Skip to main content
Log in

Canonical Sasakian Metrics

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Let M be a closed manifold of Sasaki type. A polarization of M is defined by a Reeb vector field, and for any such polarization, we consider the set of all Sasakian metrics compatible with it. On this space we study the functional given by the square of the L 2-norm of the scalar curvature. We prove that its critical points, or canonical representatives of the polarization, are Sasakian metrics that are transversally extremal. We define a Sasaki-Futaki invariant of the polarization, and show that it obstructs the existence of constant scalar curvature representatives. For a fixed CR structure of Sasaki type, we define the Sasaki cone of structures compatible with this underlying CR structure, and prove that the set of polarizations in it that admit a canonical representative is open. We use our results to describe fully the case of the sphere with its standard CR structure, showing that each element of its Sasaki cone can be represented by a canonical metric; we compute their Sasaki-Futaki invariant, and use it to describe the canonical metrics that have constant scalar curvature, and to prove that only the standard polarization can be represented by a Sasaki-Einstein metric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boyer C.P. and Galicki K. (2000). A note on toric contact geometry. J. Geom. Phys. 35: 288–298

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. Boyer C.P. and Galicki K. (2001). Einstein manifolds and contact geometry. Proc. Amer. Math. 129: 2419–2430

    Article  MATH  MathSciNet  Google Scholar 

  3. Boyer C.P. and Galicki K. (2008). Sasakian Geometry. Oxford Mathematical Monographs. Oxford University Press, Oxford

    MATH  Google Scholar 

  4. Boyer C.P. and Galicki K. (2005). Sasakian geometry, hypersurface singularities and Einstein metrics. Rend. Circ. Mat. Palermo (2) Suppl. 75: 57–87

    MathSciNet  Google Scholar 

  5. Boyer C.P., Galicki K. and Kollár J. (2005). Einstein metrics on spheres. Ann. of Math. 162: 557–580

    MATH  MathSciNet  Google Scholar 

  6. Boyer C.P., Galicki K. and Matzeu P. (2006). On Eta-Einstein Sasakian Geometry. Commun. Math. Phys. 262: 177–208

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Brinzanescu V. and Slobodeanu R. (2006). Holomorphicity and Walczak formula on Sasakian manifolds. J. Geom. and Phys. 57(1): 193–207

    Article  ADS  MathSciNet  Google Scholar 

  8. Bryant R.L. (2001). Bochner-Kähler metrics. J. Amer. Math. Soc. 14: 623–715

    Article  MATH  MathSciNet  Google Scholar 

  9. Calabi E. (1982). Extremal Kähler metrics. In: Yau, S.T. (eds) Seminar of Differerential Geometry, Annals of Math. Studies,102., pp 259–290. Princeton University Press, Princeton, NJ

    Google Scholar 

  10. Calabi, E.: Extremal Kähler metrics II. In: Differential geometry and complex analysis I. Chavel, H.M. Farkas, eds. Berlin-Heidelberg-New York: Springer-Verlag, 1985, pp. 95–114

  11. Calabi, E.: The Space of Kähler Metrics. Proc. Int. Cong. Math., Amsterdam, Vol. 2, 1954, pp. 206–207

  12. Cheeger J. and Tian G. (1994). On the cone structure at infinity of Ricci flat manifolds with Euclidean volume growth and quadratic curvature decay. Invent. Math. 118: 493–571

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. Chern S.S. and Moser J.K. (1974). Real hypersurfaces in complex manifolds. Acta Math. 133: 219–271

    Article  MathSciNet  Google Scholar 

  14. Cvetic M., Lü H., Page D.N. and Pope C.N. (2005). New Einstein-Sasaki spaces in five and higher dimensions. Phys. Rev. Lett. 95: 4

    Article  Google Scholar 

  15. David, L.: The Bochner-flat cone of a CR manifold. http://arxiv.org/list/math.DG/0512604, 2005

  16. David, L., Gauduchon, P.: The Bochner-flat geometry of weighted projective spaces. C.R.M. Proceedings and Lecture Notes 40, Providence, RI: Amer. Math. Soc., 2006, pp. 104–156

  17. Futaki A. (1983). An obstruction to the existence of Einstein Kähler metrics. Invent. Math. 73: 437–443

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Gauntlett J.P., Martelli D., Sparks J. and Waldram W. (2004). Sasaki-Einstein metrics on S 2 × S 3 . Adv. Theor. Math. Phys. 8: 711–734

    MATH  MathSciNet  Google Scholar 

  19. Gauntlett J.P., Martelli D., Sparks J. and Waldram W. (2004). A new infinite class of Sasaki-Einstein manifolds. Adv. Theor. Math. Phys. 8: 987–1000

    MATH  MathSciNet  Google Scholar 

  20. Kollár J. (2006). Circle actions on simply connected 5-manifolds. Topology 45: 643–671

    Article  MATH  MathSciNet  Google Scholar 

  21. Kollár J. (2005). Einstein metrics on five-dimensional Seifert bundles. J. Geom. Anal. 15: 445–476

    MATH  MathSciNet  Google Scholar 

  22. LeBrun, C., Simanca, S.R.: On the Kähler Classes of Extremal Metrics. In: Geometry and Global Analysis, (First MSJ Intern. Res. Inst. Sendai, Japan) eds. T. Kotake, S. Nishikawa, R. Schoen, Sendai. Tohoku Univ. Press, 1993, pp. 255–271

  23. Lee J.M. (1996). CR manifolds with noncompact connected automorphism groups. J. Geom. Anal. 6: 79–90

    Article  MATH  MathSciNet  Google Scholar 

  24. Lichnerowicz A. (1957). Sur les transformations analytiques des variétés kählériennes compactes. C.R. Acad. Sci. Paris 244: 3011–3013

    MATH  MathSciNet  Google Scholar 

  25. Martelli D. and Sparks J. (2005). Toric Sasaki-Einstein metrics on S 2 × S 3 . Phys. Lett. B 621: 208–212

    Article  ADS  MathSciNet  Google Scholar 

  26. Martelli D. and Sparks J. (2006). Toric geometry, Sasaki-Einstein manifolds and a new infinite class of AdS/CFT duals. Commun. Math. Phys. 262: 51–89

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. Martelli D., Sparks J. and Yau S.-T. (2005). The geometric dual of a-maximisation for toric Sasaki-Einstein manifolds. Commun. Math. Phys. 268: 39–65

    Article  ADS  MathSciNet  Google Scholar 

  28. Martelli, D., Sparks, J., Yau, S.-T.: Sasaki-Einstein manifolds and volume minimisation. http://arxiv.org/list/hepth/0603021, 2006

  29. Matsushima Y. (1957). Sur la structure du groupe d’homéomorphismes analytiques d’une certaine variété kählérienne. Nagoya Math. J. 11: 145–150

    MATH  MathSciNet  Google Scholar 

  30. Molino, P.: Riemannian Foliations. Progress in Mathematics 73, Boston, MA: Birkhäuser Boston Inc., 1988

  31. Nishikawa S. and Tondeur P. (1988). Transversal infinitesimal automorphisms for harmonic Kähler foliations. Tôhuku Math. J. 40: 599–611

    Article  MATH  MathSciNet  Google Scholar 

  32. O’Neill B. (1966). The fundamental equations of a submersion. Mich. Math. J. 13: 459–469

    Article  MATH  MathSciNet  Google Scholar 

  33. Schoen R. (1995). On the conformal and CR automorphism groups. Geom. Funct. Anal. 5: 464–481

    Article  MATH  MathSciNet  Google Scholar 

  34. Simanca, S.R.: Canonical Metrics on Compact Almost Complex Manifolds. Publicações Matemáticas do IMPA, Rio de Janeiro: IMPA, 2004, 97 pp.

  35. Simanca S.R. (2005). Heat Flows for Extremal Kähler Metrics. Ann. Scuola Norm. Sup. Pisa CL. Sci. 4: 187–217

    MATH  MathSciNet  Google Scholar 

  36. Webster S.M. (1977). On the transformation group of a real hypersurface. Trans. Amer. Math. Soc. 231: 179–190

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles P. Boyer.

Additional information

Communicated by G.W. Gibbons

During the preparation of this work, the first two authors were partially supported by NSF grant DMS-0504367.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boyer, C.P., Galicki, K. & Simanca, S.R. Canonical Sasakian Metrics. Commun. Math. Phys. 279, 705–733 (2008). https://doi.org/10.1007/s00220-008-0429-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0429-1

Keywords

Navigation