Skip to main content
Log in

Enhancement of Near-Cloaking. Part II: The Helmholtz Equation

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The aim of this paper is to extend the method of Ammari et al. (Commun. Math. Phys., 2012) to scattering problems. We construct very effective near-cloaking structures for the scattering problem at a fixed frequency. These new structures are, before using the transformation optics, layered structures and are designed so that their first scattering coefficients vanish. Inside the cloaking region, any target has near-zero scattering cross section for a band of frequencies. We analytically show that our new construction significantly enhances the cloaking effect for the Helmholtz equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. New York: Dover Publications, 9th edition, 1970, pp. 365–366

  2. Alú A., Engheta N.: Achieving transparency with plasmonic and metamaterial coatings. Phys. Rev. E 72, 106623 (2005)

    Article  ADS  Google Scholar 

  3. Alú A., Engheta N.: Cloaking and transparency for collections of particles with metamaterial and plasmonic covers. Optics Express 15, 7578–7590 (2007)

    Article  ADS  Google Scholar 

  4. Ammari, H., Ciraolo, G., Kang, H., Lee, H., Milton, G.: Spectral theory of a Neumann-Poincaré-type operator and analysis of cloaking due to anomalous localized resonance. submitted, available at http://arxiv.org/abs/1109.0979v2 [math.AP], 2012

  5. Ammari H., Garnier J., Jugnon V., Kang H., Lee H., Lim M.: Enhancement of near-cloaking. Part III: Numerical simulations, statistical stability, and related questions. Contemp. Math. 577, 1–24 (2012)

    Article  Google Scholar 

  6. Ammari, H., Kang, H.: Polarization and Moment Tensors with Applications to Inverse Problems and Effective Medium Theory, Applied Mathematical Sciences, Vol. 162, New York: Springer-Verlag, 2007

  7. Ammari H., Kang H.: Boundary layer techniques for solving the Helmholtz equation in the presence of small inhomogeneities. J. Math. Anal. Appl. 296, 190–208 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ammari, H., Kang, H., Lee, H., Lim, M.: Enhancement of near cloaking using generalized polarization tensors vanishing structures. Part I: The conductivity problem. Commun. Math. Phys., 2012. doi:10.1007/s00220-012-1615-8

  9. Born, M., Wolf, E.: Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6th edition. Cambridge: Cambridge University Press, 1997

  10. Colton, D., Kress, R.: Inverse Acoustic and Electromagnctic Scaftering Theory. Berlin: Springer, 1992

  11. Bryan K., Leise T.: Impedance Imaging, inverse problems, and Harry Potter’s Cloak. SIAM Rev. 52, 359–377 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Greenleaf A., Kurylev Y., Lassas M., Uhlmann G.: Approximate quantum cloaking and almost trapped states. Phys. Rev. Lett. 101, 220404 (2008)

    Article  ADS  Google Scholar 

  13. Greenleaf A., Kurylev Y., Lassas M., Uhlmann G.: Full-wave invisibility of active devices at all frequencies. Comm. Math. Phys. 275, 749–789 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Greenleaf A., Kurylev Y., Lassas M., Uhlmann G.: Cloaking a sensor via transformation optics. Phys. Rev. E 83, 016603 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  15. Greenleaf A., Kurylev Y., Lassas M., Uhlmann G.: Approximate quantum and acoustic cloaking. J. Spectral Theory 1, 27–80 (2011)

    Article  MathSciNet  Google Scholar 

  16. Greenleaf A., Kurylev Y., Lassas M., Uhlmann G.: Cloaking devices, electromagnetic wormholes, and transformation optics. SIAM Rev. 51, 3–33 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Greenleaf A., Lassas M., Uhlmann G.: On nonuniqueness for Calderon’s inverse problem. Math. Res. Lett. 10, 685–693 (2003)

    MathSciNet  MATH  Google Scholar 

  18. Guevara Vasquez F., Milton G.W., Onofrei D.: Active exterior cloaking for the 2D Laplace and Helmholtz Equations. Phys. Rev. Lett. 103, 073901 (2009)

    Article  ADS  Google Scholar 

  19. Guevara Vasquez F., Milton G.W., Onofrei D.: Broadband exterior cloaking. Optics Express 17, 14800–14805 (2009)

    Article  ADS  Google Scholar 

  20. Kohn R.V., Onofrei D., Vogelius M.S., Weinstein M.I.: Cloaking via change of variables for the Helmholtz equation. Comm. Pure Appl. Math. 63, 973–1016 (2010)

    MathSciNet  MATH  Google Scholar 

  21. Kohn, R.V., Shen, H., Vogelius, M.S., Weinstein, M.I.: Cloaking via change of variables in electric impedance tomography, Inverse Problems, 24, article 015016 (2008)

    Google Scholar 

  22. Lassas M., Zhou T.: Two dimensional invisibility cloaking for Helmholtz equation and non-local boundary conditions. Math. Res. Lett. 18, 473–488 (2011)

    MathSciNet  MATH  Google Scholar 

  23. Leonhardt U.: Optical conforming mapping. Science 312, 1777–1780 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Liu H.: Virtual reshaping and invisibility in obstacle scattering. Inverse Problems 25, 044006 (2009)

    Article  Google Scholar 

  25. Milton G., Nicorovici N.A.: On the cloaking effects associated with anomalous localized resonance. Proc. R. Soc. A 462, 3027–3059 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Milton G., Nicorovici N.A., McPhedran R.C., Podolskiy V.A.: A proof of superlensing in the quasistatic regime, and limitations of superlenses in this regime due to anomalous localized resonance. Proc. R. Soc. A 461, 3999–4034 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Nguyen H.M.: Cloaking via change of variables for the Helmholtz equation in the whole space. Comm. Pure Appl. Math. 63, 1505–1524 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Pendry J.B., Schurig D., Smith D.R.: Controlling electromagnetic fields. Science 312, 1780–1782 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Taylor, M.E.: Partial Differential Equations II. Qualitative Studies of Linear Equations. Appl. Math. Sci., Vol. 116, New York: Springer-Verlag, 1996

  30. Tretyakov S., Alitalo P., Luukkonen O., Simovski C.: Broadband electromagnetic cloaking of long cylindrical objects. Phys. Rev. Lett. 103, 103905 (2009)

    Article  ADS  Google Scholar 

  31. Urzhumov Y.A., Kundtz N.B., Smith D.R., Pendry J.B.: Cross-section comparisons of cloaks designed by transformation optical and optical conformal mapping approaches. J. Opt. 13, 024002 (2011)

    Article  ADS  Google Scholar 

  32. Watson, G.N.: Theory of Bessel Functions, 2nd edition, Cambridge: Cambridge University Press, 1944

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Habib Ammari.

Additional information

Communicated by S. Zelditch

This work was supported by ERC Advanced Grant Project MULTIMOD–267184 and National Research Foundation through grants No. 2009-0085987, 2010-0017532 and 2010-0004091.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ammari, H., Kang, H., Lee, H. et al. Enhancement of Near-Cloaking. Part II: The Helmholtz Equation. Commun. Math. Phys. 317, 485–502 (2013). https://doi.org/10.1007/s00220-012-1620-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-012-1620-y

Keywords

Navigation