e.

We claim that T-EQN∗
S is NP-complete and construct the reduction from 3SAT. For

each Boolean variable Xi , we introduce variables xi , x̄i , vi , si , ti such that vi , si , ti are

a
aa∗

e∗

ae∗

a∗ b∗

c∗

ac∗

bc∗

e∗
. . .

(e f )q∗
e f
. . .

f ∗
. . .( f e)ω∗

. . .

Fig. 1. Egg-box pictures for the semigroups of Examples 1, 2 and 3, respectively. Idempotents are marked
with ∗.
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allH-related to a and add the equations:

xi e = e, (14)

x̄i e = e, (15)

vi xi si e = e, (16)

vi ax̄i ti e = e. (17)

Moreover, for each 3SAT clause, e.g. X1 ∨ X2 ∨ X3, we introduce the equation

x1 x̄2x3 = e. (18)

Given an assignment to the Boolean literals satisfying the 3SAT formula, one can verify
that this system has a solution by setting xi = e, x̄i = a2, ti = a and vi = si = a2

whenever Xi is TRUE and xi = a2, x̄i = e, ti = a2 and vi = si = a whenever Xi is
FALSE. Furthermore, each equation of type (18) is indeed satisfied since at least one of
the three terms is e (by the satisfiability of the formula) while the others are a2.

Conversely, suppose that there exists a solution to the constructed system. Equa-
tions (14) and (15) show that xi and x̄i take values in {a2, e} but we cannot have
xi = x̄i = e for otherwise no value of vi can simultaneously satisfy (16) and (17)
(while the values of si and ti are irrelevant in that case). Correspondingly, if we set Xi

(resp. Xi ) to TRUE when xi = e (resp. x̄i = e) then a litteral and its complement are
never both true. Finally, if x1 x̄2x3 = e, one of those three variables must be e and so
each clause in the formula is indeed satisfied.

Lemma 17. If S is a band but is not a regular band, then T-EQN∗
S is NP-complete.

Example 2. Consider the band S = {a, b, c, ac, bc} pictured in Figure 1 and where
ab = b, ba = a and c = ca = cb. It is not a regular band, because abca = bc but
abaca = ac.

We can now obtain the following reduction from 3SAT to T-EQN∗
S . For each Boolean

literal Xi in the formula, we introduce the variables xi , x̄i , yi and construct the equations

axi ax̄i = ac, (19)

bxi bx̄i = bc, (20)

ax̄i axi = ac, (21)

bx̄i bxi = bc, (22)

yi xi ac = ac, (23)

yi x̄i bc = bc. (24)

Consider some solution of this system. Suppose that both xi and x̄i are J -related to a
then axi ax̄i J a, which is a contradiction. From (19) we have xi �= bc and from (20)
we have xi �= ac. This means that if xi is J -related to c then xi = c. The same holds for
x̄i by (21) and (22). Suppose that both xi and x̄i are J -related to c, i.e. both are equal
to c. Then yi xi ac = yi c and yi x̄i bc = yi c which is a contradiction with (23) and (24)
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and the fact ac �= bc. Altogether one of xi and x̄i is J -related to a and the second one
is equal to c.

We complete our reduction by introducing, for each of clause of the 3SAT formula,
e.g. X1 ∨ X2 ∨ X3, the equation

ax1ax̄2ax3 = ac. (25)

One can now verify that if the 3SAT instance is satisfiable, then we can satisfy the system
obtained through our reduction by letting xi = c, x̄i = a, yi = a whenever Xi is TRUE,
and xi = a, x̄i = c, yi = b whenever Xi is FALSE.

Conversely, suppose the system of the equations is satisfiable. Since exactly one of
xi , x̄i is equal to c, we get a consistent truth assignment to the literals by setting Xi (resp.
Xi ) to TRUE if and only if xi = c (resp. x̄i = c). This assignment satisfies every clause
of the original formula for if the variables occurring in (25) are all J -related to a we
have ax1ax̄2ax3 = a.

Lemma 18. If S contains a J -class T forming a completely simple but unorthodox
semigroup then T-EQN∗

S is NP-complete.

Example 3. Consider a completely simple semigroup S with twoR-classes and twoL-
classes as represented in the eggbox-picture of Figure 1. So S contains four idempotents
which we can denote as e, f, (ef )ω, (fe)ω because of Lemma 5. We assume however
that ef �= (ef )ω and let q be the smallest integer such that (ef )q = (ef )ω. Again using
Lemma 5, we know that if st = u in S then s R u and t L u.

We show the NP-completeness of T-EQN∗
S using a reduction from 1-3SAT: for each

Boolean variable Xi we create two variables xi , x̄i and force them to be idempotents.
We include equations

xi x̄i = (e f )q , (26)

xi f ex̄i = e f. (27)

For each clause, e.g. X1 ∨ X2 ∨ X3 we include the equation

(x1 f )(ex̄2)(x3 f ) = e f. (28)

If the formula is satisfiable, then one can easily verify that a solution to the system is
obtained by setting xi = e and x̄i = (ef )q when Xi is TRUE and xi = (ef )q and x̄i = f
when Xi is FALSE.

Conversely, since both xi and x̄i are idempotents, (26) shows that xi ∈ {e, (ef )q}
while x̄i ∈ {f , (ef )q}. We cannot have simultaneously xi = e and x̄i = f (by (26)) and
we cannot have xi = x̄i = (ef )q for then xifex̄i = (ef )qfe(ef )q = (ef )q, in violation
of (27).

We can therefore choose Xi to be TRUE when xi = e and Xi to be TRUE when
x̄i = f . Now note that the product xi f is ef when xi = e and (ef )q when xi = (ef )q.
Similarly, ex̄i is ef when x̄i = f and (ef )q when x̄i = (ef )q. Let us first assume that
q ≥ 3: if an equation of type (28) is satisfied, (x1f )(ex̄2)(x3f ) = ef , then exactly one of



278 O. Klı́ma, P. Tesson, and D. Thérien

the three terms in the product is ef and so the corresponding clause contains exactly one
literal set to TRUE.

If q = 2 then an equation of type (28) will also be satisfied if all three corresponding
literals are TRUE. However, we can assume without loss of generality using Schaefer’s
theorem that each clause contains at least one unnegated literal (say X1) and one negated
literal (say X2). We then add a fourth type of equation: x1 x̄2 = (ef )q, which can be
satisfied only by setting at least one of x1, x̄2 to (ef )q. Correspondingly, at least one of
X1, X2 is FALSE and this prevents the problematic case of all three literals in a clause
being TRUE.

4. Upper Bounds

We chose to establish our upper bounds for EQN∗ and T-EQN∗ by presenting explicit
algorithms rather than by combining established general results in the study of CSPs as
this clearly shows the relation between the algebraic structure of a semigroup S and the
tractability of solving equations over S. An alternative presentation was chosen in [24]
and we outline its main ideas.

If we introduce for each s ∈ S a dummy variable xs and an equation xs = s, we
can assume that no other equation in a system over S uses constants. Furthermore, the
equation x1 · · · xn+m = y is equivalent to the pair x1 · · · xn = z and zxn+1 · · · xn+m = y
and by using this trick repeatedly, we can assume that every equation in a system is
either xs = s for some constant s or xi xj = xk (see discussion in [17]). However, the
dummy variable z that we introduced appears on the right-hand side of an equation so
this construction does not work for systems of target-equations.

Lemma 19. If S is a semilattice, then EQN∗
S is computable in polynomial time.

Proof. Observe that if (u1, . . . , un) and (v1, . . . , vn) are solutions to a system of equa-
tions E in n variables over S, then (u1v1, . . . , unvn) is also a solution to E . Indeed, if
xi1 xi2 = xi3 is an equation of E then we have

ui1vi1 ui2vi2 = ui1 ui2vi1vi2 = ui3vi3

because S is commutative. Equations of the form xi = s for s ∈ S are also satisfied
because of idempotency. Note that (u1v1, . . . , unvn) is the meet of (u1, . . . , un) and
(v1, . . . , vn) in the semilattice Sn . It is in fact known that this closure property of relations
induced by equations over S suffices to obtain a polynomial-time algorithm for EQN∗

S
[14]. Still, we sketch an explicit algorithm, since it will serve as the basis for an algorithm
solving equations over a larger class of semigroups.

Our algorithm maintains a lower bound �y = (y1, . . . , yn) for the minimal solution
to E . We initialize �y as (0, . . . , 0) and update it as follows. For each equation of the
form xs = s for s ∈ S we begin by setting the corresponding ys to s. In each subsequent
step, if (y1, . . . , yn) is a solution to E , the algorithm halts. If some equation in E , say
xi1 xi2 = xi3 , is not satisfied then since we are maintaining �y as a lower bound to any
assignment satisfying E , we know that in any such assignment yi1 and yi2 will be bounded



The Complexity of Solving Systems of Equations over Semigroups 279

below by yi3 . Thus, if yi1 is not J -above yi3 , we can update our lower bound by setting
yi1 := yi1 ∨ yi3 , i.e. the J -minimal element of S lying above both of them.3 We do
similar updates for yi2 and yi3 .

We iterate this until we reach a fixed point for �y. The process terminates in at most
n · |S| steps since the value of �y always increases in the semilattice Sn and if the fixed
point is not a solution to the system, then it must be that E contains the equation xs = s
but the corresponding ys lies above s and so E is unsatisfiable.

Recall that a band is a regular band if it satisfies the identity abaca = abca.

Lemma 20. If S is a regular band, then T-EQN∗
S is computable in polynomial time.

In order to establish this upper bound, we use the following property of solutions
to a target-equation over a regular band. Recall that a shuffle of two strings x1 · · · xk and
y1 · · · yl is a string formed by these k + l elements and in which the xi ’s and yi ’s appear
in their original order.

Lemma 21. Let S be a regular band and suppose x1 · · · xk = s and y1 · · · yl = s for
some xi , yi , s ∈ S. For all shuffles K of x1 · · · xk with y1 · · · yl , we have K = s.

Proof. In any band, the product of two elements J -above some u ∈ S is also J -
above u [13]. Hence we have K ≥J s since each xi , yi lies J -above s. On the other
hand, since all xi ’s appear in K , we can use the identity abaca = abca to get K sK =
K x1 · · · xk K = K 2 = K . Thus, s ≥J K and so s J K . Furthermore, for any i ≤ k we
have x1 · · · xi s = x1 · · · xi x1 · · · xi · · · xk = s.

We claim that K ≥R s. Indeed, we have K s = K sx1 · · · xk y1 · · · yl . Using again the
identity abaca = abca, we can replace the occurrence of xi in K on the right-hand side
of this equation with the prefix x1 · · · xi since all the xj with j ≤ i appear both before
and after xi . Hence K s can be written as a product of prefixes of x1 · · · xk or y1 · · · yl

times s. Thus K s = s and K ≥R s.
By a symmetric argument, K ≥L s. Since s J K , we have s H K and s = K by

aperiodicity.

From the universal algebra perspective, Lemma 21 can be used to show that the
relations induced by target-equations over a regular band are closed under a so-called
set function [8] and this is known to be a sufficient condition for the tractability of the
corresponding CSP. The algorithm we describe next is implicitly using this fact.

Proof of Lemma 20. For each variable xi , 1 ≤ i ≤ n, we initialize a set Ai = S of
“possible values” for xi and repeat the following until either the Ai are fixed or some
Ai = ∅: for all i from 1 to n, for each equation E involving xi , and each ai ∈ Ai , if
there exists no n-tuple (a1, . . . , ai , . . . , an) with aj ∈ Aj that satisfies E , then we set
Ai := Ai − {ai }.

3 If no such element exists, we conclude that the system is unsatisfiable.
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If some Ai is empty, the system clearly has no solution. Conversely, we are left with
sets Ai such that for all ai ∈ Ai and all equations E in the system, there are aj ∈ Aj for
all i �= j such that the n-tuple (a1, . . . , an) satisfies E . We claim that this guarantees the
existence of a solution to the system.

Indeed, let ti be the product in S of all elements of Ai = {a(1)i , . . . , a(ri )
i } in some

arbitrary order. Then (t1, . . . , tn) satisfies all equations in the system. To see this, consider
some equation E : xj1 xj2 · · · xjk = s. One can easily show using idempotency that by
definition of the Ai ’s and ti ’s, the product tj1 tj2 · · · tjk is a shuffle of solutions to this
equation. So, by Lemma 21, the tuple (t1, . . . , tn) also satisfies the equation.

To show that our algorithm runs in polynomial time, it suffices to show that we can
efficiently test whether a given equation xj1 · · · xjk = s has a solution �a = (a1, . . . , ai ,

. . . , an) where ai is given and for each j �= i we want aj ∈ Aj . A polynomial-time
algorithm for a more general task is already given in [1] and [16]: we sketch here the
argument required for this simple case. A regular band S satisfies the identity xyxzx =
xyzx . Thus if in the product s1s2 · · · sm we have i < j < k with si = sj = sk then sj can
be removed without affecting the value of the product, i.e.

s1 · · · sj−1sj sj+1 · · · sm = s1 · · · sj−1sj+1 · · · sm .

Since we can use this idea repeatedly to remove the middle occurrence of any semigroup
element appearing thrice in the product, the value of the product s1s2 · · · sm is completely
determined by the set of elements of S occurring among the si ’s and the order in which
they first appear from left to right and from right to left (see, e.g. [16]). So if we require
that xj1 · · · xjk = s we consider for all elements t ∈ S the possible locations for the first
and last occurrence (if any) of each element t in the product, i.e. choose the leftmost and
rightmost xji having the value t . Because |S| is a constant, there are only polynomially
many such possibilities. For each such choice, we have set the value of at most 2 · |S|
variables but the value of the product xj1 · · · xjk will remain the same for all possible
assignments to the other variables, provided that the locations of the first and last oc-
currence of t remain in place. This allows us to check in polynomial time whether or
not there exists an assignment �a such that xj1 · · · xjk = s with the additional requirement
that aji ∈ Aji .

Note that for any solution (s1, . . . , sn) to the system, we have ti ≤J si for each i
because we must have si ∈ Ai .

For a set Q = {q1, . . . , qt } of integers with qi ≥ 2 for all i , we define a decision
problem LEQNQ as follows: given a systemE of linear equations with integer coefficients
modulo qi for some qi ∈ Q (with different equations using possibly different moduli),
determine if E has a solution over the integers.

Lemma 22. The problem LEQNQ lies in P for any set of moduli Q.

This is not hard to prove using elementary arithmetic. Alternatively, one can see that
LEQNQ is a constraint satisfaction problem over the domain D = {0, 1, . . . , lcm(Q)−1}
whose relations are solution sets of linear equations (whose arity can be bounded to 3)
over the different moduli. The domain D can be viewed as a cyclic group under addition
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and it is clear that every k-ary relation is then a coset of D3. The problem is thus tractable
by Theorem 2.

For the following two lemmas, it is useful to recall that in an orthodox union of
groups S the idempotents form a subsemigroup E(S). If S is also a strong band of
groups then E(S) ≡ S/H is the image of the homomorphism ϕ: s �→ sω. If E is
a system of equations over S and ϕ: S → T is a homomorphism, we can naturally
construct a system ϕ(E) over T by replacing every constant c appearing in E by ϕ(c). If
E has a solution then of course so does ϕ(E).

Lemma 23. If S is in SL ∨ Ab then EQN∗
S is computable in polynomial time.

Proof. Let E be a system of equations over S in n variables. We know that S is a strong
semilattice of Abelian groups and if E is satisfiable, then the corresponding system over
S/H ≡ E(S) is also satisfiable. It is useful to note that the system over E(S) can be
obtained fromE by raising every variable and constant to itsω power. Using the algorithm
of Lemma 19, we can find the J -minimal solution (e1, . . . , en) of the system over E(S).
If (u1, . . . , un) is an arbitrary solution of E then we have ui ≥J ei and thus ei ui J ei

(and in fact ei ui H ei since J = H for S ∈ SL ∨ Ab). Furthermore, (e1u1, . . . , enun)

is also a solution of the system E : say x1x2 = x3 is some equation of E , then because S
is a commutative we have

(e1u1)(e2u2) = (e1e2)(u1u2) = e3u3.

Also, sωs = s for every s ∈ S since it is a union of groups and so equations xs = s are
also satisfied.

So if E has a solution, it has a solution (u1, . . . , un) such that ui H ei or, in other
words, such that ui belongs to the subgroup Gi whose identity element is ei . Note that
if we know the group in which each variable lies, we consequently know the group in
which a product of them lies and we can associate to each equation Ej of E a subgroup
Hj in which both its right-hand and left-hand sides will sit.

Suppose for simplicity that each group is cyclic (the more general case can easily
be handled by decomposing the groups into their cyclic factors). We write the group
operations additively and for every variable xi of E introduce an integer variable yi such
that xi = yi gi where gi is the generator of Gi . Each equation Ej of E can be viewed
as an equation over Hj : using the homomorphism mapping the relevant Gi to Hj , we
can thus rewrite each Ej as a linear equation modulo some integer qj over variable yi ’s.
Clearly, E has a solution iff the resulting instance of LEQNQ has a solution and we can
check this in polynomial time.

This upper bound technique combines ideas from two classes of polynomial-time
algorithms for CSPs. This has led to the identification of an apparently new “island of
tractability” [7] which supersedes both Theorems 1 and 2: if S is a block group (i.e. a
semigroup in which the idempotents generate a J -trivial subsemigroup) and � is a set
of relations over S closed by the operation t (x, y, z) = xyω−1z then CSP(�) is tractable.
The latter is a so-called Taylor operation and an easy exercise shows that it indeed closes
the relations defined by equations over a semigroup in SL ∨ Ab.
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Lemma 24. If S is in RB ∨ Ab then T-EQN∗
S is computable in polynomial time.

Proof. We proceed exactly as in the previous proof: ifE is our system of target-equations
over S, we begin by considering the corresponding system over S/H ≡ E(S) and running
the algorithm of Lemma 20: if it has no solution then E is also unsolvable. If (e1, . . . , en)

is a solution over E(S) then let (u1, . . . , un) be a solution to E : by our remark following
Lemma 20 we have ei ≤J ui and thus ei ui ei H ei .

We can adapt Lemma 21 to show that if S is a strong regular band of Abelian groups
and x1 · · · xk = s and yω1 · · · yωl = sω then for any shuffle K of x1 · · · xk and yω1 · · · yωl
we have K = sω+1 = s. Therefore (e1u1e1, . . . , enunen) is a solution to E .

So if E has any solution then it has a solution (u1, . . . , un) such that uωi = ei . Once
again, this means that we have identified in polynomial time the subgroup to which each
ui will belong and the rest of the proof is identical to that of Lemma 23.

5. Three Dichotomy Theorems

In this section we combine the results obtained so far to characterize the complexity of
EQN∗

M and T-EQN∗
M for every finite monoid M and the complexity of T-EQN∗

S for every
regular semigroup S.

Theorem 4. If M is a finite monoid then T-EQN∗
M is computable in polynomial time if

M lies in RB ∨ Ab and is NP-complete otherwise.

Proof. The upper bound is provided by Lemma 24. For the lower bound, if M is
not a union of Abelian groups then EQN∗

M is NP-complete by Lemmas 11 and 15.
If M is a union of groups but is not orthodox then it must have a completely simple
unorthodox subsemigroup [13] and NP-completeness follows from Lemma 18. If M is
an orthodox union of Abelian groups then the inducible subsemigroup E(M) is a band
and Lemma 17 ensures the NP-hardness of T-EQN∗

M if this band is not regular. Finally,
if M is an orthodox union of Abelian groups over whichH is not a congruence, we can
use Lemma 16. By Lemma 8, our proof is complete.

Theorem 5. If S is a finite regular semigroup then T-EQN∗
S is computable in polynomial

time if S lies in RB ∨ Ab and is NP-complete otherwise.

Proof. Once again, Lemma 24 yields the upper bound. For the lower bound, note that
if a regular semigroup S is not a union of groups then it must lie outside DS. In that case
the NP-completeness of T-EQN∗

S follows from Lemma 14. If S is a union of groups, we
can argue as in Theorem 4.

Theorem 6. If M is a finite monoid then EQN∗
M is computable in polynomial time if

M lies in SL ∨ Ab and is NP-complete otherwise.
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Proof. The upper bound is simply Lemma 23. For the lower bound: if M lies outside
RB ∨ Ab then EQN∗

M is NP-complete by Theorem 4. Otherwise, M is a strong band of
groups and if the underlying band E(M) is not a semilattice, NP-completeness follows
from Lemma 13.

Larose and Zádori recently showed that the NP-completeness half of this result
can be obtained alternatively using universal algebra [17]. They show that if the set
of relations defined by equations over M is closed under a so-called Taylor operation
then M is a commutative union of groups (i.e. lies in SL ∨ Ab) and this yields the lower
bound. The converse of this statement is also true, a fact we implicitly exploited to obtain
the matching upper bound.

6. Obstacles for More General Dichotomies

Ideally, we would want to prove that such dichotomies hold for EQN∗ and T-EQN∗ for
all finite semigroups but our results in this section indicate that this is as difficult as
obtaining a dichotomy for all CSPs.

Theorem 7. For every set of relations �, there exists a semigroup S� satisfying the
identity xyz = uvw such that CSP(�) is polynomial-time equivalent to T-EQN∗

S� .

Proof. By Theorem 3, we can assume that � contains a single binary relation R and all
constants, i.e. all unary relations consisting of a singleton. In other words, every constraint
of the CSP(�) instance either sets a variable to some constant value or constrains a pair
of variables to lie in R.

We construct the semigroup S� from generators d1, . . . , dk corresponding to the k
elements of �’s domain. Furthermore, we add a semigroup element 〈di dj 〉 for every pair
of domain elements such that (di , dj ) �∈ R. The last two elements of S� are r and 0 and
the multiplication is given by

– di dj = 〈di dj 〉 if (di , dj ) �∈ R and di dj = r otherwise;
– xy = 0 unless x and y are among the k generators.

In particular, the product of any three elements of the semigroup is 0 so S� satisfies the
identity xyz = uvw.

The reduction from CSP(�) to T-EQN∗
S� is now quite transparent: for every variable

yi of the CSP instance, we create a variable xi . If the CSP variable yi is bound to the
domain value ds then we correspondingly impose xi = ds in the system and for each
constraint (yi , yj ) ∈ R we introduce the equation xi xj = r . The correctness of the
reduction is clear.

Conversely, consider a system of target-equations over S� . We can assume that the
left-hand side of each equation contains no constants (for we can introduce dummy
variables xc = c) and no more than two variables (since xyz = 0 for all x, y, z ∈ S�).
Furthermore, we can replace any equation of the form xy = 〈di dj 〉 by the pair x = di ,
y = dj . In any solution to the system, a variable x that occurs in a target-equation of the



284 O. Klı́ma, P. Tesson, and D. Thérien

form xy = r , yx = r , or x = di must be one of the generators. Consider an equation
of the form xy = 0: if both x and y are forced to be generators, then the system will
be unsatisfiable. Otherwise, this equation can be removed without affecting the system’s
satisfiability. Hence, we can assume that our system of equations contains only equations
of the form x = di and xy = r and the reduction to CSP(�) is obvious.

On the other hand, T-EQN∗
Sk

is computable in polynomial-time for the semigroup4

Sk generated by the k element set D = {d1, . . . , dk} and subject to xyz = 0 for all
x, y, z ∈ S.

Indeed, we can assume that each target equation of a system E over Sk involves at
most two variables and that no constants appear on the left. Moreover, equations of the
form xi xj = d for some d ∈ D have no solution so we can assume they do not occur
in the system. To solve E we consider the set F of variables that are not bound by an
equation xi = c, with c ∈ Sk : if F is empty, the satisfiability of E is trivial to verify.
Our algorithm can replace any equation of the form xi xj = ab with a, b ∈ D by the
pair xi = a and xj = b. Once all such equations have been removed, every variable xi

remaining in F occurs only in equations of the form xi xj = 0 or xj xi = 0 so we can
safely set it to 0 and delete the corresponding equations: the solvability of the remaining
system is trivial to check.

The existence of such a polynomial-time algorithm for T-EQN∗
Sk

is surprising since
we have just shown that arbitrary CSPs are equivalent to T-EQN∗

T for some T in the
variety generated by the Sk’s and so the class of semigroups S for which T-EQN∗

S (and
as we will see EQN∗

S) lies in P does not form a variety.
Theorem 6 describes the complexity of EQN∗

M for every monoid M and in light
of Theorem 5 we would expect that it is also possible to describe the complexity of
EQN∗

S for every regular S. Our results already allow us to show two basic results in this
direction.

Lemma 25. If S is regular but is not in NB ∨ Ab then EQN∗
S is NP-complete.

Proof. We already know from Theorem 5 that EQN∗
S is NP-complete unless S lies in

RB ∨ Ab. If S does lie in RB ∨ Ab, then E(S) (an inducible subsemigroup of S) must
form a band which is not normal and the NP-completeness follows from Lemma 13.

Lemma 26. If S lies in NB∨Ab, then EQN∗
S is polynomial-time equivalent to EQN∗

E(S).

Proof. Only one direction requires proof since E(S) is an inducible subsemigroup of
S. For the converse, note that every band K in NB and every group G in Ab satisfy the
identity uxyv = uyxv, so this also holds in S. Consider the relation ∼ on S defined by
x ∼ y when xωyxω = x and yωxyω = y. In fact, we claim that x ∼ y iff uxv = uyv for
any u, v ∈ S. The right to left implication is clear since xω+1 = x in a union of groups.

4 In semigroup jargon, Sk is the free nilpotent semigroup of threshold 3 on k generators.
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For the converse, we get first

yωxωyω = yω
2
xωyω

2 = (yωxyω)ω = yω

and thus

uxv = uxωyxωv = uxωyωyωyv = uyωxωyωyv = uyω+1v = uyv.

Hence, ∼ is an equivalence relation and in fact a congruence. Also xy ∼ yx so the
quotient semigroup Q = S/∼ is commutative and since it is also a union of groups then
Q ∈ SL ∨ Ab [13]. For q ∈ S, we denote by [q] the ∼-class of q.

Let E be a system of equations over S: if E is satisfiable, then the two corresponding
systems over E(S) and Q must also be satisfiable. We claim that the converse statement
also holds: let �e = (e1, . . . , en) and �q = ([q1], . . . , [qn]) be the respective solutions of
these systems. We show that �s = (e1q1e1, . . . , enqnen) is a solution to E . Every equation
of E is either of the form xi xj = xk or xi = c. In the first case we have

ei qi ei ej qj ej = ei ej qi qj ei ej (since S satisfies uxyv = uyxv)

= ei ej qkei ej (since qi qj ∼ qk)

= ekqkek (since ei ej = ek)

= ekqkek .

For the second case we get ei = cω and qi ∼ c so ei qi ei = c.
Since we can check in polynomial time the solvability of the system over Q, we can

reduce the solvability of E to that of the system over the normal band E(S).

It thus remains to understand the complexity of EQN∗
S when S is a normal band. We

first consider the a priori simpler problem of systems over right-normal bands which
satisfy x2 = x and xyz = yxz. An important consequence of these identities is that if S
is a right normal band and s and t are J -related then su = tu for each u ∈ S. Also, all
L-classes of S are trivial, i.e. J = R.

Theorem 8. For every domain D and every set of relations � over D, there exists a
right-normal band S� such that CSP(�) is polynomial-time equivalent to EQN∗

S� .

Proof. Again, we can assume without loss of generality that � contains a single binary
relation R and the constant relations. Let r = |R| and d = |D| with D = {t1, . . . , td}.
We construct a semigroup S� with seven J -classes {α, β, γ, δ, ε, ρ, 0} as in the egg-box
picture of Figure 2. These J -classes form a semilattice S�/J also represented in the
figure. The α, β, γ, δ and ε classes all have d elements and we think of the elements
αi , βi , γi , δi , εi as “representing” the element ti of D. The ρ-class has r elements and
we similarly think of each element of ρ as representing a pair (ti , tj ) ∈ R.

We want S� to be a right-normal band so for any x, x ′, y with xJ x ′ we have
xy = x ′y. To stress this, we abuse notation and when x lies, say in the J -class γ , write
xy = γ y.
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α1 α2 . . . αd β1 β2 . . . βd

γ1 γ2 . . . γd δ1 δ2 . . . δdε1 ε2 . . . εd

ρ1 ρ2 . . . ρr

0

✦✦✦✦✦✦✦✦✦

✏✏✏✏✏✏✏✏✏✏✏
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✘✘✘✘✘✘✘✘✘✘

Fig. 2. Egg-box representation of S� . Lines indicate the order in the semilattice of J -classes.

Because S�/J forms a semilattice, the J -class of a product xy is the meet in S�/J
of the J -classes of x and y. In particular, it follows (see Figure 2) that for all i, j we
have

αiδj = δjαi = βiγj = γjβi = ρiεj = εjρi = 0.

The rest of the multiplication table is described by the following equalities. First,

βαi = εαi = αβi = εβi = αεi = βεi = εi

αγi = γαi = ραi = ργi = γi

βδi = δβi = ρβi = ρδi = δi

for every 1 ≤ i ≤ d . Next, if ρk is associated to the pair (ti , tj ) we have

αρk = γρk = γi and βρk = δρk = δj

so that multiplying ρk on the left by γ and δ respectively “extracts” the information
about the first and second component of the pair (ti , tj ) that ρk represents. Also, for any
x J y we have xy = y because each J -class is a singleR-class.

The element x lies in the J -class, say, γ if and only if γ1x = x and xγ1 = γ1. We
abbreviate this pair of equations by simply writing x ∈ γ and similarly for the other
J -classes.

To get a reduction from CSP(�) to EQN∗
S� , we create, for each CSP variable vi , two

variables xi and yi and include the following equations:

xi ∈ α, (29)

yi ∈ β, (30)

εxi = εyi . (31)

Since we have xi ∈ α and yi ∈ β, (31) imposes that xi = αj iff yi = βj and thus
“synchronizes” the two variables. If our CSP instance uses the constant relation vi = tj

then we further set xi = αj (which also forces yi = βj ). Next, for each constraint
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(vp, vq) ∈ R we create a variable zp,q and include in our system the equations

zp,q ∈ ρ, (32)

γ zp,q = γ xp, (33)

δzp,q = δyq . (34)

If xp = αi and yq = βj then our multiplication rules show that there is a zp,q

satisfying these equations iff (ti , tj ) ∈ R. It is now clear that this system is satisfiable if
and only if the CSP(�) instance is.

Conversely, suppose we start with a system E of equations over S� and assume
without loss of generality that all equations are of the form x = s or xi xj = xk . We will
show that we can construct in polynomial time a system F which is exactly in the form
we have just described and which has a solution if and only if E does. It is then easy to
reconstruct a CSP(�) instance which is satisfiable if and only if F is.

As in Lemma 26, if E has a solution, then the corresponding system over the semi-
lattice consisting of elements {α, β, γ, δ, ε, ρ, 0} must also have a solution. We can
check this in polynomial time and if a solution exists, we can obtain the minimal one
ē = (e1, . . . , en) with each ei ∈ {α, β, γ, δ, ε, ρ, 0}. Once again, it can be shown that if
E has any solution (u1, . . . , un) then it has one, namely (e1u1, . . . , enun), where xi lies
in the J -class ei .

Therefore, we do not affect the solvability of E if we add for each xi the pair of
equations equivalent to xi ∈ ei . Furthermore, we can replace every equation xi xj = xk

by ei xi ej xj = ek xk . Furthermore, because ei xi ej xj = ei ej xj and since we must have
ei ej = ek in the semilattice, the equation can be rewritten as exj = exk with e ∈
{α, β, γ, δ, ε, ρ, 0}.

We are thus left with solving a system, say E ′, where every variable is constrained
by some condition xi ∈ ei and every other equation is of the form x = c for c a constant
or exi = exj . Moreover, if the system contains an equation exi = exj then ei ≥J e. Of
course every equation of the form 0x = 0y is trivially satisfied and can be discarded.

Suppose a variable x is constrained by x ∈ γ . In every equation of the form ex = ey
in which x occurs, we have e ≤J γ and this means in fact e = γ since we removed
equations with e = 0. Suppose that in E ′ we replace the requirement x ∈ γ by x ∈ α and
the equation x = γi (if such an equation exists) by x = αi : we claim that the solvability
of the system will be unaffected. Indeed, whenever we had a solution with x = γi , we
will have a solution with x = αi since for any 1 ≤ i ≤ d we have γ γi = γαi . By the
same token, we can replace requirements x ∈ δ or x ∈ ε by x ∈ β without affecting the
solvability of the system.

These observations allow us to assume that every variable in our system is con-
strained by xi ∈ ei where ei is one of {α, β, ρ}.

Let ri , rj be variables of the system constrained by ri ∈ ρ and rj ∈ ρ. We can
assume that our system does not contain an equation of the form γ ri = γ rj since it
is equivalent to the equations γ ri = γ z, γ rj = γ z with z ∈ α and where z is a new
variable. Symmetrically, we can replace equations of the form δri = δrj .

In the same way, for any constant ρs there are unique constants αu and βv such that
γρs = γαu and δρs = δβv so we can replace ri = ρs by the equations x = αu , y = βv ,
γ ri = γ x and δri = δy. Also, if we have xi ∈ α and xj ∈ α then the equation εxi = εxj
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(and similarly γ xi = γ xj ) forces xi = xj . In the same way, for z ∈ ρ (resp. y ∈ β) and
xi , xj ∈ α the pair of equations γ xi = γ z and γ xj = γ z (resp. εxi = εy and εxj = εy)
yields xi = xj . Symmetrical results hold for yi and yj in β.

In the system F thus obtained, we can view each variable as being one of three
types X, Y, Z where each xi ∈ X is constrained by xi ∈ α, each yi ∈ Y by yi ∈ β and
each zi ∈ Z by zi ∈ ρ. For each zk ∈ Z , there is at most one (exactly one if we use
dummy variables) xi ∈ X and one yj ∈ Y such that the system contains γ xi = γ zk

and δyj = δzk . Also, for each xi ∈ X , there exists exactly one yj ∈ Y such that the
system contains εxi = εyj . All other equations are xi = αs or yj = βs for some s. By
construction,F has a solution if and only if E had one andF’s solvability easily reduces
to a CSP(�) instance.

In contrast, an easy exercise can show that solving a system of equations over the
free right-normal band or even the free normal band on any finite number k of generators
is doable in polynomial time. This is also part of more general results of one of the
authors [16]. So the class of semigroups for which EQN∗

S lies in P is not closed under
morphic images. It is not closed under taking subsemigroups either. Indeed, the right-
normal band S� that we constructed is a subsemigroup of the right-normal band that we
would obtain when R consists of all pairs in D × D but the latter CSP clearly lies in P.

If S is not regular, then our partial results allow us to show that EQN∗
S and T-EQN∗

S
are NP-complete unless S lies in the variety DO ∩ Ab of semigroups whose regular
J -classes are orthodox unions of Abelian groups and which has already been shown of
particular relevance in computational complexity contexts [24], [25].

7. Conclusion

Although the complexity of EQN∗
S or T-EQN∗

S for semigroups is a question that will not
find a resolution until we can settle the CSP conjecture, we are able to give complete
dichotomies in the case of monoids and the classes of monoids for which each problem
is tractable form varieties. We do not have a good explanation for this phenomenon and
it would be interesting to see, for instance, whether one can get a simple and direct proof
(in the case of monoids) that the tractability of EQN∗

M implies the tractability of EQN∗
S

for every subsemigroup S ⊆ M . As we noted, Larose and Zádori have reproved using
universal algebra that EQN∗

M is NP-complete if M is not in SL ∨ Ab and their proof
crucially depends on the presence of an identity element [17].

Reducing every CSP to the problem of solving systems of equations over a finite
semigroup might be useful given that so much of the successful machinery to study CSPs
is of an algebraic nature. In any case, it would be surprising if equations over such simple
classes of semigroups defined problems whose complexity form a very wide spectrum
and, in that sense, these results constitute additional if weak evidence in favor of the CSP
conjecture.

Finally, note that EQN∗
G for a finite group can be solved well within NC (and thus

has a very efficient parallel algorithm) but EQN∗
S is P-hard as soon as S contains two

idempotents e �= f such that ef = fe = f . Indeed, Lemma 1 essentially shows that
in this case the P-complete problem HORN-SAT has a logspace reduction to EQN∗

S . In
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particular, the semigroup S� which we construct in Theorem 8 is such that EQN∗
S� will

be P-complete, even if CSP(�) has much lower complexity.
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Appendix

We present here detailed proofs for the hardness results which were omitted in Section 3
and for the semigroup theoretic lemmas stated throughout the paper.

A1. Additional Hardness Results

Lemma 16. If S is a union of groups such that H is not a congruence on S, then
T-EQN∗

S is NP-complete.

Proof. IfH is not a congruence, then it either is not a right-congruence or is not a left-
congruence. We can without loss of generality assume the first case, i.e. that there exist
a, b, c such that a H b but ac �H bc, since the other case can be handled symmetrically.
The reduction that we use is almost exactly that of Example 0 and this is made possible
by the following technical construction.

Lemma 27. If S is a union of groups such thatH is not a right-congruence on S, then
there are a, e ∈ S with a >J e such that

1. e2 = e and aωe = e = eaω;
2. ae �H e (and in fact ae �R e);
3. for all x with a >J x >J e, we have xe �= e.

Proof. Recall that since S is a union of groups we have sω+1 = s for all s ∈ S andJ is a
congruence over S. There are a, b, c ∈ S such that aH b but ac �H bc and we can choose
a, b to be J -minimal with this property. Since S is a union of groups we have aω = bω

so either aωc �H ac or bωc �H bc for otherwise acHaωc = bωcHbc contradicting our
initial hypothesis. We thus assume that aωc �H ac: because of Green’s lemma, we cannot
have a J c and in fact we can assume that c lies J -below a (otherwise, we can choose
d = aωc and obtain aωd = aωc �H ac = aω+1c = ad). We pick c as a J -maximal
element lying below a with the property ac �H aωc: because S is a union of groups we
in fact have c J ac J aωc. If f is the idempotent (aωc)ω then f H aωc and by Green’s
lemma af H ac �H aωc H f . In fact, since af and aωf = f are L-related they cannot
be R-related. Finally, choosing e = ( f aω)ω, we get aωe = e = eaω and, again using
Green’s lemma, ae R af �R f R e so in particular ae �R e.
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If a >J x >J e then we have, from our initial choice of c above, ax H aωx.
Similarly, because we earlier chose a, b to be J -minimal, we must have axe H aωxe.
Hence, xe �= e for otherwise this last expression simplifies to ae H e.

Note that in Example 0, a and e had exactly these properties. When building our
reduction, we work over the inducible subsemigroup of elements lying J -below a and,
as in the example, introduce for every Boolean variable Xi the equations

xi e = e, (35)

x̄i e = e, (36)

vi xi si e = e, (37)

vi ax̄i ti e = e, (38)

where vi , si , ti are constrained to beH-related to a.
Just as before, we also include for each 3SAT clause, e.g. X1∨ X2∨ X3, the equation

x1 x̄2x3 = e. (39)

Given an assignment to the Boolean literals satisfying the 3SAT formula, one can
verify that this system has a solution by setting xi = e, x̄i = aω, ti = aω−1 and
vi = si = aω whenever Xi is TRUE and xi = aω, x̄i = e, si = a, ti = aω and vi = aω−1

whenever Xi is FALSE. Furthermore, each equation of type (39) will be satisfied since at
least one of the three terms is e while the others are aω and since we have e = aωe = eaω.

Conversely, suppose that there exists a solution to the constructed system. Equa-
tions (35) and (36) show that xi and x̄i are J related either to e or to a because of
condition 3 in Lemma 27. On the other hand if both values are J -related to e then be-
cause of (35) we have xi ≥R e and thus xi R e since xi J e and similarly x̄iRe. Also
vi xi si e = e so vi xi ≥R e and in fact we get vi xi R e when xi J e. Similarly vi ax̄i R e.
SinceR is a left-congruence we also have vi e R vi xi R e and vi ae R vi ax̄i R e. How-
ever, this leads to a contradiction for if ve R vae then multiplying both sides on the left
by vω−1, we get e = vωe R vωae = ae.

Hence, if we set Xi (resp. Xi ) to TRUE when xi J e (resp. x̄i J e) then a litteral and
its complement are never both true. Finally, if x1 x̄2x3 = e, one of those three variables
must be J -related to e since their product will otherwise lie in the J -class of a.

Before proving Lemma 17, we recall some useful properties of bands, all of which
can be obtained from results mentioned in our Introduction, and provide a useful char-
acterization of regular bands.

Lemma 28 [13]. Let S be a band and let a, b, c ∈ S be arbitrary elements. Then

(i) a ≤L b ⇐⇒ ab = a,
(ii) a ≤R b ⇐⇒ ba = a,

(iii) a ≤J b ⇐⇒ aba = a,
(iv) a ≤J b �⇒ ac ≤J bc, ca ≤J cb.
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Lemma 29. Let S be a band. Then it is a regular band if and only if the following two
(dual) conditions are satisfied:

(∀x, y, z ∈ S) x R y, x ≥J z �⇒ xz = yz,

(∀x, y, z ∈ S) x L y, x ≥J z �⇒ zx = zy.

Proof. Let S be a regular band and x, y, z ∈ S such that x R y, x ≥J z. From the
assumption x R y we have xy = y and from x ≥J z we can deduce zxz = z. Hence
yz = xyzxz and if we use regularity (i.e. xyzx = xyxzx) we obtain yz = xyzxz =
xyxzxz. Because xyx = x and S is a band we finally obtain yz = xzxz = xz. The
second condition can be obtained dually.

Conversely, let S be a band which satisfies both conditions and let a, b, c ∈ S be
arbitrary elements. If we let x = ab, y = aba and z = caabca then these elements
satisfy the assumptions of the first condition and we have abca = abca · abca =
xz = yz = abaca · abca. Hence abaca R abca. Dually we obtain abaca L abca and
altogether we have abaca H abca which means that abaca = abca as S is a band.

Lemma 17. If S is a band but is not a regular band, then T-EQN∗
S is NP-complete.

Proof. If S is a band but not a regular band, it must violate one of the two conditions
of Lemma 29 and we without loss of generality assume that S violates the first one. The
following construction will now allow us to present a reduction closely related to the
one of Example 1.

Lemma 30. Let S be a band which does not safisfy the first condition of Lemma 29.
Then there exist elements a, b, c ∈ S such that ab = b, ba = a (i.e. a R b), ca = c,
ac �= bc, c <J a and satisfying the following condition:

∀s ∈ S, c <J s ≤J a �⇒ as = bs. (40)

Proof. Let x, y, z be elements which disprove the condition of Lemma 29 and such that
z isJ -maximal with respect to this property. By Lemma 5 and the aperiodicity of S we can
see that x R y J z implies xz = xyz = yz. Hence z <J x and we can put a = x , b = y
and c = zx . Assume for a moment that ac = bc. Then xyx = ac = bc = yzx and if we
multiply this equality by z we obtain xzxz = yzxz which is xz = yz because zxz = z.
This is a contradiction, so ac �= bc. The equalities are easy to see and property (40) is a
consequence of the J -maximality of z in the counterexample.

We can now obtain the following reduction from 3SAT to T-EQN∗
T where T is the

(inducible) semigroup of elements lying J -below a. For each Boolean literal Xi in the
formula, we introduce the variables xi , x̄i , yi and construct the equations

cxi = c, (41)

cx̄i = c, (42)

axi ax̄i = ac, (43)
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bxi bx̄i = bc, (44)

yi xi ac = ac, (45)

yi x̄i bc = bc, (46)

yi a = a. (47)

Moreover, for any q which isR-related to a we add the equations

qxi qc = qc, (48)

qx̄i qc = qc. (49)

Note that in any solution to these equations we know from (41) and (42) that both
xi and x̄i lie J -above c. Suppose that both lie strictly J -above c then axi = bxi and
ax̄i = bx̄i by Lemma 30. However, then axi ax̄i = bxi bx̄i and this contradicts (43)
and (44).

Suppose on the other hand that both xi and x̄i are J -related to c: by (41) and (42)
we get xi L x̄i L c. We thus have xi = xi ac and in fact xi tc = xi (as well as x̄i tc = x̄i )
for any t ≥J c. Since (47) imposes yi R a we deduce from (48) and (49) that

yi xi ac = yi xi = yi xi yi c = yi c = yi x̄i yi c = yi x̄i bc.

This, however contradicts (45) and (46). Hence, exactly one of xi , x̄i is J -related to c
and the other lies strictly J -above c.

We complete our reduction by introducing, for each clause of the 3SAT formula, e.g.
X1 ∨ X2 ∨ X3, the following pair of equations:

ax1ax̄2ax3 = ac, (50)

bx1bx̄2bx3 = bc. (51)

One can verify that if the 3SAT instance is satisfiable, then we can satisfy the system
obtained through our reduction by letting xi = c, x̄i = a, yi = a whenever Xi is TRUE,
and xi = a, x̄i = c, yi = b whenever Xi is FALSE.

Conversely, suppose the system of the equations is satisfiable. Since exactly one of
xi , x̄i is J -related to c, we get a consistent truth assignment to the literals by setting Xi

(resp. Xi ) to TRUE if and only if xi J c (resp. x̄i J c). This assignment satisfies every
clause of the original formula for if the variables occurring in (51) all lie strictlyJ -above
c we have ax1 = bx1, ax̄2 = bx̄2 and ax3 = bx3 so that

ax1ax̄2ax3 = bx1bx̄2bx3

in violation of (51) and (52).

To present the complete proof of Lemma 18, we need to introduce semigroup the-
oretic tools which allow a deep understanding of the structure of completely simple
semigroups. We seek a refinement of Lemma 5 in order to understand the structure of
multiplication within such semigroups.
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Let G denote some finite group with multiplication◦ and let m, n be positive integers.
A complete Rees matrix is an m by n matrix R with entries in G and the corresponding
complete Rees semigroup is the completely simple semigroup with elements in ([n] ×
G × [m]) and where the multiplication of elements is given by

(i1, g1, j1) · (i2, g2, j2) = (i1, g1 ◦ Rj1,i2 ◦ g2 , j2).

Note that this semigroup has n R-classes given for each 1 ≤ l ≤ n by Rl =
{(l, g, j) | g ∈ G; 1 ≤ j ≤ m} and similarly has m L-classes.

Theorem 9 [13]. Every completely simple semigroup with n R-classes and m L-
classes is isomorphic to a complete Rees semigroup. The corresponding Rees matrix
is m × n and its first row and first column entries can be assumed to all be the group
identity 1G . Moreover, the semigroup is orthodox if and only if all the Rees matrix entries
are 1G .

In particular the m idempotents in the firstR-class and the n idempotents in the first
L-class are {(1, 1G, j) | 1 ≤ j ≤ m} and {(i, 1G, 1) | 1 ≤ i ≤ n} respectively. Note
also that the egg-box picture of the complete Rees semigroup corresponding to an m×n
complete Rees matrix has n rows (R-classes) and m columns (L-classes).

Lemma 18. If S contains a J -class T forming a completely simple but unorthodox
semigroup then T-EQN∗

S is NP-complete.

Proof. First note that the subsemigroup T≤ of elements lying J -below T is inducible
in S. Furthermore, for any t ∈ T , the target-equation (t xt)ω = tω defines (in T≤) the
semigroup T . We can thus assume without loss of generality that S is itself a completely
simple unorthodox semigroup.

We consider the m ×n complete Rees matrix R associated to S: we can assume that
the first row and first column entries of R are all 1G .

We can recursively reorder the rows and columns of R: suppose row s is such that
Rs,i = 1G for every i ≤ t . We choose the row (s+1) as the one with the most 1G entries
among Rs+1,i with i ≤ t and reorder the columns such that all these entries appear first
in the row.

Because we assumed that the semigroup is not orthodox, there is some non-identity
entry in R so, after reordering, we can, as shown in Figure 3, find indices a, b, c with
1 < b ≤ n and 1 < a < c ≤ m + 1 and such that

– Ra,b �= 1G ;
– if 1 ≤ j < a then Rj,i = 1G for all 1 ≤ i ≤ n;
– if a ≤ j < c then Rj,i = 1G if and only if i < b.

We now mimic the reduction from 1-3SAT of Example 2: for each Boolean Xk we
create variables xk, x̄k , force them to be idempotent and impose

xk x̄k = (1, 1G, 1), (52)

xk(b, 1G, a)x̄k = (1, Ra,b, 1). (53)
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0
BBBBBBBBBB@

1G 1G . . . . . . . . . . . . . . . . . . 1G

1G 1G . . . . . . . . . . . . . . . . . . 1G

1G 1G . . . . . . 1G Ra,b ∗ ∗ ∗

1G 1G . . . . . . 1G ∗ ∗ ∗ ∗

1G . . . 1G ∗ ∗ Rc,b ? ? ?

1G 1G ∗ ? ? ? ? ? ?

1G ∗ ? ? ? ? ? ? ?

1
CCCCCCCCCCA

Fig. 3. Rees matrix of S after reordering: all entries above the dotted line are 1G . The ∗’s represent entries
which must be unequal to 1G .

In any solution to the system, we must have xk = (1, 1G, sk) for some 1 ≤ sk ≤ m
since it is an idempotent and, by (52), lies in the firstR-class. Similarly, x̄k = (tk, 1G, 1)
for some 1 ≤ tk ≤ n. Equation (52) thus also forces Rsk ,tk = 1G and from (53) we have
Rsk ,b · Ra,tk = Ra,b. Similarly we require that Rsk ,i = 1G for all 1 ≤ i < b by using
equations of the form

xk(i, 1G, 1) = (1, 1G, 1). (54)

We thus have ensured that sk < c and in fact that either sk < a or tk < b for otherwise
Rsk ,tk �= 1G .

For a clause X1∨ X2∨ X3 we wish to add the requirement Rs1,b · Ra,t2 · Rs3,b = Ra,b.
This can be encoded as an equation such as

x1(b, 1G, a)x̄2(1, 1G, 1)x3(b, 1G, 1) = (1, Ra,b, 1). (55)

If the 1-3SAT is satisfiable, then the system can be satisfied by setting xk = (1, 1G, a)
and x̄k = (1, 1G, 1) whenever Xk is TRUE and xk = (1, 1G, 1) and x̄k = (b, 1G, 1)
whenever Xk is FALSE.

For the converse, we assume without loss of generality (see Example 2) that Ra,b

does not have order 2. Note that if sk < a then Rsk ,b = 1G and so Ra,tk = Ra,b whereas if
tk < b then Ra,tk = 1G so Rsk ,b = Ra,b. So we can choose Xk to be TRUE if Rsk ,b = Ra,b

and Ra,tk = 1G and Xk to be FALSE if Rsk ,b = 1G and Ra,tk = Ra,b. For any 1-3SAT

clause, say X1 ∨ X2 ∨ X3, we have Rs1,b · Ra,t2 · Rs3,b = Ra,b and, so exactly one of
Rs1,b, Ra,t2 , Rs3,b is Ra,b and the other two are 1G so exactly one literal per clause is
TRUE.

A2. Other Technical Results

Lemma 8. For a semigroup S, a variety of bands B and a variety of groups H, the
following are equivalent:

1. S is a strong B-band of H-groups.
2. S belongs to B ∨ H.
3. S is an orthodox union of groups, all of which lie in H, such that E(S) is a band

in B andH is a congruence. In particular, the idempotents form a subsemigroup
and S/H ≡ E(S).
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Proof. (1 ⇒ 2) Suppose S is a strong B-band of H-groups with an underlying band
E = {e1, . . . , ek} and a family of groups {Ge | e ∈ E}. Let H =∏

e∈E Ge and consider
the subset T of E × H consisting of elements ( f, ge1 , . . . , gek ) such that gei = ϕ f,ei (gf )

for all ei ≤J (E) f . One can show that T is subsemigroup of E × H . We claim that S is
a morphic image of T . Indeed, define ψ : T → S as

ψ( f, g1, . . . , gk) = gf .

Obviously, ψ is surjective. Moreover, it is a well-defined morphism since we can show
that ψ( f, g1, . . . , gk) · ψ( f ′, g′1, . . . , g′k) is

= gf · g′f ′

= ϕ f, f f ′(gf ) · ϕ f ′, f f ′(g
′
f ′)

= gf f ′ · g′f f ′

= ψ( f f ′, g1g′1, . . . , gk g′k).

Note that we are using the fact that gff ′ = ϕf ,ff ′(gf ).
(2 ⇒ 3) If E is a band in B and G is a group in H then clearly E × G satisfies

condition 3. One can easily show that any divisor of S of E × G is also an orthodox
union of groups and that E(S) divides E , so that indeed E(S) ∈ B. It is easy to see that
H is a congruence over E × G and that this property is preserved by taking morphic
images. Suppose S is a submonoid of E × G with a, b, c ∈ S and a H b. Then a and
b are also H-related in E × G, so we have ac H bc in E × G. The latter is a union of
groups so we have (ac)ω = (bc)ω. So bc = ac(ac)ω−1bc and bc = bc(ac)ω−1ac and
since (ac)ω−1bc and bc(ac)ω−1 lay in S we indeed have ac H bc in S.

(3 ⇒ 1) For any a, b ∈ S we have (ab)ω = aωbω sinceH is a congruence and S is
orthodox. We denote E = E(S) and Ge = He for any e ∈ E . For any idempotent e ∈ S
and any x, y ∈ S with xω = yω we have

exeye = exxωe(ye)ωye = exyωeyωeye = exyωeye = exye.

Thus if e and f are idempotents with f ≥J (E) e the map ϕ f,e: G f → Ge given by
ϕ f,e(x) = exe is a well-defined group homomorphism. Of course, ϕe,e = idGe and for
any idempotents d ≥J (E) e ≥J (E) f we have for any x ∈ Gd ,

ϕe,f ◦ ϕd,e(x) = fexef = fe(xef )ωxef = fexωefxef = fxef

since ede = e and fef = f , hence

ϕe,f ◦ ϕd,e(x) = fx(fx)ωef = fxfdef = fxf = ϕd,f (x).

Clearly, S is the union of the groups Ge. Multiplication in S for x ∈ Ge and y ∈ G f

is thus given by

x · y = xωyωxxωyωyxωyω = efxefefyef = ϕe,ef (x) · ϕf ,ef (y).
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Lemma 12. A band S is normal if and only if all its local monoids are semilattices.

Proof. If S is a normal band then for any a, b, c we have (aba)(aca) = abaca =
acaba = (aca)(aba) and so aSa is a semilattice.

Conversely, every band whose local monoids are semilattices is a regular band
because we have

abca = abababcacaca

= (aba)(aba)(abca)(aca)(aca) (using idempotency)

= aba(cab)(cab)aca (since aSa is commutative)

= abacaabaca = abaca (by idempotency).

Thus if S is a band with commutative local monoids, we have

abca = abaca = abaaca = acaaba = acaba = acba,

which proves our claim.
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[7] V. Dalmau, R. Gavaldà, P. Tesson, and D. Thérien. Tractable clones of polynomials over finite semi-
groups. In Proc. 11th International Conference on Principles and Practice of Constraint Programming
(CP ’05), pages 196–210, 2005.

[8] V. Dalmau and J. Pearson. Closure functions and width 1 problems. In Principles and Practice of
Constraint Programming—CP ’99, volume 1713 of Lecture Notes in Computer Science, pages 159–
173, 1999.

[9] T. Feder and M. Y. Vardi. The computational structure of monotone monadic SNP and constraint
satisfaction: a study through datalog and group theory. SIAM Journal on Computing, 28(1):57–104,
1999.

[10] M. Goldmann and A. Russell. The computational complexity of solving equations over finite groups.
Information and Computation, 178:253–262, 2002.
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