Torelli Theorem for the Deligne-Hitchin Moduli Space

Indranil Biswas ${ }^{1}$, Tomás L. Gómez ${ }^{2,3}$, Norbert Hoffmann ${ }^{4,5}$, Marina Logares ${ }^{6}$
${ }^{1}$ School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India. E-mail: indranil@ math.tifr.res.in
${ }^{2}$ Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM), Serrano 113bis, 28006 Madrid, Spain
${ }^{3}$ Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, 28040 Madrid, Spain. E-mail: tomas.gomez@mat.csic.es
${ }^{4}$ Freie Universität Berlin, Institut für Mathematik, Arnimallee 3, 14195 Berlin, Germany
5 Universität Göttingen, Mathematisches Institut, Bunsenstrasse 3-5, 37073 Göttingen, Germany. E-mail: nhoffman@mi.fu-berlin.de; hoffmann@uni-math.gwdg.de
${ }^{6}$ Departamento de Matematica Pura, Facultade de Ciencias, Rua do Campo Alegre 687, 4169-007 Porto, Portugal. E-mail: mlogares@fc.up.pt

Abstract

Fix integers $g \geq 3$ and $r \geq 2$, with $r \geq 3$ if $g=3$. Given a compact connected Riemann surface X of genus g, let $\mathcal{M}_{\mathrm{DH}}(X)$ denote the corresponding $\mathrm{SL}(r, \mathbb{C})$ Deligne-Hitchin moduli space. We prove that the complex analytic space $\mathcal{M}_{\mathrm{DH}}(X)$ determines (up to an isomorphism) the unordered pair $\{X, \bar{X}\}$, where \bar{X} is the Riemann surface defined by the opposite almost complex structure on X.

1. Introduction

Let X be a compact connected Riemann surface of genus g, with $g \geq 2$. We denote by $X_{\mathbb{R}}$ the C^{∞} real manifold of dimension two underlying X. Let \bar{X} be the Riemann surface defined by the almost complex structure $-J_{X}$ on $X_{\mathbb{R}}$; here J_{X} is the almost complex structure of X.

Fix an integer $r \geq 2$. The main object of this paper is the $\operatorname{SL}(r, \mathbb{C})$ Deligne-Hitchin moduli space

$$
\mathcal{M}_{\mathrm{DH}}(X)=\mathcal{M}_{\mathrm{DH}}(X, \mathrm{SL}(r, \mathbb{C}))
$$

associated to X. This moduli space $\mathcal{M}_{\mathrm{DH}}(X)$ is a complex analytic space of complex dimension $1+2\left(r^{2}-1\right)(g-1)$, which comes with a natural surjective holomorphic map

$$
\mathcal{M}_{\mathrm{DH}}(X) \longrightarrow \mathbb{C P}^{1}=\mathbb{C} \cup\{\infty\}
$$

We briefly recall from [Si1, p. 7] the description of $\mathcal{M}_{\mathrm{DH}}(X)$ (in [Si1], the group GL (r, \mathbb{C}) is considered instead of $\operatorname{SL}(r, \mathbb{C})$).

- The fiber of $\mathcal{M}_{\mathrm{DH}}(X)$ over $\lambda=0 \in \mathbb{C} \subset \mathbb{C P}^{1}$ is the moduli space $\mathcal{M}_{\text {Higgs }}(X)$ of semistable $\operatorname{SL}(r, \mathbb{C})$ Higgs bundles (E, θ) over X (see Sect. 2 for details).
- The fiber of $\mathcal{M}_{\mathrm{DH}}(X)$ over any $\lambda \in \mathbb{C}^{*} \subset \mathbb{C P}^{1}$ is canonically biholomorphic to the moduli space $\mathcal{M}_{\text {conn }}(X)$ of holomorphic $\operatorname{SL}(r, \mathbb{C})$ connections (E, ∇) over X. In fact the restriction of $\mathcal{M}_{\mathrm{DH}}(X)$ to $\mathbb{C} \subset \mathbb{C P}^{1}$ is the moduli space

$$
\mathcal{M}_{\mathrm{Hod}}(X) \longrightarrow \mathbb{C}
$$

of λ-connections over X for the group $\operatorname{SL}(r, \mathbb{C})$ (see Sect. 3 for details).

- The fiber of $\mathcal{M}_{\mathrm{DH}}(X)$ over $\lambda=\infty \in \mathbb{C P}^{1}$ is the moduli space $\mathcal{M}_{\text {Higgs }}(\bar{X})$ of semistable $\operatorname{SL}(r, \mathbb{C})$ Higgs bundles over \bar{X}. Indeed, the complex analytic space $\mathcal{M}_{\mathrm{DH}}(X)$ is constructed by glueing $\mathcal{M}_{\mathrm{Hod}}(X)$ to the analogous moduli space

$$
\mathcal{M}_{\mathrm{Hod}}(\bar{X}) \longrightarrow \mathbb{C}
$$

of λ-connections over \bar{X}. One identifies the fiber of $\mathcal{M}_{\mathrm{Hod}}(X)$ over $\lambda \in \mathbb{C}^{*}$ with the fiber of $\mathcal{M}_{\text {Hod }}(\bar{X})$ over $1 / \lambda \in \mathbb{C}^{*}$; the identification is done using the fact that the holomorphic connections over both X and \bar{X} correspond to representations of $\pi_{1}\left(X_{\mathbb{R}}\right)$ in $\operatorname{SL}(r, \mathbb{C})$ (see Sect. 4 for details).

This construction of $\mathcal{M}_{\mathrm{DH}}(X)$ is due to Deligne [De]. In [Hi2], Hitchin constructed the twistor space for the hyper-Kähler structure of the moduli space $\mathcal{M}_{\text {Higgs }}(X)$; the complex analytic space $\mathcal{M}_{\mathrm{DH}}(X)$ is identified with this twistor space (see [Si1, p. 8]).

We note that while both $\mathcal{M}_{\text {Hod }}(X)$ and $\mathcal{M}_{\text {Hod }}(\bar{X})$ are complex algebraic varieties, the moduli space $\mathcal{M}_{\mathrm{DH}}(X)$ does not have any natural algebraic structure.

If we replace X by \bar{X}, then the isomorphism class of the Deligne-Hitchin moduli space clearly remains unchanged. In fact, there is a canonical holomorphic isomorphism of $\mathcal{M}_{\mathrm{DH}}(X)$ with $\mathcal{M}_{\mathrm{DH}}(\bar{X})$ over the automorphism of $\mathbb{C P}^{1}$ defined by $\lambda \longmapsto 1 / \lambda$.

We prove the following theorem (see Theorem 4.1):
Theorem 1.1. Assume that $g \geq 3$, and if $g=3$, then assume that $r \geq 3$. The isomorphism class of the complex analytic space $\mathcal{M}_{\mathrm{DH}}(X)$ determines uniquely the isomorphism class of the unordered pair of Riemann surfaces $\{X, \bar{X}\}$.

In other words, if $\mathcal{M}_{\mathrm{DH}}(X)$ is biholomorphic to the Deligne-Hitchin moduli space $\mathcal{M}_{\mathrm{DH}}(Y)$ for another compact connected Riemann surface Y, then either $Y \cong X$ or $Y \cong \bar{X}$.

This paper is organized as follows. Higgs bundles are dealt with in Sect. 2; we also obtain a Torelli theorem for them (see Corollary 2.5). The λ-connections are considered in Sect. 3, which also contains a Torelli theorem for their moduli space (see Corollary 3.5). Finally, Sect. 4 deals with the Deligne-Hitchin moduli space; here we prove our main result.

2. Higgs Bundles

Let X be a compact connected Riemann surface of genus g, with $g \geq 3$. Fix an integer $r \geq 2$. If $g=3$, then we assume that $r \geq 3$. Let

$$
\begin{equation*}
\mathcal{M}_{r, \mathcal{O}_{X}} \tag{2.1}
\end{equation*}
$$

be the moduli space of semistable $\operatorname{SL}(r, \mathbb{C})$-bundles on X. So $\mathcal{M}_{r, \mathcal{O}_{X}}$ parameterizes all S-equivalence classes of semistable vector bundles E over X of rank r together with
an isomorphism $\bigwedge^{r} E \cong \mathcal{O}_{X}$. The moduli space $\mathcal{M}_{r, \mathcal{O}_{X}}$ is known to be an irreducible normal complex projective variety of dimension $\left(r^{2}-1\right)(g-1)$. Let

$$
\begin{equation*}
\mathcal{M}_{r, \mathcal{O}_{X}}^{\mathrm{s}} \subset \mathcal{M}_{r, \mathcal{O}_{X}} \tag{2.2}
\end{equation*}
$$

be the open subvariety parameterizing stable $\operatorname{SL}(r, \mathbb{C})$ bundles on X. This open subvariety coincides with the smooth locus of $\mathcal{M}_{r, \mathcal{O}_{X}}$ according to [NR1, p. 20, Theorem 1].

Lemma 2.1. The holomorphic cotangent bundle

$$
T^{*} \mathcal{M}_{r, \mathcal{O}_{X}}^{\mathrm{s}} \longrightarrow \mathcal{M}_{r, \mathcal{O}_{X}}^{\mathrm{s}}
$$

does not admit any nonzero holomorphic section.
Proof. Fix a point $x_{0} \in X$, and consider the Hecke correspondence

$$
\mathcal{M}_{r, \mathcal{O}_{X}}^{\mathrm{s}} \stackrel{q}{\longleftrightarrow} \mathcal{P} \xrightarrow{p} \mathcal{U} \subseteq \mathcal{M}_{r, \mathcal{O}_{X}\left(x_{0}\right)}
$$

defined as follows:

- $\mathcal{M}_{r, \mathcal{O}_{X}\left(x_{0}\right)}$ denotes the moduli space of stable vector bundles F over X of rank r together with an isomorphism $\bigwedge^{r} F \cong \mathcal{O}_{X}\left(x_{0}\right)$.
- $\mathcal{U} \subseteq \mathcal{M}_{r, \mathcal{O}_{X}\left(x_{0}\right)}$ denotes the locus of all F for which every subbundle $F^{\prime} \subset F$ with $0<\operatorname{rank}\left(F^{\prime}\right)<r$ has negative degree; such vector bundles F are called $(0,1)$-stable (see [NR2, p. 306, Def. 5.1], [BBGN, p. 563]).
- $p: \mathcal{P} \longrightarrow \mathcal{U}$ is the \mathbb{P}^{r-1}-bundle whose fiber over any vector bundle $F \in \mathcal{U}$ parameterizes all hyperplanes H in the fiber $F_{x_{0}}$.
- $q: \mathcal{P} \longrightarrow \mathcal{M}_{r, \mathcal{O}_{X}}^{\mathrm{s}}$ sends any vector bundle $F \in \mathcal{U}$ and hyperplane $H \subseteq F_{x_{0}}$ to the vector bundle E given by the short exact sequence

$$
0 \longrightarrow E \longrightarrow F \longrightarrow F_{x_{0}} / H \longrightarrow 0
$$

of coherent sheaves on X; here the quotient sheaf $F_{x_{0}} / H$ is supported at x_{0}.
As $\mathcal{M}_{r, \mathcal{O}_{X}\left(x_{0}\right)}$ is a smooth unirational projective variety (see [Se, p. 53]), it does not admit any nonzero holomorphic 1-form. The subset $\mathcal{U} \subseteq \mathcal{M}_{r, \mathcal{O}_{X}\left(x_{0}\right)}$ is open due to [BBGN, p. 563, Lemma 2], and the conditions on r and g ensure that the codimension of the complement $\mathcal{M}_{r, \mathcal{O}_{X}\left(x_{0}\right)} \backslash \mathcal{U}$ is at least two. Hence also

$$
H^{0}\left(\mathcal{U}, T^{*} \mathcal{U}\right)=0
$$

due to Hartog's theorem. Since $H^{0}\left(\mathbb{P}^{r-1}, T^{*} \mathbb{P}^{r-1}\right)=0$, any relative holomorphic 1 -form on the \mathbb{P}^{r-1}-bundle $p: \mathcal{P} \longrightarrow \mathcal{U}$ vanishes identically. Thus we conclude that

$$
H^{0}\left(\mathcal{P}, T^{*} \mathcal{P}\right)=0
$$

The same follows for the variety $\mathcal{M}_{r, \mathcal{O}_{X}}^{\mathrm{s}}$, because the algebraic map $q: \mathcal{P} \longrightarrow \mathcal{M}_{r, \mathcal{O}_{X}}^{\mathrm{s}}$ is dominant.

We denote by K_{X} the canonical line bundle on X. Let

$$
\mathcal{M}_{\mathrm{Higgs}}(X)=\mathcal{M}_{\mathrm{Higgs}}(X, \operatorname{SL}(r, \mathbb{C}))
$$

denote the moduli space of semistable $\operatorname{SL}(r, \mathbb{C})$ Higgs bundles over X. So $\mathcal{M}_{\text {Higgs }}(X)$ parameterizes all S-equivalence classes of semistable pairs (E, θ) consisting of a vector bundle E over X of rank r together with an isomorphism $\bigwedge^{r} E \cong \mathcal{O}_{X}$, and a Higgs field $\theta: E \longrightarrow E \otimes K_{X}$ with trace $(\theta)=0$. The moduli space $\mathcal{M}_{\text {Higgs }}(X)$ is an irreducible normal complex algebraic variety of dimension $2\left(r^{2}-1\right)(g-1)$ according to [Si3, p. 70, Theorem 11.1].

There is a natural embedding

$$
\begin{equation*}
\iota: \mathcal{M}_{r, \mathcal{O}_{X}} \hookrightarrow \mathcal{M}_{\mathrm{Higgs}}(X) \tag{2.3}
\end{equation*}
$$

defined by $E \longmapsto(E, 0)$. Let

$$
\mathcal{M}_{\mathrm{Higgs}}^{\mathrm{s}}(X) \subset \mathcal{M}_{\mathrm{Higgs}}(X)
$$

be the Zariski open locus of Higgs bundles (E, θ) whose underlying vector bundle E is stable (openness of $\mathcal{M}_{\text {Higgs }}^{\mathrm{s}}(X)$ follows from [Ma, p. 635, Theorem 2.8(B)]). Let

$$
\begin{equation*}
\operatorname{pr}_{E}: \mathcal{M}_{\mathrm{Higgs}}^{\mathrm{s}}(X) \longrightarrow \mathcal{M}_{r, \mathcal{O}_{X}}^{\mathrm{s}} \tag{2.4}
\end{equation*}
$$

be the forgetful map defined by $(E, \theta) \longmapsto E$, where $\mathcal{M}_{r, \mathcal{O}_{X}}^{\mathrm{s}}$ is defined in (2.2). One has a canonical isomorphism

$$
\begin{equation*}
\mathcal{M}_{\mathrm{Higgs}}^{\mathrm{s}}(X) \xrightarrow{\sim} T^{*} \mathcal{M}_{r, \mathcal{O}_{X}}^{\mathrm{s}} \tag{2.5}
\end{equation*}
$$

of varieties over $\mathcal{M}_{r, \mathcal{O}_{X}}^{\mathrm{s}}$, because holomorphic cotangent vectors to a point $E \in \mathcal{M}_{r, \mathcal{O}_{X}}^{\mathrm{s}}$ correspond, via deformation theory and Serre duality, to Higgs fields $\theta: E \longrightarrow E \otimes K_{X}$ with $\operatorname{trace}(\theta)=0$. In particular, $\mathcal{M}_{\text {Higgs }}^{\mathrm{s}}(X)$ is contained in the smooth locus

$$
\mathcal{M}_{\text {Higgs }}(X)^{\mathrm{sm}} \subset \mathcal{M}_{\mathrm{Higgs}}(X)
$$

We recall that the Hitchin map

$$
\begin{equation*}
H: \mathcal{M}_{\mathrm{Higgs}}(X) \longrightarrow \bigoplus_{i=2}^{r} H^{0}\left(X, K_{X}^{\otimes i}\right) \tag{2.6}
\end{equation*}
$$

is defined by sending each Higgs bundle (E, θ) to the characteristic polynomial of θ [Hi1, Hi2].

The multiplicative group \mathbb{C}^{*} acts on the moduli space $\mathcal{M}_{\text {Higgs }}(X)$ as follows:

$$
\begin{equation*}
t \cdot(E, \theta)=(E, t \theta) \tag{2.7}
\end{equation*}
$$

On the other hand, \mathbb{C}^{*} acts on the Hitchin space $\bigoplus_{i=2}^{r} H^{0}\left(X, K_{X}^{\otimes i}\right)$ as

$$
\begin{equation*}
t \cdot\left(v_{2}, \ldots, v_{i}, \ldots, v_{r}\right)=\left(t^{2} v_{2}, \ldots, t^{i} v_{i}, \ldots, t^{r} v_{r}\right) \tag{2.8}
\end{equation*}
$$

where $v_{i} \in H^{0}\left(X, K_{X}^{\otimes i}\right)$ and $i \in\{2, \ldots, r\}$. The Hitchin map H in (2.6) intertwines these two actions of \mathbb{C}^{*}. Note that there is no nonzero holomorphic function on the Hitchin space which is homogeneous of degree 1 for this action (a function f is homogeneous of degree d if $f\left(t \cdot\left(v_{2}, \ldots, v_{r}\right)\right)=t^{d} f\left(\left(v_{2}, \ldots, v_{r}\right)\right)$), because all the exponents of t in (2.8) are at least two.

Lemma 2.2. The holomorphic tangent bundle

$$
T \mathcal{M}_{r, \mathcal{O}_{X}}^{\mathrm{s}} \longrightarrow \mathcal{M}_{r, \mathcal{O}_{X}}^{\mathrm{s}}
$$

does not admit any nonzero holomorphic section.
Proof. The proof of [Hi1, p. 110, Theorem 6.2] carries over to this situation as follows. A holomorphic section s of $T \mathcal{M}_{r, \mathcal{O}_{X}}^{\mathrm{s}}$ provides (by contraction) a holomorphic function

$$
\begin{equation*}
f: T^{*} \mathcal{M}_{r, \mathcal{O}_{X}}^{\mathrm{s}} \longrightarrow \mathbb{C} \tag{2.9}
\end{equation*}
$$

on the total space of the cotangent bundle $T^{*} \mathcal{M}_{r, \mathcal{O}_{X}}^{\mathrm{s}}$, which is linear on the fibers. Under the isomorphism in (2.5), it corresponds to a function on $\mathcal{M}_{\text {Higgs }}^{\mathrm{s}}(X)$. The conditions on g and r imply that the complement of $\mathcal{M}_{\text {Higgs }}^{\mathrm{s}}(X)$ has codimension at least two in $\mathcal{M}_{\text {Higgs }}(X)$. Since the latter is normal, the function f in (2.9) extends to a holomorphic function

$$
\tilde{f}: \mathcal{M}_{\text {Higgs }}(X) \longrightarrow \mathbb{C}
$$

for example by [Sc, p. 90, Cor. 2]. Since f is linear on the fibers, we know that \tilde{f} is homogeneous of degree 1 for the action (2.7) of \mathbb{C}^{*}.

On the moduli space $\mathcal{M}_{\text {Higgs }}(X)$, the Hitchin map (2.6) is proper [Ni , Theorem 6.1], and also its fibers are connected. Therefore, the function \tilde{f} is constant on the fibers of the Hitchin map. Hence \widetilde{f} comes from a holomorphic function on the Hitchin space, which is still homogeneous of degree 1 . We noted earlier that there are no nonzero holomorphic functions on the Hitchin space which are homogeneous of degree 1. Therefore, $\widetilde{f}=0$, and consequently we have $f=0$ and $s=0$.

Corollary 2.3. The restriction of the holomorphic tangent bundle

$$
T \mathcal{M}_{\mathrm{Higgs}}(X)^{\mathrm{sm}} \longrightarrow \mathcal{M}_{\mathrm{Higgs}}(X)^{\mathrm{sm}}
$$

to $\iota\left(\mathcal{M}_{r, \mathcal{O}_{X}}^{\mathrm{s}}\right) \subset \mathcal{M}_{\mathrm{Higgs}}(X)^{\mathrm{sm}}$ does not admit any nonzero holomorphic section.
Proof. Using Lemma 2.2, it suffices to show that the normal bundle of the embedding

$$
\iota: \mathcal{M}_{r, \mathcal{O}_{X}}^{\mathrm{s}} \hookrightarrow \mathcal{M}_{\mathrm{Higgs}}(X)^{\mathrm{sm}}
$$

has no nonzero holomorphic sections. The isomorphism in (2.5) allows us to identify this normal bundle with $T^{*} \mathcal{M}_{r, \mathcal{O}_{X}}^{\mathrm{s}}$. Now the assertion follows from Lemma 2.1.

The next step is to show that the above property uniquely characterizes the subvariety $\iota\left(\mathcal{M}_{r, \mathcal{O}_{X}}\right) \subset \mathcal{M}_{\text {Higgs }}(X)$. This will follow from the following proposition.

Proposition 2.4. Let Z be an irreducible component of the fixed point locus

$$
\begin{equation*}
\mathcal{M}_{\text {Higgs }}(X)^{\mathbb{C}^{*}} \subseteq \mathcal{M}_{\text {Higgs }}(X) \tag{2.10}
\end{equation*}
$$

Then $\operatorname{dim}(Z) \leq\left(r^{2}-1\right)(g-1)$, with equality only for $Z=\iota\left(\mathcal{M}_{r, \mathcal{O}_{X}}\right)$.

Proof. The \mathbb{C}^{*}-equivariance of the Hitchin map H in (2.6) implies

$$
\mathcal{M}_{\mathrm{Higgs}}(X)^{\mathbb{C}^{*}} \subseteq H^{-1}(0)
$$

because 0 is the only fixed point in the Hitchin space. We recall that $H^{-1}(0)$ is called the nilpotent cone. The irreducible components of $H^{-1}(0)$ are parameterized by the conjugacy classes of the nilpotent elements in the Lie algebra $\operatorname{sl}(r, \mathbb{C})$, and each irreducible component of $H^{-1}(0)$ is of dimension $\left(r^{2}-1\right)(g-1)$ [La].

Thus $\operatorname{dim}(Z) \leq\left(r^{2}-1\right)(g-1)$, and if equality holds, then Z is an irreducible component of the nilpotent cone $H^{-1}(0)$. A result due to Simpson, [Si3, p. 76, Lemma 11.9], implies that the only irreducible component of $H^{-1}(0)$ contained in the fixed point locus $\mathcal{M}_{\text {Higgs }}(X)^{\mathbb{C}^{*}}$ defined in (2.10) is the image $\iota\left(\mathcal{M}_{r, \mathcal{O}_{X}}\right)$ of the embedding in (2.3).

Corollary 2.5. The isomorphism class of the complex analytic space $\mathcal{M}_{\text {Higgs }}(X)$ determines uniquely the isomorphism class of the Riemann surface X, meaning if $\mathcal{M}_{\mathrm{Higgs}}(X)$ is biholomorphic to $\mathcal{M}_{\mathrm{Higgs}}(Y)$ for another compact connected Riemann surface Y of the same genus g, then $Y \cong X$.

Proof. Let $Z \subset \mathcal{M}_{\text {Higgs }}(X)$ be a closed analytic subset with the following three properties:

- Z is irreducible and has complex dimension $\left(r^{2}-1\right)(g-1)$.
- The smooth locus $Z^{\mathrm{sm}} \subseteq Z$ lies in the smooth locus $\mathcal{M}_{\text {Higgs }}(X)^{\mathrm{sm}} \subset \mathcal{M}_{\text {Higgs }}(X)$.
- The restriction of the holomorphic tangent bundle $T \mathcal{M}_{\mathrm{Higgs}}(X)^{\mathrm{sm}}$ to the subspace $Z^{\text {sm }} \subset \mathcal{M}_{\mathrm{Higgs}}(X)^{\mathrm{sm}}$ has no nonzero holomorphic sections.
By Corollary 2.3, the image $\iota\left(\mathcal{M}_{r, \mathcal{O}_{X}}\right)$ of the embedding ι in (2.3) has these properties.
The action (2.7) of \mathbb{C}^{*} on $\mathcal{M}_{\mathrm{Higgs}}(X)$ defines a holomorphic vector field

$$
\mathcal{M}_{\mathrm{Higgs}}(X)^{\mathrm{sm}} \longrightarrow T \mathcal{M}_{\mathrm{Higgs}}(X)^{\mathrm{sm}}
$$

The third assumption on Z says that any holomorphic vector field on $\mathcal{M}_{\text {Higgs }}(X)^{\mathrm{sm}}$ vanishes on $Z^{\text {sm }}$. Therefore, it follows that the stabilizer of each point in $Z^{\text {sm }} \subset \mathcal{M}_{\text {Higgs }}(X)$ has nontrivial tangent space at $1 \in \mathbb{C}^{*}$, and hence the stabilizer must be the full group \mathbb{C}^{*}.

This shows that the fixed point locus $\mathcal{M}_{\text {Higgs }}(X)^{\mathbb{C}^{*}} \subseteq \mathcal{M}_{\text {Higgs }}(X)$ contains $Z^{\text {sm }}$, and hence also contains its closure Z in $\mathcal{M}_{\text {Higgs }}(X)$. Due to Proposition 2.4, this can only happen for $Z=\iota\left(\mathcal{M}_{r, \mathcal{O}_{X}}\right)$. In particular, we have $Z \cong \mathcal{M}_{r, \mathcal{O}_{X}}$.

We have just shown that the isomorphism class of $\mathcal{M}_{\text {Higgs }}(X)$ determines the isomorphism class of $\mathcal{M}_{r, \mathcal{O}_{X}}$. The latter determines the isomorphism class of X due to a theorem of Kouvidakis and Pantev [KP, p. 229, Theorem E].

Remark 2.6. In [BG], an analogous Torelli theorem is proved for Higgs bundles (E, θ) such that the rank and the degree of the underlying vector bundle E are coprime.

3. The λ-Connections

In this section, we consider vector bundles with connections, and more generally with λ-connections in the sense of [Si2, p. 87] and [Si1, p. 4]. We denote by

$$
\mathcal{M}_{\mathrm{Hod}}(X)=\mathcal{M}_{\mathrm{Hod}}(X, \operatorname{SL}(r, \mathbb{C}))
$$

the moduli space of triples of the form (λ, E, ∇), where λ is a complex number, and (E, ∇) is a λ-connection on X for the group $\operatorname{SL}(r, \mathbb{C})$. We recall that given any $\lambda \in \mathbb{C}$, a λ-connection on X for the group $\operatorname{SL}(r, \mathbb{C})$ is a pair (E, ∇), where

- $E \longrightarrow X$ is a holomorphic vector bundle of rank r together with an isomorphism $\wedge^{r} E \cong \mathcal{O}_{X}$.
- $\nabla: E \longrightarrow E \otimes K_{X}$ is a \mathbb{C}-linear homomorphism of sheaves satisfying the following two conditions:
(1) If f is a locally defined holomorphic function on \mathcal{O}_{X} and s is a locally defined holomorphic section of E, then

$$
\nabla(f s)=f \cdot \nabla(s)+\lambda \cdot s \otimes d f
$$

(2) The operator $\bigwedge^{r} E \longrightarrow\left(\bigwedge^{r} E\right) \otimes K_{X}$ induced by ∇ coincides with $\lambda \cdot d$.

The moduli space $\mathcal{M}_{\mathrm{Hod}}(X)$ is a complex algebraic variety of dimension $1+2\left(r^{2}-\right.$ 1) $(g-1)$. It is equipped with a surjective algebraic morphism

$$
\begin{equation*}
\mathrm{pr}_{\lambda}: \mathcal{M}_{\mathrm{Hod}}(X) \longrightarrow \mathbb{C} \tag{3.1}
\end{equation*}
$$

defined by $(\lambda, E, \nabla) \longmapsto \lambda$.
A 0 -connection is a Higgs bundle, so

$$
\mathcal{M}_{\text {Higgs }}(X)=\operatorname{pr}_{\lambda}^{-1}(0) \subset \mathcal{M}_{\mathrm{Hod}}(X)
$$

is the moduli space of Higgs bundles considered in the previous section. In particular, the embedding (2.3) of $\mathcal{M}_{r, \mathcal{O}_{X}}$ into $\mathcal{M}_{\text {Higgs }}(X)$ also gives an embedding of $\mathcal{M}_{r, \mathcal{O}_{X}}$ into $\mathcal{M}_{\text {Hod }}(X)$. Slightly abusing notation, we denote this embedding again by

$$
\begin{equation*}
\iota: \mathcal{M}_{r, \mathcal{O}_{X}} \hookrightarrow \mathcal{M}_{\mathrm{Hod}}(X) . \tag{3.2}
\end{equation*}
$$

It maps the stable locus

$$
\mathcal{M}_{r, \mathcal{O}_{X}}^{\mathrm{s}} \subset \mathcal{M}_{r, \mathcal{O}_{X}}
$$

into the smooth locus

$$
\begin{equation*}
\mathcal{M}_{\mathrm{Hod}}(X)^{\mathrm{sm}} \subset \mathcal{M}_{\mathrm{Hod}}(X) \tag{3.3}
\end{equation*}
$$

We let \mathbb{C}^{*} act on $\mathcal{M}_{\text {Hod }}(X)$ as

$$
\begin{equation*}
t \cdot(\lambda, E, \nabla)=(t \cdot \lambda, E, t \cdot \nabla) \tag{3.4}
\end{equation*}
$$

This extends the \mathbb{C}^{*} action on $\mathcal{M}_{\text {Higgs }}(X)$ introduced above in formula (2.7).
Proposition 3.1. Let Z be an irreducible component of the fixed point locus

$$
\mathcal{M}_{\mathrm{Hod}}(X)^{\mathbb{C}^{*}} \subseteq \mathcal{M}_{\mathrm{Hod}}(X)
$$

Then $\operatorname{dim}(Z) \leq\left(r^{2}-1\right)(g-1)$, with equality only for $Z=\iota\left(\mathcal{M}_{r, \mathcal{O}_{X}}\right)$.
Proof. A point $(\lambda, E, \nabla) \in \mathcal{M}_{\mathrm{Hod}}(X)$ can only be fixed by \mathbb{C}^{*} if $\lambda=0$. Hence Z is automatically contained in $\mathcal{M}_{\text {Higgs }}(X)$. Now the claim follows from Proposition 2.4.

A 1-connection is a holomorphic connection in the usual sense, so

$$
\begin{equation*}
\mathcal{M}_{\text {conn }}(X):=\operatorname{pr}_{\lambda}^{-1}(1) \subset \mathcal{M}_{\mathrm{Hod}}(X) \tag{3.5}
\end{equation*}
$$

is the moduli space of $\operatorname{SL}(r, \mathbb{C})$ holomorphic connections (E, ∇) over X. We denote by

$$
\mathcal{M}_{\mathrm{conn}}^{\mathrm{s}}(X) \subset \mathcal{M}_{\mathrm{conn}}(X) \quad \text { and } \quad \mathcal{M}_{\mathrm{Hod}}^{\mathrm{s}}(X) \subset \mathcal{M}_{\mathrm{Hod}}(X)
$$

the Zariski open subvarieties where the underlying vector bundle E is stable (openness follows from [Ma, p. 635, Theorem 2.8(B)]).

Proposition 3.2. The forgetful map

$$
\begin{equation*}
\operatorname{pr}_{E}: \mathcal{M}_{\mathrm{conn}}^{\mathrm{s}}(X) \longrightarrow \mathcal{M}_{r, \mathcal{O}_{X}}^{\mathrm{s}} \tag{3.6}
\end{equation*}
$$

defined by $(E, \nabla) \longmapsto E$ admits no holomorphic section.
Proof. This map pr_{E} is surjective, because a criterion due to Atiyah and Weil implies that every stable vector bundle E on X of degree zero admits a holomorphic connection. In fact, E admits a unique unitary holomorphic connection according to a theorem of Narasimhan and Seshadri [NS]; this defines a canonical C^{∞} section

$$
\begin{equation*}
\mathcal{M}_{r, \mathcal{O}_{X}}^{\mathrm{s}} \longrightarrow \mathcal{M}_{\mathrm{conn}}^{\mathrm{s}}(X) \tag{3.7}
\end{equation*}
$$

of the map pr_{E}. Since any two holomorphic $\operatorname{SL}(r, \mathbb{C})$-connections on E differ by a Higgs field $\theta: E \longrightarrow E \otimes K_{X}$ with $\operatorname{trace}(\theta)=0$, the map pr_{E} in (3.6) is a holomorphic torsor under the holomorphic cotangent bundle $T^{*} \mathcal{M}_{r, \mathcal{O}_{X}}^{\mathrm{s}} \longrightarrow \mathcal{M}_{r, \mathcal{O}_{X}}^{\mathrm{s}}$.

Given a complex manifold \mathcal{M}, we denote by $T_{\mathbb{R}} \mathcal{M}$ the tangent bundle of the underlying real manifold $\mathcal{M}_{\mathbb{R}}$, and by

$$
J_{\mathcal{M}}: T_{\mathbb{R}} \mathcal{M} \longrightarrow T_{\mathbb{R}} \mathcal{M}
$$

the almost complex structure of \mathcal{M}. Let

$$
\begin{equation*}
\varpi: \mathcal{X} \longrightarrow \mathcal{M} \tag{3.8}
\end{equation*}
$$

be a holomorphic torsor under a holomorphic vector bundle $\mathcal{V} \longrightarrow \mathcal{M}$. To each C^{∞} section $s: \mathcal{M} \longrightarrow \mathcal{X}$ of ϖ, we can associate a $(0,1)$-form

$$
\bar{\partial} s \in C^{\infty}\left(\mathcal{M}, \Omega^{0,1} \mathcal{M} \otimes \mathcal{V}\right)
$$

in the following way. The vector bundle homomorphism

$$
\widetilde{d s}:=d s+J_{\mathcal{X}} \circ d s \circ J_{\mathcal{M}}: T_{\mathbb{R}} \mathcal{M} \longrightarrow s^{*} T_{\mathbb{R}} \mathcal{X}
$$

satisfies the identity

$$
\begin{equation*}
J_{\mathcal{X}} \circ \widetilde{d s}+\widetilde{d s} \circ J_{\mathcal{M}}=J_{\mathcal{X}} \circ d s-d s \circ J_{\mathcal{M}}-J_{\mathcal{X}} \circ d s+d s \circ J_{\mathcal{M}}=0 \tag{3.9}
\end{equation*}
$$

and, since ϖ is holomorphic, we also have

$$
\begin{equation*}
d \varpi \circ \widetilde{d s}=d \varpi \circ d s+J_{\mathcal{M}} \circ d \varpi \circ d s \circ J_{\mathcal{M}}=\mathrm{id}-\mathrm{id}=0 . \tag{3.10}
\end{equation*}
$$

The equation in (3.10) means that $\widetilde{d s}$ maps into the subbundle of vertical tangent vectors in $s^{*} T_{\mathbb{R}} \mathcal{X}$, which is canonically isomorphic to $\mathcal{V}_{\mathbb{R}}$ (the real vector bundle underlying the complex vector bundle \mathcal{V}). Thus we can consider $\widetilde{d s}$ as a real 1-form

$$
\tilde{d s} \in C^{\infty}\left(\mathcal{M}, T_{\mathbb{R}}^{*} \mathcal{M} \otimes \mathcal{V}_{\mathbb{R}}\right)
$$

Identify $T_{\mathbb{R}} \mathcal{M}$ with $T^{0,1} \mathcal{M}$ using the \mathbb{R}-linear isomorphism defined by

$$
v \longmapsto v-\sqrt{-1} \cdot J_{\mathcal{M}}(v),
$$

and also identify $\mathcal{V}_{\mathbb{R}}$ with \mathcal{V} using the identity map. From (3.9) it follows that $\widetilde{d s}$ is actually a \mathbb{C}-linear homomorphism from $T^{0,1} \mathcal{M}$ to \mathcal{V} in terms of these identifications. Let

$$
\bar{\partial} s \in C^{\infty}\left(\mathcal{M}, \Omega_{\mathcal{M}}^{0,1} \otimes \mathcal{V}\right)
$$

be the $(0,1)$-form with values in \mathcal{V} defined by $\widetilde{d s}$. From the construction of $\bar{\partial} s$ it is clear that

- $\bar{\partial} s$ vanishes if and only if s is holomorphic, and
- $\bar{\partial} s$ is $\bar{\partial}$-closed.

Therefore, $\bar{\partial} s$ defines a Dolbeault cohomology class

$$
\begin{equation*}
[\varpi]:=[\bar{\partial} s] \in H_{\bar{\partial}}^{0,1}(\mathcal{M}, \mathcal{V}) \cong H^{1}(\mathcal{M}, \mathcal{V}) \tag{3.11}
\end{equation*}
$$

Since \mathcal{V} acts on $\varpi: \mathcal{X} \longrightarrow \mathcal{M}$, each section $v \in C^{\infty}(\mathcal{M}, \mathcal{V})$ acts on the sections of ϖ; we denote this action by $s \longmapsto v+s$. The above construction implies that

$$
\begin{equation*}
\bar{\partial}(v+s)=\bar{\partial} v+\bar{\partial} s \tag{3.12}
\end{equation*}
$$

Consequently, the Dolbeault cohomology class [ϖ] in (3.11) does not depend on the choice of the C^{∞} section s. From (3.12) it also follows that [ϖ] vanishes if and only if the torsor ϖ in (3.8) admits a holomorphic section.

We now take ϖ to be the torsor pr_{E} in (3.6) under the cotangent bundle $T^{*} \mathcal{M}_{r, \mathcal{O}_{X}}^{\mathrm{s}}$, and we take s to be the C^{∞} section in (3.7). For this case, the class

$$
\begin{equation*}
[\bar{\partial} s] \in H^{1}\left(\mathcal{M}_{r, \mathcal{O}_{X}}^{\mathrm{s}}, T^{*} \mathcal{M}_{r, \mathcal{O}_{X}}^{\mathrm{s}}\right) \tag{3.13}
\end{equation*}
$$

has been computed in [BR, p. 308, Theorem 2.11]; the result is that it is a nonzero multiple of $c_{1}(\Theta)$, where Θ is the ample generator of $\operatorname{Pic}\left(\mathcal{M}_{r, \mathcal{O}_{X}}^{\mathrm{s}}\right)$. In particular, the cohomology class (3.13) of the torsor pr_{E} in question is nonzero. Therefore, pr_{E} does not admit any holomorphic section.

We note that the forgetful map pr_{E} defined in Proposition 3.2 extends canonically from $\mathcal{M}_{\text {conn }}^{\mathrm{s}}(X)$ to $\mathcal{M}_{\text {Hod }}^{\mathrm{s}}(X)$. Slightly abusing notation, we denote this extended map again by

$$
\mathrm{pr}_{E}: \mathcal{M}_{\mathrm{Hod}}^{\mathrm{s}}(X) \longrightarrow \mathcal{M}_{r, \mathcal{O}_{X}}^{\mathrm{s}}
$$

This map is defined by $(\lambda, E, \nabla) \longmapsto E$, and it also extends the map pr_{E} in (2.4).
Corollary 3.3. The only holomorphic map

$$
s: \mathcal{M}_{r, \mathcal{O}_{X}}^{\mathrm{s}} \longrightarrow \mathcal{M}_{\mathrm{Hod}}^{\mathrm{s}}(X)
$$

with $\mathrm{pr}_{E} \circ s=\mathrm{id}$ is the restriction

$$
\iota: \mathcal{M}_{r, \mathcal{O}_{X}}^{\mathrm{s}} \hookrightarrow \mathcal{M}_{\mathrm{Hod}}^{\mathrm{s}}(X)
$$

of the embedding ι defined in (3.2).
Proof. The composition

$$
\mathcal{M}_{r, \mathcal{O}_{X}}^{\mathrm{s}} \xrightarrow{s} \mathcal{M}_{\mathrm{Hod}}^{\mathrm{s}}(X) \xrightarrow{\mathrm{pr}_{\lambda}} \mathbb{C},
$$

where pr_{λ} is the projection in (3.1), is a holomorphic function on $\mathcal{M}_{r, \mathcal{O}_{X}}^{\mathrm{s}}$, and hence it is a constant function. Up to the \mathbb{C}^{*} action in (3.4), we may assume that this constant is either 0 or it is 1 .

If this constant were 1 , then s would factor through $\operatorname{pr}_{\lambda}^{-1}(1)=\mathcal{M}_{\text {conn }}^{\mathrm{s}}(X)$, which would contradict Proposition 3.2.

Hence this constant is 0 , and s factors through $\operatorname{pr}_{\lambda}^{-1}(0)=\mathcal{M}_{\text {Higgs }}^{\mathrm{s}}(X)$. Thus s corresponds, under the isomorphism (2.5), to a holomorphic global section of the vector bundle $T^{*} \mathcal{M}_{r, \mathcal{O}_{X}}^{\mathrm{S}}$. But any such section vanishes due to Lemma 2.1; this means that s is indeed the restriction of the canonical embedding ι in (3.2).

Corollary 3.4. As in (3.3), let $\mathcal{M}_{\mathrm{Hod}}(X)^{\mathrm{sm}}$ be the smooth locus of $\mathcal{M}_{\mathrm{Hod}}(X)$. The restriction of the holomorphic tangent bundle

$$
T \mathcal{M}_{\mathrm{Hod}}(X)^{\mathrm{sm}} \longrightarrow \mathcal{M}_{\mathrm{Hod}}(X)^{\mathrm{sm}}
$$

to $\iota\left(\mathcal{M}_{r, \mathcal{O}_{X}}^{\mathrm{s}}\right) \subset \mathcal{M}_{\mathrm{Hod}}(X)^{\mathrm{sm}}$ does not admit any nonzero holomorphic section.
Proof. We denote the holomorphic normal bundle of the restricted embedding

$$
\iota: \mathcal{M}_{r, \mathcal{O}_{X}}^{\mathrm{s}} \hookrightarrow \mathcal{M}_{\mathrm{Hod}}(X)^{\mathrm{sm}}
$$

by \mathcal{N}. Due to Lemma 2.2, it suffices to show that this vector bundle \mathcal{N} over $\mathcal{M}_{r, \mathcal{O}_{X}}^{\mathrm{s}}$ has no nonzero holomorphic sections.

One has a canonical isomorphism

$$
\begin{equation*}
\mathcal{M}_{\mathrm{Hod}}^{\mathrm{s}}(X) \xrightarrow{\sim} \mathcal{N} \tag{3.14}
\end{equation*}
$$

of varieties over $\mathcal{M}_{r, \mathcal{O}_{X}}^{\mathrm{s}}$, defined by sending any (λ, E, ∇) to the derivative at $t=0$ of the map

$$
\mathbb{C} \longrightarrow \mathcal{M}_{\mathrm{Hod}}(X), \quad t \longmapsto(t \cdot \lambda, E, t \cdot \nabla) .
$$

Using this isomorphism, from Corollary 3.3 we conclude that vector bundle \mathcal{N} over $\mathcal{M}_{r, \mathcal{O}_{X}}^{\mathrm{s}}$ does not have any nonzero holomorphic sections. This completes the proof.

Corollary 3.5. The isomorphism class of the complex analytic space $\mathcal{M}_{\mathrm{Hod}}(X)$ determines uniquely the isomorphism class of the Riemann surface X.

Proof. The proof is similar to that of Corollary 2.5. Let $Z \subset \mathcal{M}_{\mathrm{Hod}}(X)$ be a closed analytic subset satisfying the following three conditions:

- Z is irreducible and has complex dimension $\left(r^{2}-1\right)(g-1)$.
- The smooth locus $Z^{\text {sm }} \subseteq Z$ lies in the smooth locus $\mathcal{M}_{\mathrm{Hod}}(X)^{\mathrm{sm}} \subset \mathcal{M}_{\mathrm{Hod}}(X)$.
- The restriction of the holomorphic tangent bundle $T \mathcal{M}_{\mathrm{Hod}}(X)^{\mathrm{sm}}$ to the subspace $Z^{\text {sm }}$ has no nonzero holomorphic sections.
From Corollary 3.4 we know that $l\left(\mathcal{M}_{r, \mathcal{O}_{X}}\right)$ satisfies all these conditions.
Consider the vector field on $\mathcal{M}_{\mathrm{Hod}}(X)^{\mathrm{sm}}$ given by the action of \mathbb{C}^{*} on $\mathcal{M}_{\mathrm{Hod}}(X)$ in (3.4). From the third condition on Z we know that this vector field vanishes on Z^{sm}. This implies that the fixed point locus $\mathcal{M}_{\text {Hod }}(X)^{\mathbb{C}^{*}}$ contains $Z^{\text {sm }}$, and hence also contains its closure Z. Therefore, using Proposition 3.1 it follows that $Z=\iota\left(\mathcal{M}_{\left.r, \mathcal{O}_{X}\right)}\right)$; in particular, Z is isomorphic to $\mathcal{M}_{r, \mathcal{O}_{X}}$. Finally the isomorphism class of X is recovered from the isomorphism class of $\mathcal{M}_{r, \mathcal{O}_{X}}$ using [KP, p. 229, Theorem E].

4. The Deligne-Hitchin Moduli Space

We recall Deligne's construction [De] of the Deligne-Hitchin moduli space $\mathcal{M}_{\mathrm{DH}}(X)$, as described in [Si1, p. 7].

Let $X_{\mathbb{R}}$ be the C^{∞} real manifold of dimension two underlying X. Fix a point $x_{0} \in X_{\mathbb{R}}$. Let

$$
\mathcal{M}_{\mathrm{rep}}\left(X_{\mathbb{R}}\right):=\operatorname{Hom}\left(\pi_{1}\left(X_{\mathbb{R}}, x_{0}\right), \operatorname{SL}(r, \mathbb{C})\right) / / \operatorname{SL}(r, \mathbb{C})
$$

denote the moduli space of representations $\rho: \pi_{1}\left(X_{\mathbb{R}}, x_{0}\right) \longrightarrow \mathrm{SL}(r, \mathbb{C})$; the group $\operatorname{SL}(r, \mathbb{C})$ acts on $\operatorname{Hom}\left(\pi_{1}\left(X_{\mathbb{R}}, x_{0}\right), \mathrm{SL}(r, \mathbb{C})\right)$ through the adjoint action of $\operatorname{SL}(r, \mathbb{C})$ on itself. Since the fundamental groups for different base points are identified up to an inner automorphism, the space $\mathcal{M}_{\text {rep }}\left(X_{\mathbb{R}}\right)$ is independent of the choice of x_{0}. Hence we will omit any reference to x_{0}.

The Riemann-Hilbert correspondence defines a biholomorphic isomorphism

$$
\begin{equation*}
\mathcal{M}_{\mathrm{rep}}\left(X_{\mathbb{R}}\right) \xrightarrow{\sim} \mathcal{M}_{\text {conn }}(X) \tag{4.1}
\end{equation*}
$$

It sends a representation $\rho: \pi_{1}\left(X_{\mathbb{R}}\right) \longrightarrow \mathrm{SL}(r, \mathbb{C})$ to the associated holomorphic $\operatorname{SL}(r, \mathbb{C})$-bundle E_{ρ}^{X} over X, endowed with the induced connection ∇_{ρ}^{X}. The inverse of (4.1) sends a connection to its monodromy representation, which makes sense because any holomorphic connection on a Riemann surface is automatically flat.

Given $\lambda \in \mathbb{C}^{*}$, we can similarly associate to a representation

$$
\rho: \pi_{1}\left(X_{\mathbb{R}}\right) \longrightarrow \operatorname{SL}(r, \mathbb{C})
$$

the λ-connection $\left(E_{\rho}^{X}, \lambda \cdot \nabla_{\rho}^{X}\right)$. This defines a holomorphic open embedding

$$
\begin{equation*}
\mathbb{C}^{*} \times \mathcal{M}_{\text {rep }}\left(X_{\mathbb{R}}\right) \longrightarrow \mathcal{M}_{\text {Hod }}(X) \tag{4.2}
\end{equation*}
$$

onto the open locus $\mathrm{pr}_{\lambda}^{-1}\left(\mathbb{C}^{*}\right) \subset \mathcal{M}_{\mathrm{Hod}}(X)$ of all triples (λ, E, ∇) with $\lambda \neq 0$.
Let J_{X} denote the almost complex structure of the Riemann surface X. Then $-J_{X}$ is also an almost complex structure on $X_{\mathbb{R}}$; the Riemann surface defined by $-J_{X}$ will be denoted by \bar{X}.

We can also consider the moduli space $\mathcal{M}_{\text {Hod }}(\bar{X})$ of λ-connections on \bar{X}, etcetera.
Now one defines the Deligne-Hitchin moduli space

$$
\mathcal{M}_{\mathrm{DH}}(X):=\mathcal{M}_{\mathrm{Hod}}(X) \cup \mathcal{M}_{\mathrm{Hod}}(\bar{X})
$$

by glueing $\mathcal{M}_{\text {Hod }}(\bar{X})$ to $\mathcal{M}_{\text {Hod }}(X)$, along the image of $\mathbb{C}^{*} \times \mathcal{M}_{\text {rep }}\left(X_{\mathbb{R}}\right)$ for the map in (4.2). More precisely, one identifies, for each $\lambda \in \mathbb{C}^{*}$ and each representation $\rho \in \mathcal{M}_{\text {rep }}\left(X_{\mathbb{R}}\right)$, the two points

$$
\left(\lambda, E_{\rho}^{X}, \lambda \cdot \nabla_{\rho}^{X}\right) \in \mathcal{M}_{\mathrm{Hod}}(X) \quad \text { and } \quad\left(\lambda^{-1}, E_{\rho}^{\bar{X}}, \lambda^{-1} \cdot \nabla_{\rho}^{\bar{X}}\right) \in \mathcal{M}_{\mathrm{Hod}}(\bar{X})
$$

This identification yields a complex analytic space $\mathcal{M}_{\mathrm{DH}}(X)$ of dimension $2\left(r^{2}-1\right)$ $(g-1)+1$. This analytic space does not possess a natural algebraic structure since the Riemann-Hilbert correspondence (4.1) is holomorphic and not algebraic.

The forgetful map pr_{λ} in (3.1) extends to a natural holomorphic morphism

$$
\begin{equation*}
\text { pr }: \mathcal{M}_{\mathrm{DH}}(X) \longrightarrow \mathbb{C P}^{1}=\mathbb{C} \cup\{\infty\} \tag{4.3}
\end{equation*}
$$

whose fiber over $\lambda \in \mathbb{C P}^{1}$ is canonically biholomorphic to

- the moduli space $\mathcal{M}_{\text {Higgs }}(X)$ of $\operatorname{SL}(r, \mathbb{C})$ Higgs bundles on X if $\lambda=0$,
- the moduli space $\mathcal{M}_{\text {Higgs }}(\bar{X})$ of $\operatorname{SL}(r, \mathbb{C})$ Higgs bundles on \bar{X} if $\lambda=\infty$,
- the moduli space $\mathcal{M}_{\text {rep }}\left(X_{\mathbb{R}}\right)$ of equivalence classes of representations

$$
\operatorname{Hom}\left(\pi_{1}\left(X_{\mathbb{R}}, x_{0}\right), \mathrm{SL}(r, \mathbb{C})\right) / / \mathrm{SL}(r, \mathbb{C})
$$

if $\lambda \neq 0, \infty$.
Now we are in a position to prove the main result.

Theorem 4.1. The isomorphism class of the complex analytic space $\mathcal{M}_{\mathrm{DH}}(X)$ determines uniquely the isomorphism class of the unordered pair of Riemann surfaces $\{X, \bar{X}\}$.

Proof. We denote by $\mathcal{M}_{\mathrm{DH}}(X)^{\mathrm{sm}} \subset \mathcal{M}_{\mathrm{DH}}(X)$ the smooth locus, and by

$$
T \mathcal{M}_{\mathrm{DH}}(X)^{\mathrm{sm}} \longrightarrow \mathcal{M}_{\mathrm{DH}}(X)^{\mathrm{sm}}
$$

its holomorphic tangent bundle. Since $\mathcal{M}_{\mathrm{Hod}}(X)$ is open in $\mathcal{M}_{\mathrm{DH}}(X)$, Corollary 3.4 implies that the restriction of $T \mathcal{M}_{\mathrm{DH}}(X)^{\mathrm{sm}}$ to

$$
\begin{equation*}
\iota\left(\mathcal{M}_{r, \mathcal{O}_{X}}^{\mathrm{s}}\right) \subset \mathcal{M}_{\mathrm{Hod}}(X)^{\mathrm{sm}} \subset \mathcal{M}_{\mathrm{DH}}(X)^{\mathrm{sm}} \tag{4.4}
\end{equation*}
$$

does not admit any nonzero holomorphic section. The same argument applies if we replace X by \bar{X}. Since $\mathcal{M}_{\text {Hod }}(\bar{X})$ is also open in $\mathcal{M}_{\mathrm{DH}}(X)$, the restriction of $T \mathcal{M}_{\mathrm{DH}}(X)^{\mathrm{sm}}$ to

$$
\begin{equation*}
\iota\left(\mathcal{M}_{r, \mathcal{O}_{\bar{X}}}^{\mathrm{s}}\right) \subset \mathcal{M}_{\mathrm{Hod}}(\bar{X})^{\mathrm{sm}} \subset \mathcal{M}_{\mathrm{DH}}(X)^{\mathrm{sm}} \tag{4.5}
\end{equation*}
$$

does not admit any nonzero holomorphic section either. Here $\mathcal{M}_{r, \mathcal{O}_{\bar{X}}}$ is the moduli space of holomorphic $\operatorname{SL}(r, \mathbb{C})$-bundles E on \bar{X}, and ι denotes, as in (2.3) and in (3.2), the canonical embedding of $\mathcal{M}_{r, \mathcal{O}_{\bar{X}}}$ into $\mathcal{M}_{\text {Higgs }}(\bar{X}) \subset \mathcal{M}_{\text {Hod }}(\bar{X})$ defined by $E \longmapsto$ ($E, 0$).

The rest of the proof is similar to that of Corollary 2.5 . We will extend the \mathbb{C}^{*} action on $\mathcal{M}_{\mathrm{Hod}}(X)$ in (3.4) to $\mathcal{M}_{\mathrm{DH}}(X)$. First consider the action of \mathbb{C}^{*} on $\mathcal{M}_{\mathrm{Hod}}(\bar{X})$ defined as in (3.4) by substituting \bar{X} in place of X. Note that the action of any $t \in \mathbb{C}^{*}$ on the open subset $\mathbb{C}^{*} \times \mathcal{M}_{\text {rep }}\left(X_{\mathbb{R}}\right) \longrightarrow \mathcal{M}_{\text {Hod }}(X)$ in (4.2) coincides with the action of $1 / t$ on $\mathbb{C}^{*} \times \mathcal{M}_{\mathrm{rep}}\left(X_{\mathbb{R}}\right) \longrightarrow \mathcal{M}_{\mathrm{Hod}}(\bar{X})$. Therefore, we get an action of \mathbb{C}^{*} on $\mathcal{M}_{\mathrm{DH}}(X)$. Let

$$
\begin{equation*}
\eta: \mathcal{M}_{\mathrm{DH}}(X)^{\mathrm{sm}} \longrightarrow T \mathcal{M}_{\mathrm{DH}}(X)^{\mathrm{sm}} \tag{4.6}
\end{equation*}
$$

be the holomorphic vector field defined by this action of \mathbb{C}^{*}.
Let $Z \subset \mathcal{M}_{\mathrm{DH}}(X)$ be a closed analytic subset with the following three properties:

- Z is irreducible and has complex dimension $\left(r^{2}-1\right)(g-1)$.
- The smooth locus $Z^{\mathrm{sm}} \subseteq Z$ lies in the smooth locus $\mathcal{M}_{\mathrm{DH}}(X)^{\mathrm{sm}} \subset \mathcal{M}_{\mathrm{DH}}(X)$.
- The restriction of the holomorphic tangent bundle $T \mathcal{M}_{\mathrm{DH}}(X)^{\mathrm{sm}}$ to the subspace $Z^{\text {sm }}$ has no nonzero holomorphic sections.
We noted above that both $\iota\left(\mathcal{M}_{r, \mathcal{O}_{X}}\right)$ and $\iota\left(\mathcal{M}_{r, \mathcal{O}_{\bar{X}}}\right)$ (see (4.4) and (4.5)) satisfy these conditions.

The third condition on Z implies that the vector field η in (4.6) vanishes on Z^{sm}. It follows that the fixed point locus $\mathcal{M}_{\mathrm{DH}}(X) \mathbb{C}^{\mathbb{C}}$ contains $Z^{\text {sm }}$, and hence also contains its closure Z. Therefore, using Proposition 3.1 we conclude that Z is one of $\iota\left(\mathcal{M}_{r, \mathcal{O}_{X}}\right)$ and $\iota\left(\mathcal{M}_{r, \mathcal{O}_{\bar{X}}}\right)$. Using [KP, p. 229, Theorem E] we now know that the isomorphism class of the analytic space $\mathcal{M}_{\mathrm{DH}}(X)$ determines the isomorphism class of the unordered pair of Riemann surfaces $\{X, \bar{X}\}$. This completes the proof of the theorem.

References

[BBGN] Biswas, I., Brambila-Paz, L., Gómez, T.L., Newstead, P.E.: Stability of the picard bundle. Bull. London Math. Soc. 34, 561-568 (2002)
[BG] Biswas, I., Gómez, T.L.: A Torelli theorem for the moduli space of Higgs bundles on a curve. Quart. J. Math. 54, 159-169 (2003)
[BR] Biswas, I., Raghavendra, N.: Curvature of the determinant bundle and the kähler form over the moduli of parabolic bundles for a family of pointed curves. Asian J. Math. 2, 303-324 (1998)
[De] Deligne, P.: Letter to C. T. Simpson (March 20, 1989)
[Hi1] Hitchin, N.J.: Stable bundles and integrable systems. Duke Math. J. 54, 91-114 (1987)
[Hi2] Hitchin, N.J.: The self-duality equations on a Riemann surface. Proc. Lond. Math. Soc. 55, 59-126 (1987)
[KP] Kouvidakis, A., Pantev, T.: The automorphism group of the moduli space of semistable vector bundles. Math. Ann. 302, 225-268 (1995)
[La] Laumon, G.: Un analogue global du cône nilpotent. Duke Math. J. 57, 647-671 (1988)
[Ma] Maruyama, M.: Openness of a family of torsion free sheaves. J. Math. Kyoto Univ. 16, 627-637 (1976)
[NR1] Narasimhan, M.S., Ramanan, S.: Moduli of vector bundles on a compact Riemann surface. Ann. Math. 89, 14-51 (1969)
[NR2] Narasimhan, M.S., Ramanan, S.: Geometry of Hecke cycles. I. In: C. P. Ramanujan-a tribute, Tata Inst. Fund. Res. Studies in Math. 8, Berlin-New York: Springer, 1978, pp. 291-345
[NS] Narasimhan, M.S., Seshadri, C.S.: Stable and unitary vector bundles on a compact Riemann surface. Ann. of Math. 82, 540-567 (1965)
[Ni] Nitsure, N.: Moduli space of semistable pairs on a curve. Proc. Lond. Math. Soc. 62, 275-300 (1991)
[Sc] Scheja, G.: Fortsetzungssätze der komplex-analytischen cohomologie und ihre algebraische charakterisierung. Math. Ann. 157, 75-94 (1964)
[Se] Seshadri, C.S.: Fibrés vectoriels sur les courbes algébriques (notes written by J.-M. Drézet), Astérisque 96, Paris: Société Math. de France, 1982
[Si1] Simpson, C.T.: A weight two phenomenon for the moduli of rank one local systems on open varieties. http://arxiv.org/abs/:0710.2800.v1[math.AG], 2007
[Si2] Simpson, C.T.: Moduli of representations of the fundamental group of a smooth projective variety. I. Inst. Hautes Études Sci. Publ. Math. 79, 47-129 (1994)
[Si3] Simpson, C.T.: Moduli of representations of the fundamental group of a smooth projective variety. II. Inst. Hautes Études Sci. Publ. Math. 80, 5-79 (1994)

Communicated by N. A. Nekrasov

