Skip to main content
Log in

(Non)Invariance of Dynamical Quantities for Orbit Equivalent Flows

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study how dynamical quantities such as Lyapunov exponents, metric entropy, topological pressure, recurrence rates, and dimension-like characteristics change under a time reparameterization of a dynamical system. These quantities are shown to either remain invariant, transform according to a multiplicative factor or transform through a convoluted dependence that may take the form of an integral over the initial local values. We discuss the significance of these results for the apparent non-invariance of chaos in general relativity and explore applications to the synchronization of equilibrium states and the elimination of expansions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramov L.: On the entropy of a flow. Amer. Math. Soc. Transl. Ser. 2 49, 167–170 (1966)

    MATH  Google Scholar 

  2. Anosov D.V., Sinai Ya.G.: Certain smooth ergodic systems. Russ. Math. Surv. 22, 103–167 (1967)

    Article  MathSciNet  Google Scholar 

  3. Barbaroux J.-M., Germinet F., Tcheremchnatsev S.: Generalized fractal dimensions: Equivalences and basic properties. J. Math. Pures Appl. 80, 977–1012 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Barreira, L., Pesin, Y.: Smooth ergodic theory and nonuniformly hyperbolic dynamics, with an appendix by O. Sarig. In: Handbook of Dynamical Systems 1B, B. Hasselblatt, A. Katok eds., Amsterdam: Elsevier, 2006

  5. Barreira L., Radu L., Wolf C.: Dimension of measures for suspension flows. Dyn. Syst. 19, 89–107 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Benini R., Montani G.: Frame independence of the inhomogeneous mixmaster chaos via Misner-Chitré-like variables. Phys. Rev. D 70, 103527 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  7. Berger B.K.: Comments on the computation of Liapunov exponents for the Mixmaster universe. Gen. Relativ. Gravit. 23, 1385–1402 (1991)

    Article  ADS  Google Scholar 

  8. Burd A.B., Buric N., Ellis G.F.R.: A numerical analysis of chaotic behaviour in Bianchi IX models. Gen. Relat. Gravit. 22, 349–363 (1990)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Chitré, D.M.: Investigations of Vanishing of a Horizon for Bianchy Type X (the Mixmaster) Universe. Ph.D. Thesis, University of Maryland, 1972

  10. Contopoulos G., Grammaticos B., Ramani A.: The mixmaster universe model, revisited. J. Phys. A 27, 5357–5361 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Cornfeld I., Fomin S., Sinai Y.: Ergodic Theory. Springer, Berlin-Heidelberg-NewYork (1982)

    MATH  Google Scholar 

  12. Cornish N.J., Levin J.J.: Mixmaster universe: A chaotic Farey tale. Phys. Rev. D 55, 7489–7510 (1997)

    Article  ADS  Google Scholar 

  13. Cornish N.J., Levin J.J.: The mixmaster universe is chaotic. Phys. Rev. Lett. 78, 998–1001 (1997)

    Article  ADS  Google Scholar 

  14. Fayad B.: Analytic mixing reparametrizations of irrational flows. Erg. Th. Dynam. Syst. 22, 437–468 (2002)

    MATH  MathSciNet  Google Scholar 

  15. Francisco G., Matsas G.E.A.: Qualitative and numerical study of Bianchi IX models. Gen. Relat. Grav. 20, 1047–1054 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  16. Furstenberg H.: Recurrence in Ergodic Theory and Combinatorial Number Theory. Princeton University Press, Princeton, NJ (1981)

    MATH  Google Scholar 

  17. Galatolo S.: Dimension via waiting time and recurrence. Math. Res. Lett. 12, 377–386 (2005)

    MATH  MathSciNet  Google Scholar 

  18. Grassberger P., Procaccia I.: Characterization of Strange Attractors. Phys. Rev. Lett. 50, 346–349 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  19. Haydn N., Luevano J., Mantica G., Vaienti S.: Multifractal properties of return time statistics. Phys. Rev. Lett. 88, 224502 (2002)

    Article  ADS  Google Scholar 

  20. Hobill D., Bernstein D., Welge M., Simkins D.: The Mixmaster cosmology as a dynamical system. Class. Quant. Grav. 8, 1155–1171 (1991)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Hobill, D., Burd, A.B., Coley, A.A. (eds.): Deterministic chaos in general relativity. NATO ASI Series B, Vol. 332, London: Plenum Press, 1994

  22. Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems. In: Encyclopedia of Mathematics and Its Applications 54, Cambridge: Cambridge University Press, 1995

  23. Katok A., Knieper G., Weiss H.: Formulas for the derivative and critical points of topological entropy for Anosov and geodesic flows. Commun. Math. Phys. 138, 19–31 (1991)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. Katok, A., Thouvenot, J.-P.: Spectral properties and combinatorial constructions in ergodic theory. In: Handbook of Dynamical Systems 1B, B. Hasselblatt, A. Katok, eds., Amsterdam: Elsevier, 2006

  25. Misner C.W.: Mixmaster universe. Phys. Rev. Lett. 22, 1071–1074 (1969)

    Article  MATH  ADS  Google Scholar 

  26. Motter A.E.: Relativistic chaos is coordinate invariant. Phys. Rev. Lett. 91, 231101 (2003)

    Article  ADS  Google Scholar 

  27. Motter A.E., Gelfert K.: Time-metric equivalence and dimension change under time reparatererizations. Phys. Rev. E 79, 065202(R) (2009)

    Article  ADS  Google Scholar 

  28. Motter A.E., Letelier P.S.: Mixmaster chaos. Phys. Lett. A 285, 127–131 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. Motter A.E., Letelier P.S.: FRW cosmologies between chaos and integrability. Phys. Rev. D 65, 068502 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  30. Motter A.E., Saa A.: Relativistic invariance of Lyapunov exponents in bounded and unbounded systems. Phys. Rev. Lett. 102, 184101 (2009)

    Article  ADS  Google Scholar 

  31. Ohno T.: A weak equivalence and topological entropy. Publ. Res. Inst. Math. Sci. 16, 289–298 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  32. Parry W.: Topics in Ergodic Theory. Cambridge University Press, Cambridge (1981)

    MATH  Google Scholar 

  33. Parry W.: Synchronisation of canonical measures for hyperbolic attractors. Commun. Math. Phys. 106, 267–275 (1986)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  34. Pesin Y.: On rigorous mathematical definitions of correlation dimension and generalized spectrum for dimensions. J. Stat. Phys. 71, 529–547 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  35. Pesin, Y.: Dimension Theory in Dynamical Systems: Contemporary Views and Applications, Chicago Lectures in Mathematics, Chicago: Chicago University Press, 1998

  36. Pollicott M., Sharp R., Tuncel S., Walters P.: The mathematical research of William Parry. Erg. Th. Dynam. Syst. 28, 321–337 (2008)

    MATH  MathSciNet  Google Scholar 

  37. Rugh, S.E.: In Ref. [21], p. 359

  38. Sun W., Young T., Zhou Y.: Topological entropies of equivalent smooth flows. Trans. Amer. Math. Soc. 361, 3071–3082 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  39. Szydlowski M.: Chaos hidden behind time parametrization in the Mixmaster cosmology. Gen. Relativ. Gravit. 29, 185–203 (1997)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  40. Szydlowski M., Krawiec A.: Description of chaos in simple relativistic systems. Phys. Rev. D 53, 6893–6901 (1996)

    Article  ADS  Google Scholar 

  41. Totoki H.: Time changes of flows. Mem. Fac. Sci. Kyushu Univ. Ser. A 20, 27–55 (1966)

    MATH  MathSciNet  Google Scholar 

  42. Walters, P.: An Introduction to Ergodic Theory. Graduate Texts in Mathematics 79, Berlin-Heidelberg-New York: Springer, 1981

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrin Gelfert.

Additional information

Communicated by G. Gallavotti

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gelfert, K., Motter, A.E. (Non)Invariance of Dynamical Quantities for Orbit Equivalent Flows. Commun. Math. Phys. 300, 411–433 (2010). https://doi.org/10.1007/s00220-010-1120-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-010-1120-x

Keywords

Navigation