Skip to main content
Log in

Universality of the Break-up Profile for the KdV Equation in the Small Dispersion Limit Using the Riemann-Hilbert Approach

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We obtain an asymptotic expansion for the solution of the Cauchy problem for the Korteweg-de Vries (KdV) equation

$$u_t+6uu_x+\epsilon^{2}u_{xxx}=0,\quad u(x,t=0,\epsilon)=u_0(x),$$

for \({\epsilon}\) small, near the point of gradient catastrophe (x c , t c ) for the solution of the dispersionless equation u t  + 6uu x  = 0. The sub-leading term in this expansion is described by the smooth solution of a fourth order ODE, which is a higher order analogue to the Painlevé I equation. This is in accordance with a conjecture of Dubrovin, suggesting that this is a universal phenomenon for any Hamiltonian perturbation of a hyperbolic equation. Using the Deift/Zhou steepest descent method applied on the Riemann-Hilbert problem for the KdV equation, we are able to prove the asymptotic expansion rigorously in a double scaling limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz M., Stegun I.A.: Handbook of mathematical functions. Dover Publications, New York (1968)

    Google Scholar 

  2. Baik J., Deift P., Johansson K.: On the distribution of the length of the longest increasing subsequence of random permutations. J. Amer. Math. Soc. 12, 1119–1178 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Beals, R., Deift, P., Tomei, C.: Direct and inverse scattering on the line. In: Mathematical Surveys and Monographs 28, Amer. Math. Soc., Providence, RI: 1988

  4. Bressan, A.: One dimensional hyperbolic systems of conservation laws. In: Current developments in mathematics 2002, Somerville, MA: Int. Press, 2003, pp. 1–37

  5. Bowick M.J., Brézin E.: Universal scaling of the tail of the density of eigenvalues in random matrix models. Phys. Lett. B 268(1), 21–28 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  6. Brézin E., Marinari E., Parisi G.: A nonperturbative ambiguity free solution of a string model. Phys. Lett. B 242(1), 35–38 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  7. Camassa R., Holm D.D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Claeys T., Vanlessen M.: The existence of a real pole-free solution of the fourth order analogue of the Painlevé I equation. Nonlinearity 20, 1163–1184 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Claeys T., Vanlessen M.: Universality of a double scaling limit near singular edge points in random matrix models. Commun. Math. Phys. 273, 499–532 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Degiovanni L., Magri F., Sciacca V.: On deformation of Poisson manifolds of hydrodynamic type. Commun. Math. Phys. 253(1), 1–24 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Deift, P.: Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach. Courant Lecture Notes 3, New York: New York University, 1999

  12. Deift P., Kriecherbauer T., McLaughlin K.T-R, Venakides S., Zhou X.: Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory. Comm. Pure Appl. Math. 52, 1335–1425 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Deift P., Kriecherbauer T., McLaughlin K.T-R, Venakides S., Zhou X.: Strong asymptotics of orthogonal polynomials with respect to exponential weights. Comm. Pure Appl. Math. 52, 1491–1552 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. Deift P., Venakides S., Zhou X.: New result in small dispersion KdV by an extension of the steepest descent method for Riemann-Hilbert problems. Internat. Math. Res. Notices 6, 285–299 (1997)

    Google Scholar 

  15. Deift P., Venakides S., Zhou X.: An extension of the steepest descent method for Riemann-Hilbert problems: the small dispersion limit of the Korteweg-de Vries. Proc. Natl. Acad. Sc. USA 95(2), 450–454 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. Deift P., Zhou X.: A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation. Ann. Math. 137(2), 295–368 (1993)

    Article  MathSciNet  Google Scholar 

  17. Dubrovin B.: On Hamiltonian perturbations of hyperbolic systems of conservation laws, II: universality of critical behaviour. Commun. Math. Phys. 267, 117–139 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Dubrovin, B., Grava, T., Klein, C.: On universality of critical behaviour in the focusing nonlinear Schrödinger equation, elliptic umbilic catastrophe and the tritronquée solution to the Painlevé-I equation. Preprint: http://babbage.sissa.it/abs/0704.0501, 2007

  19. Dubrovin, B., Zhang, Y. : Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov-Witten invariants. Preprint:http://xxx.lanl.gov/math.DG/0108160, 2001

  20. Fujiié S.: Semiclassical representation of the scattering matrix by a Feynman integral. Commun. Math. Phys. 198(2), 407–425 (1998)

    Article  MATH  ADS  Google Scholar 

  21. Fujiié S., Ramond T.: Matrice de scattering et résonances associées à  une orbite hétérocline (French) [Scattering matrix and resonances associated with a heteroclinic orbit]. Ann. Inst. H. Poincaré Phys. Théor. 69(1), 31–82 (1998)

    MATH  Google Scholar 

  22. Gardner S.C., Greene J.M., Kruskal M.D., Miura R.M.: Korteweg-de Vries equation and generalizations. VI. Methods for exact solution. Comm. Pure Appl. Math. 27, 97–133 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  23. Getzler E.: A Darboux theorem for Hamiltonian operators in the formal calculus of variations. Duke Math. J. 111, 535–560 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  24. Grava T., Klein C.: Numerical solution of the small dispersion limit of Korteweg de Vries and Whitham equations. Comm. Pure Appl. Math. 60, 1623–1664 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  25. Grava, T., Klein, C.: Numerical study of a multiscale expansion of KdV and Camassa-Holm equation. Preprint http://babbage.sissa.it/abs/math-ph/0702038, 2007

  26. Gurevich A.G., Pitaevskii L.P.: Non stationary structure of a collisionless shock waves. JEPT Lett. 17, 193–195 (1973)

    ADS  Google Scholar 

  27. Kapaev A.A.: Weakly nonlinear solutions of equation \({P_{I}^{2}}\) . J. Math. Sc. 73(4), 468–481 (1995)

    Article  MathSciNet  Google Scholar 

  28. Lax P.D.: Integrals of nonlinear equations of evolution and solitary waves. Comm. Pure Appl. Math. 21, 467–490 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  29. Lax, P.D., Levermore, C.D.: The small dispersion limit of the Korteweg de Vries equation, I,II,III. Comm. Pure Appl. Math. 36, 253–290, 571–593, 809–830 (1983)

    Google Scholar 

  30. Lorenzoni P.: Deformations of bi-Hamiltonian structures of hydrodynamic type. J. Geom. Phys. 44(2-3), 331–375 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  31. Agranovich Z.S., Marchenko V.A.: The inverse problem of scattering theory, translated from the Russian by B.D. Seckler. Gordon and Breach Science Publishers, New York-London (1963)

    MATH  Google Scholar 

  32. Menikoff A.: The existence of unbounded solutions of the Korteweg-de Vries equation. Commun. Pure Appl. Math. 25, 407–432 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  33. Moore G.: Geometry of the string equations. Commun. Math. Phys. 133(2), 261–304 (1990)

    Article  MATH  ADS  Google Scholar 

  34. Ramond T.: Semiclassical study of quantum scattering on the line. Commun. Math. Phys. 177(1), 221–254 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  35. Shabat, A.B.: One dimensional perturbations of a differential operator and the inverse scattering problem. In: Problems in Mechanics and Mathematical Physics, Moscow: Nauka, 1976

  36. Venakides S.: The Korteweg de Vries equations with small dispersion: higher order Lax-Levermore theory. Commun. Pure Appl. Math. 43, 335–361 (1990)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Claeys.

Additional information

Communicated by M. Aizenman

Rights and permissions

Reprints and permissions

About this article

Cite this article

Claeys, T., Grava, T. Universality of the Break-up Profile for the KdV Equation in the Small Dispersion Limit Using the Riemann-Hilbert Approach. Commun. Math. Phys. 286, 979–1009 (2009). https://doi.org/10.1007/s00220-008-0680-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0680-5

Keywords

Navigation