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Abstract: Fix integers g ≥ 3 and r ≥ 2, with r ≥ 3 if g = 3. Given a compact
connected Riemann surface X of genus g, let MDH(X) denote the corresponding
SL(r, C) Deligne–Hitchin moduli space. We prove that the complex analytic space
MDH(X) determines (up to an isomorphism) the unordered pair {X, X}, where X is
the Riemann surface defined by the opposite almost complex structure on X .

1. Introduction

Let X be a compact connected Riemann surface of genus g, with g ≥ 2. We denote by
XR the C∞ real manifold of dimension two underlying X . Let X be the Riemann surface
defined by the almost complex structure −JX on XR; here JX is the almost complex
structure of X .

Fix an integer r ≥ 2. The main object of this paper is the SL(r, C) Deligne–Hitchin
moduli space

MDH(X) = MDH(X , SL(r, C))

associated to X . This moduli space MDH(X) is a complex analytic space of complex
dimension 1+2(r2−1)(g−1), which comes with a natural surjective holomorphic map

MDH(X) −→ CP
1 = C ∪ {∞}.

We briefly recall from [Si1, p. 7] the description ofMDH(X) (in [Si1], the group GL(r, C)

is considered instead of SL(r, C)).

• The fiber of MDH(X) over λ = 0 ∈ C ⊂ CP
1 is the moduli space MHiggs(X) of

semistable SL(r, C) Higgs bundles (E, θ) over X (see Sect. 2 for details).
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• The fiber of MDH(X) over any λ ∈ C
∗ ⊂ CP

1 is canonically biholomorphic to the
moduli space Mconn(X) of holomorphic SL(r, C) connections (E,∇) over X . In fact
the restriction of MDH(X) to C ⊂ CP

1 is the moduli space

MHod(X) −→ C

of λ–connections over X for the group SL(r, C) (see Sect. 3 for details).
• The fiber of MDH(X) over λ = ∞ ∈ CP

1 is the moduli space MHiggs(X) of semi-
stable SL(r, C) Higgs bundles over X . Indeed, the complex analytic space MDH(X)

is constructed by glueing MHod(X) to the analogous moduli space

MHod(X) −→ C

of λ–connections over X . One identifies the fiber of MHod(X) over λ ∈ C
∗ with the

fiber of MHod(X) over 1/λ ∈ C
∗; the identification is done using the fact that the

holomorphic connections over both X and X correspond to representations of π1(XR)

in SL(r, C) (see Sect. 4 for details).

This construction of MDH(X) is due to Deligne [De]. In [Hi2], Hitchin constructed
the twistor space for the hyper–Kähler structure of the moduli space MHiggs(X); the
complex analytic space MDH(X) is identified with this twistor space (see [Si1, p. 8]).

We note that while both MHod(X) and MHod(X) are complex algebraic varieties,
the moduli space MDH(X) does not have any natural algebraic structure.

If we replace X by X , then the isomorphism class of the Deligne–Hitchin moduli
space clearly remains unchanged. In fact, there is a canonical holomorphic isomorphism
of MDH(X) with MDH(X) over the automorphism of CP

1 defined by λ 	−→ 1/λ.
We prove the following theorem (see Theorem 4.1):

Theorem 1.1. Assume that g ≥ 3, and if g = 3, then assume that r ≥ 3. The isomor-
phism class of the complex analytic space MDH(X) determines uniquely the isomor-
phism class of the unordered pair of Riemann surfaces {X , X}.

In other words, if MDH(X) is biholomorphic to the Deligne–Hitchin moduli space
MDH(Y ) for another compact connected Riemann surface Y , then either Y ∼= X or
Y ∼= X .

This paper is organized as follows. Higgs bundles are dealt with in Sect. 2; we also
obtain a Torelli theorem for them (see Corollary 2.5). The λ–connections are considered
in Sect. 3, which also contains a Torelli theorem for their moduli space (see Corollary
3.5). Finally, Sect. 4 deals with the Deligne–Hitchin moduli space; here we prove our
main result.

2. Higgs Bundles

Let X be a compact connected Riemann surface of genus g, with g ≥ 3. Fix an integer
r ≥ 2. If g = 3, then we assume that r ≥ 3. Let

Mr,OX (2.1)

be the moduli space of semistable SL(r, C)–bundles on X . So Mr,OX parameterizes all
S–equivalence classes of semistable vector bundles E over X of rank r together with
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an isomorphism
∧r E ∼= OX . The moduli space Mr,OX is known to be an irreducible

normal complex projective variety of dimension (r2 − 1)(g − 1). Let

Ms
r,OX

⊂ Mr,OX (2.2)

be the open subvariety parameterizing stable SL(r, C) bundles on X . This open subva-
riety coincides with the smooth locus of Mr,OX according to [NR1, p. 20, Theorem 1].

Lemma 2.1. The holomorphic cotangent bundle

T ∗Ms
r,OX
−→Ms

r,OX

does not admit any nonzero holomorphic section.

Proof. Fix a point x0 ∈ X , and consider the Hecke correspondence

Ms
r,OX

q←− P p−→ U ⊆ Mr,OX (x0)

defined as follows:

• Mr,OX (x0) denotes the moduli space of stable vector bundles F over X of rank r
together with an isomorphism

∧r F ∼= OX (x0).
• U ⊆ Mr,OX (x0) denotes the locus of all F for which every subbundle F ′ ⊂ F with

0 < rank(F ′) < r has negative degree; such vector bundles F are called (0 , 1)–stable
(see [NR2, p. 306, Def. 5.1], [BBGN, p. 563]).
• p : P −→ U is the P

r−1–bundle whose fiber over any vector bundle F ∈ U param-
eterizes all hyperplanes H in the fiber Fx0 .
• q : P −→ Ms

r,OX
sends any vector bundle F ∈ U and hyperplane H ⊆ Fx0 to the

vector bundle E given by the short exact sequence

0 −→ E −→ F −→ Fx0/H −→ 0

of coherent sheaves on X ; here the quotient sheaf Fx0/H is supported at x0.

As Mr,OX (x0) is a smooth unirational projective variety (see [Se, p. 53]), it does not
admit any nonzero holomorphic 1–form. The subset U ⊆ Mr,OX (x0) is open due to
[BBGN, p. 563, Lemma 2], and the conditions on r and g ensure that the codimension
of the complement Mr,OX (x0) \ U is at least two. Hence also

H0(U , T ∗U) = 0

due to Hartog’s theorem. Since H0(Pr−1, T ∗Pr−1) = 0, any relative holomorphic
1–form on the P

r−1–bundle p : P −→ U vanishes identically. Thus we conclude that

H0(P, T ∗P) = 0.

The same follows for the variety Ms
r,OX

, because the algebraic map q : P −→ Ms
r,OX

is dominant. ��
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We denote by K X the canonical line bundle on X . Let

MHiggs(X) = MHiggs(X , SL(r, C))

denote the moduli space of semistable SL(r, C) Higgs bundles over X . So MHiggs(X)

parameterizes all S–equivalence classes of semistable pairs (E , θ) consisting of a vector
bundle E over X of rank r together with an isomorphism

∧r E ∼= OX , and a Higgs field
θ : E −→ E ⊗ K X with trace(θ) = 0. The moduli space MHiggs(X) is an irreducible
normal complex algebraic variety of dimension 2(r2−1)(g−1) according to [Si3, p. 70,
Theorem 11.1].

There is a natural embedding

ι : Mr,OX ↪→ MHiggs(X) (2.3)

defined by E 	−→ (E , 0). Let

Ms
Higgs(X) ⊂ MHiggs(X)

be the Zariski open locus of Higgs bundles (E, θ) whose underlying vector bundle E is
stable (openness of Ms

Higgs(X) follows from [Ma, p. 635, Theorem 2.8(B)]). Let

prE : Ms
Higgs(X) −→ Ms

r,OX
(2.4)

be the forgetful map defined by (E, θ) 	−→ E , where Ms
r,OX

is defined in (2.2). One
has a canonical isomorphism

Ms
Higgs(X)

∼−→ T ∗Ms
r,OX

(2.5)

of varieties over Ms
r,OX

, because holomorphic cotangent vectors to a point E ∈Ms
r,OX

correspond, via deformation theory and Serre duality, to Higgs fields θ : E −→ E⊗K X
with trace(θ) = 0. In particular, Ms

Higgs(X) is contained in the smooth locus

MHiggs(X)sm ⊂ MHiggs(X).

We recall that the Hitchin map

H : MHiggs(X) −→
r⊕

i=2

H0(X, K⊗i
X ) (2.6)

is defined by sending each Higgs bundle (E, θ) to the characteristic polynomial of θ

[Hi1,Hi2].
The multiplicative group C

∗ acts on the moduli space MHiggs(X) as follows:

t · (E , θ) = (E , tθ). (2.7)

On the other hand, C
∗ acts on the Hitchin space

⊕r
i=2 H0(X, K⊗i

X ) as

t · (v2 , . . . , vi , . . . , vr ) = (t2v2 , . . . , t ivi , . . . , trvr ) , (2.8)

where vi ∈ H0(X, K⊗i
X ) and i ∈ {2, . . . , r}. The Hitchin map H in (2.6) intertwines

these two actions of C
∗. Note that there is no nonzero holomorphic function on the Hit-

chin space which is homogeneous of degree 1 for this action (a function f is homoge-
neous of degree d if f (t ·(v2, . . . , vr )) = td f ((v2, . . . , vr ))), because all the exponents
of t in (2.8) are at least two.
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Lemma 2.2. The holomorphic tangent bundle

T Ms
r,OX

−→ Ms
r,OX

does not admit any nonzero holomorphic section.

Proof. The proof of [Hi1, p. 110, Theorem 6.2] carries over to this situation as follows.
A holomorphic section s of T Ms

r,OX
provides (by contraction) a holomorphic function

f : T ∗Ms
r,OX

−→ C (2.9)

on the total space of the cotangent bundle T ∗Ms
r,OX

, which is linear on the fibers. Under
the isomorphism in (2.5), it corresponds to a function on Ms

Higgs(X). The conditions
on g and r imply that the complement of Ms

Higgs(X) has codimension at least two in
MHiggs(X). Since the latter is normal, the function f in (2.9) extends to a holomorphic
function

f̃ : MHiggs(X) −→ C ,

for example by [Sc, p. 90, Cor. 2]. Since f is linear on the fibers, we know that f̃ is
homogeneous of degree 1 for the action (2.7) of C

∗.
On the moduli space MHiggs(X), the Hitchin map (2.6) is proper [Ni, Theorem 6.1],

and also its fibers are connected. Therefore, the function f̃ is constant on the fibers of the
Hitchin map. Hence f̃ comes from a holomorphic function on the Hitchin space, which
is still homogeneous of degree 1. We noted earlier that there are no nonzero holomorphic
functions on the Hitchin space which are homogeneous of degree 1. Therefore, f̃ = 0,
and consequently we have f = 0 and s = 0. ��
Corollary 2.3. The restriction of the holomorphic tangent bundle

T MHiggs(X)sm −→ MHiggs(X)sm

to ι(Ms
r,OX

) ⊂ MHiggs(X)sm does not admit any nonzero holomorphic section.

Proof. Using Lemma 2.2, it suffices to show that the normal bundle of the embedding

ι : Ms
r,OX

↪→ MHiggs(X)sm

has no nonzero holomorphic sections. The isomorphism in (2.5) allows us to identify
this normal bundle with T ∗Ms

r,OX
. Now the assertion follows from Lemma 2.1. ��

The next step is to show that the above property uniquely characterizes the subvariety
ι(Mr,OX ) ⊂MHiggs(X). This will follow from the following proposition.

Proposition 2.4. Let Z be an irreducible component of the fixed point locus

MHiggs(X)C
∗ ⊆ MHiggs(X). (2.10)

Then dim(Z) ≤ (r2 − 1)(g − 1), with equality only for Z = ι(Mr,OX ).
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Proof. The C
∗–equivariance of the Hitchin map H in (2.6) implies

MHiggs(X)C
∗ ⊆ H−1(0),

because 0 is the only fixed point in the Hitchin space. We recall that H−1(0) is called the
nilpotent cone. The irreducible components of H−1(0) are parameterized by the conju-
gacy classes of the nilpotent elements in the Lie algebra sl(r, C), and each irreducible
component of H−1(0) is of dimension (r2 − 1)(g − 1) [La].

Thus dim(Z) ≤ (r2 − 1)(g − 1), and if equality holds, then Z is an irreducible
component of the nilpotent cone H−1(0). A result due to Simpson, [Si3, p. 76, Lemma
11.9], implies that the only irreducible component of H−1(0) contained in the fixed
point locus MHiggs(X)C

∗
defined in (2.10) is the image ι(Mr,OX ) of the embedding in

(2.3). ��
Corollary 2.5. The isomorphism class of the complex analytic space MHiggs(X) deter-
mines uniquely the isomorphism class of the Riemann surface X, meaning if MHiggs(X)

is biholomorphic to MHiggs(Y ) for another compact connected Riemann surface Y of
the same genus g, then Y ∼= X.

Proof. Let Z ⊂ MHiggs(X) be a closed analytic subset with the following three prop-
erties:

• Z is irreducible and has complex dimension (r2 − 1)(g − 1).
• The smooth locus Z sm ⊆ Z lies in the smooth locus MHiggs(X)sm ⊂MHiggs(X).
• The restriction of the holomorphic tangent bundle T MHiggs(X)sm to the subspace

Z sm ⊂ MHiggs(X)sm has no nonzero holomorphic sections.

By Corollary 2.3, the image ι(Mr,OX ) of the embedding ι in (2.3) has these properties.
The action (2.7) of C

∗ on MHiggs(X) defines a holomorphic vector field

MHiggs(X)sm −→ T MHiggs(X)sm.

The third assumption on Z says that any holomorphic vector field on MHiggs(X)sm van-
ishes on Z sm. Therefore, it follows that the stabilizer of each point in Z sm ⊂ MHiggs(X)

has nontrivial tangent space at 1 ∈ C
∗, and hence the stabilizer must be the full group C

∗.
This shows that the fixed point locus MHiggs(X)C

∗ ⊆ MHiggs(X) contains Z sm,
and hence also contains its closure Z in MHiggs(X). Due to Proposition 2.4, this can
only happen for Z = ι(Mr,OX ). In particular, we have Z ∼= Mr,OX .

We have just shown that the isomorphism class of MHiggs(X) determines the iso-
morphism class of Mr,OX . The latter determines the isomorphism class of X due to a
theorem of Kouvidakis and Pantev [KP, p. 229, Theorem E]. ��
Remark 2.6. In [BG], an analogous Torelli theorem is proved for Higgs bundles (E , θ)

such that the rank and the degree of the underlying vector bundle E are coprime.

3. The λ–Connections

In this section, we consider vector bundles with connections, and more generally with
λ–connections in the sense of [Si2, p. 87] and [Si1, p. 4]. We denote by

MHod(X) = MHod(X , SL(r, C))

the moduli space of triples of the form (λ , E ,∇), where λ is a complex number, and
(E ,∇) is a λ–connection on X for the group SL(r, C). We recall that given any λ ∈ C,
a λ–connection on X for the group SL(r, C) is a pair (E ,∇), where
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• E −→ X is a holomorphic vector bundle of rank r together with an isomorphism∧r E ∼= OX .
• ∇ : E −→ E⊗K X is a C–linear homomorphism of sheaves satisfying the following

two conditions:
(1) If f is a locally defined holomorphic function on OX and s is a locally defined

holomorphic section of E , then

∇( f s) = f · ∇(s) + λ · s ⊗ d f.

(2) The operator
∧r E −→ (

∧r E)⊗ K X induced by ∇ coincides with λ · d.

The moduli space MHod(X) is a complex algebraic variety of dimension 1 + 2(r2 −
1)(g − 1). It is equipped with a surjective algebraic morphism

prλ : MHod(X) −→ C (3.1)

defined by (λ, E,∇) 	−→ λ.
A 0–connection is a Higgs bundle, so

MHiggs(X) = pr−1
λ (0) ⊂MHod(X)

is the moduli space of Higgs bundles considered in the previous section. In particular,
the embedding (2.3) of Mr,OX into MHiggs(X) also gives an embedding of Mr,OX into
MHod(X). Slightly abusing notation, we denote this embedding again by

ι : Mr,OX ↪→ MHod(X). (3.2)

It maps the stable locus
Ms

r,OX
⊂ Mr,OX

into the smooth locus

MHod(X)sm ⊂ MHod(X). (3.3)

We let C
∗ act on MHod(X) as

t · (λ, E,∇) = (t · λ, E, t · ∇). (3.4)

This extends the C
∗ action on MHiggs(X) introduced above in formula (2.7).

Proposition 3.1. Let Z be an irreducible component of the fixed point locus

MHod(X)C
∗ ⊆ MHod(X).

Then dim(Z) ≤ (r2 − 1)(g − 1), with equality only for Z = ι(Mr,OX ).

Proof. A point (λ, E,∇) ∈ MHod(X) can only be fixed by C
∗ if λ = 0. Hence Z is

automatically contained in MHiggs(X). Now the claim follows from Proposition 2.4.
��

A 1–connection is a holomorphic connection in the usual sense, so

Mconn(X) := pr−1
λ (1) ⊂ MHod(X) (3.5)

is the moduli space of SL(r, C) holomorphic connections (E,∇) over X . We denote by

Ms
conn(X) ⊂ Mconn(X) and Ms

Hod(X) ⊂ MHod(X)

the Zariski open subvarieties where the underlying vector bundle E is stable (openness
follows from [Ma, p. 635, Theorem 2.8(B)]).
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Proposition 3.2. The forgetful map

prE : Ms
conn(X) −→ Ms

r,OX
(3.6)

defined by (E ,∇) 	−→ E admits no holomorphic section.

Proof. This map prE is surjective, because a criterion due to Atiyah and Weil implies
that every stable vector bundle E on X of degree zero admits a holomorphic connection.
In fact, E admits a unique unitary holomorphic connection according to a theorem of
Narasimhan and Seshadri [NS]; this defines a canonical C∞ section

Ms
r,OX

−→ Ms
conn(X) (3.7)

of the map prE . Since any two holomorphic SL(r, C)–connections on E differ by a Higgs
field θ : E −→ E ⊗ K X with trace(θ) = 0, the map prE in (3.6) is a holomorphic
torsor under the holomorphic cotangent bundle T ∗Ms

r,OX
−→ Ms

r,OX
.

Given a complex manifold M, we denote by TRM the tangent bundle of the under-
lying real manifold MR, and by

JM : TRM −→ TRM
the almost complex structure of M. Let

� : X −→ M (3.8)

be a holomorphic torsor under a holomorphic vector bundle V −→ M. To each C∞
section s : M −→ X of � , we can associate a (0, 1)–form

∂s ∈ C∞(M, �0,1M⊗ V)

in the following way. The vector bundle homomorphism

d̃s := ds + JX ◦ ds ◦ JM : TRM −→ s∗TRX
satisfies the identity

JX ◦ d̃s + d̃s ◦ JM = JX ◦ ds − ds ◦ JM − JX ◦ ds + ds ◦ JM = 0 , (3.9)

and, since � is holomorphic, we also have

d� ◦ d̃s = d� ◦ ds + JM ◦ d� ◦ ds ◦ JM = id − id = 0. (3.10)

The equation in (3.10) means that d̃s maps into the subbundle of vertical tangent
vectors in s∗TRX , which is canonically isomorphic to VR (the real vector bundle under-
lying the complex vector bundle V). Thus we can consider d̃s as a real 1–form

d̃s ∈ C∞(M, T ∗
R
M⊗ VR).

Identify TRM with T 0,1M using the R–linear isomorphism defined by

v 	−→ v −√−1·JM(v),

and also identify VR with V using the identity map. From (3.9) it follows that d̃s is
actually a C–linear homomorphism from T 0,1M to V in terms of these identifications.
Let

∂s ∈ C∞(M, �
0,1
M ⊗ V)

be the (0 , 1)–form with values in V defined by d̃s. From the construction of ∂s it is clear
that
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• ∂s vanishes if and only if s is holomorphic, and
• ∂s is ∂–closed.

Therefore, ∂s defines a Dolbeault cohomology class

[� ] := [∂s] ∈ H0,1
∂

(M, V) ∼= H1(M, V). (3.11)

Since V acts on � : X −→ M, each section v ∈ C∞(M, V) acts on the sections
of � ; we denote this action by s 	−→ v + s. The above construction implies that

∂(v + s) = ∂v + ∂s. (3.12)

Consequently, the Dolbeault cohomology class [� ] in (3.11) does not depend on the
choice of the C∞ section s. From (3.12) it also follows that [� ] vanishes if and only if
the torsor � in (3.8) admits a holomorphic section.

We now take � to be the torsor prE in (3.6) under the cotangent bundle T ∗Ms
r,OX

,
and we take s to be the C∞ section in (3.7). For this case, the class

[∂s] ∈ H1(Ms
r,OX

, T ∗Ms
r,OX

) (3.13)

has been computed in [BR, p. 308, Theorem 2.11]; the result is that it is a nonzero
multiple of c1(	), where 	 is the ample generator of Pic(Ms

r,OX
). In particular, the

cohomology class (3.13) of the torsor prE in question is nonzero. Therefore, prE does
not admit any holomorphic section. ��

We note that the forgetful map prE defined in Proposition 3.2 extends canonically
from Ms

conn(X) to Ms
Hod(X). Slightly abusing notation, we denote this extended map

again by

prE : Ms
Hod(X) −→ Ms

r,OX
.

This map is defined by (λ, E,∇) 	−→ E , and it also extends the map prE in (2.4).

Corollary 3.3. The only holomorphic map

s : Ms
r,OX

−→ Ms
Hod(X)

with prE ◦ s = id is the restriction

ι : Ms
r,OX

↪→ Ms
Hod(X)

of the embedding ι defined in (3.2).

Proof. The composition

Ms
r,OX

s−→ Ms
Hod(X)

prλ−→ C,

where prλ is the projection in (3.1), is a holomorphic function on Ms
r,OX

, and hence it
is a constant function. Up to the C

∗ action in (3.4), we may assume that this constant is
either 0 or it is 1.

If this constant were 1, then s would factor through pr−1
λ (1) = Ms

conn(X), which
would contradict Proposition 3.2.

Hence this constant is 0, and s factors through pr−1
λ (0) = Ms

Higgs(X). Thus s cor-
responds, under the isomorphism (2.5), to a holomorphic global section of the vector
bundle T ∗Ms

r,OX
. But any such section vanishes due to Lemma 2.1; this means that s

is indeed the restriction of the canonical embedding ι in (3.2). ��
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Corollary 3.4. As in (3.3), let MHod(X)sm be the smooth locus of MHod(X). The restric-
tion of the holomorphic tangent bundle

T MHod(X)sm −→ MHod(X)sm

to ι(Ms
r,OX

) ⊂ MHod(X)sm does not admit any nonzero holomorphic section.

Proof. We denote the holomorphic normal bundle of the restricted embedding

ι : Ms
r,OX

↪→ MHod(X)sm

by N . Due to Lemma 2.2, it suffices to show that this vector bundle N over Ms
r,OX

has
no nonzero holomorphic sections.

One has a canonical isomorphism

Ms
Hod(X)

∼−→ N (3.14)

of varieties over Ms
r,OX

, defined by sending any (λ, E,∇) to the derivative at t = 0 of
the map

C −→ MHod(X), t 	−→ (t · λ , E , t · ∇).

Using this isomorphism, from Corollary 3.3 we conclude that vector bundle N over
Ms

r,OX
does not have any nonzero holomorphic sections. This completes the proof. ��

Corollary 3.5. The isomorphism class of the complex analytic space MHod(X) deter-
mines uniquely the isomorphism class of the Riemann surface X.

Proof. The proof is similar to that of Corollary 2.5. Let Z ⊂ MHod(X) be a closed
analytic subset satisfying the following three conditions:

• Z is irreducible and has complex dimension (r2 − 1)(g − 1).
• The smooth locus Z sm ⊆ Z lies in the smooth locus MHod(X)sm ⊂MHod(X).
• The restriction of the holomorphic tangent bundle T MHod(X)sm to the subspace Z sm

has no nonzero holomorphic sections.

From Corollary 3.4 we know that ι(Mr,OX ) satisfies all these conditions.
Consider the vector field on MHod(X)sm given by the action of C

∗ on MHod(X) in
(3.4). From the third condition on Z we know that this vector field vanishes on Z sm. This
implies that the fixed point locus MHod(X)C

∗
contains Z sm, and hence also contains its

closure Z . Therefore, using Proposition 3.1 it follows that Z = ι(Mr,OX ); in particular,
Z is isomorphic to Mr,OX . Finally the isomorphism class of X is recovered from the
isomorphism class of Mr,OX using [KP, p. 229, Theorem E]. ��

4. The Deligne–Hitchin Moduli Space

We recall Deligne’s construction [De] of the Deligne–Hitchin moduli space MDH(X),
as described in [Si1, p. 7].

Let XR be the C∞ real manifold of dimension two underlying X . Fix a point x0 ∈ XR.
Let

Mrep(XR) := Hom(π1(XR, x0), SL(r, C))//SL(r, C)
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denote the moduli space of representations ρ : π1(XR, x0) −→ SL(r, C); the group
SL(r, C) acts on Hom(π1(XR, x0), SL(r, C)) through the adjoint action of SL(r, C) on
itself. Since the fundamental groups for different base points are identified up to an inner
automorphism, the space Mrep(XR) is independent of the choice of x0. Hence we will
omit any reference to x0.

The Riemann–Hilbert correspondence defines a biholomorphic isomorphism

Mrep(XR)
∼−→ Mconn(X). (4.1)

It sends a representation ρ : π1(XR) −→ SL(r, C) to the associated holomorphic
SL(r, C)–bundle E X

ρ over X , endowed with the induced connection ∇X
ρ . The inverse of

(4.1) sends a connection to its monodromy representation, which makes sense because
any holomorphic connection on a Riemann surface is automatically flat.

Given λ ∈ C
∗, we can similarly associate to a representation

ρ : π1(XR) −→ SL(r, C)

the λ–connection (E X
ρ , λ · ∇X

ρ ). This defines a holomorphic open embedding

C
∗ ×Mrep(XR) −→ MHod(X) (4.2)

onto the open locus pr−1
λ (C∗) ⊂ MHod(X) of all triples (λ , E ,∇) with λ �= 0.

Let JX denote the almost complex structure of the Riemann surface X . Then−JX is
also an almost complex structure on XR; the Riemann surface defined by −JX will be
denoted by X .

We can also consider the moduli space MHod(X) of λ–connections on X , etcetera.
Now one defines the Deligne–Hitchin moduli space

MDH(X) := MHod(X) ∪MHod(X)

by glueing MHod(X) to MHod(X), along the image of C
∗ ×Mrep(XR) for the map

in (4.2). More precisely, one identifies, for each λ ∈ C
∗ and each representation

ρ ∈Mrep(XR), the two points

(λ , E X
ρ , λ · ∇X

ρ ) ∈ MHod(X) and (λ−1 , E X
ρ , λ−1 · ∇X

ρ ) ∈ MHod(X).

This identification yields a complex analytic space MDH(X) of dimension 2(r2 − 1)

(g − 1) + 1. This analytic space does not possess a natural algebraic structure since the
Riemann–Hilbert correspondence (4.1) is holomorphic and not algebraic.

The forgetful map prλ in (3.1) extends to a natural holomorphic morphism

pr : MDH(X) −→ CP
1 = C ∪ {∞} (4.3)

whose fiber over λ ∈ CP
1 is canonically biholomorphic to

• the moduli space MHiggs(X) of SL(r, C) Higgs bundles on X if λ = 0,
• the moduli space MHiggs(X) of SL(r, C) Higgs bundles on X if λ = ∞,
• the moduli space Mrep(XR) of equivalence classes of representations

Hom(π1(XR, x0), SL(r, C))//SL(r, C)

if λ �= 0 ,∞.

Now we are in a position to prove the main result.
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Theorem 4.1. The isomorphism class of the complex analytic space MDH(X) deter-
mines uniquely the isomorphism class of the unordered pair of Riemann surfaces {X , X}.
Proof. We denote by MDH(X)sm ⊂ MDH(X) the smooth locus, and by

T MDH(X)sm −→ MDH(X)sm

its holomorphic tangent bundle. Since MHod(X) is open in MDH(X), Corollary 3.4
implies that the restriction of T MDH(X)sm to

ι(Ms
r,OX

) ⊂ MHod(X)sm ⊂ MDH(X)sm (4.4)

does not admit any nonzero holomorphic section. The same argument applies if we
replace X by X . SinceMHod(X) is also open inMDH(X), the restriction of T MDH(X)sm

to

ι(Ms
r,OX

) ⊂ MHod(X)sm ⊂ MDH(X)sm (4.5)

does not admit any nonzero holomorphic section either. Here Mr,OX
is the moduli

space of holomorphic SL(r, C)–bundles E on X , and ι denotes, as in (2.3) and in (3.2),
the canonical embedding of Mr,OX

into MHiggs(X) ⊂ MHod(X) defined by E 	−→
(E, 0).

The rest of the proof is similar to that of Corollary 2.5. We will extend the C
∗ action

on MHod(X) in (3.4) to MDH(X). First consider the action of C
∗ on MHod(X) defined

as in (3.4) by substituting X in place of X . Note that the action of any t ∈ C
∗ on the

open subset C
∗ ×Mrep(XR) −→ MHod(X) in (4.2) coincides with the action of 1/t

on C
∗ ×Mrep(XR) −→ MHod(X). Therefore, we get an action of C

∗ on MDH(X).
Let

η : MDH(X)sm −→ T MDH(X)sm (4.6)

be the holomorphic vector field defined by this action of C
∗.

Let Z ⊂ MDH(X) be a closed analytic subset with the following three properties:

• Z is irreducible and has complex dimension (r2 − 1)(g − 1).
• The smooth locus Z sm ⊆ Z lies in the smooth locus MDH(X)sm ⊂MDH(X).
• The restriction of the holomorphic tangent bundle T MDH(X)sm to the subspace Z sm

has no nonzero holomorphic sections.

We noted above that both ι(Mr,OX ) and ι(Mr,OX
) (see (4.4) and (4.5)) satisfy these

conditions.
The third condition on Z implies that the vector field η in (4.6) vanishes on Z sm. It

follows that the fixed point locus MDH(X)C
∗

contains Z sm, and hence also contains its
closure Z . Therefore, using Proposition 3.1 we conclude that Z is one of ι(Mr,OX ) and
ι(Mr,OX

). Using [KP, p. 229, Theorem E] we now know that the isomorphism class of
the analytic space MDH(X) determines the isomorphism class of the unordered pair of
Riemann surfaces {X , X}. This completes the proof of the theorem. ��
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