Skip to main content

Advertisement

Log in

Structure of States Which Satisfy Strong Subadditivity of Quantum Entropy with Equality

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We give an explicit characterisation of the quantum states which saturate the strong subadditivity inequality for the von Neumann entropy. By combining a result of Petz characterising the equality case for the monotonicity of relative entropy with a recent theorem by Koashi and Imoto, we show that such states will have the form of a so–called short quantum Markov chain, which in turn implies that two of the systems are independent conditioned on the third, in a physically meaningful sense. This characterisation simultaneously generalises known necessary and sufficient entropic conditions for quantum error correction as well as the conditions for the achievability of the Holevo bound on accessible information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Accardi, L., Frigerio, A.: Markovian cocycles. Proc. Proc. Roy. Irish Acad. 83A(2), 251–263 (1983)

    MATH  Google Scholar 

  2. Barnum, H., Knill, E.: Reversing quantum dynamics with near–optimal quantum and classical fidelity. J. Math. Phys. 43(5), 2097–2106 (2002)

    Article  Google Scholar 

  3. Barnum, H., Nielsen, M. A., Schumacher, B.: Information transmission through a noisy quantum channel. Phys. Rev. A 57(6), 4153–4175 (1998)

    Article  Google Scholar 

  4. Bratteli, O., Robinson, D. W.: Operator algebras and quantum statistical mechanics. 1. C * - and W * –algebras, symmetry groups, decomposition of states. 2nd ed., Texts and Monographs in Physics, New York: Springer Verlag, 1987

  5. Holevo, A. S.: Bounds for the quantity of information transmitted by a quantum channel. Probl. Inf. Transm. 9(3), 177–183 (1973)

    Google Scholar 

  6. Horodecki, M., Horodecki, P., Horodecki, R.: Mixed-state entanglement and distillation: Is there a ‘bound’ entanglement in nature?. Phys. Rev. Lett. 80, 5239–5242 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Koashi, M., Imoto, N.: Operations that do not disturb partially known quantum states. Phys. Rev. A 66(2), 022318, (2002)

    Article  Google Scholar 

  8. Kullback, S., Leibler, R. A.: On information and sufficiency. Ann. Math. Statistics, 1951

  9. Lieb, E. H., Ruskai, M. B.: Proof of the strong subadditivity of quantum-mechanical entropy. J. Math. Phys. 14, 1938–1941 (1973)

    Article  Google Scholar 

  10. Lindblad, G.: Completely positive maps and entropy inequalities. Commun. Math. Phys.40, 147–151 (1975)

    Google Scholar 

  11. Lindblad, G.: Quantum entropy and quantum measurements. In: C. Bendjaballah, O. Hirota, S. Reynaud (eds.), Quantum Aspects of Optical Communications, Lecture Notes in Physics, Vol. 378, Berlin: Springer Verlag, 1991, pp. 71–80

  12. Lindblad, G.: A general no–cloning theorem. Lett. Math. Phys. 47, 189–196 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. von Neumann, J.: Thermodynamik quantenmechanischer Gesamtheiten. Nachr. der Gesellschaft der Wiss. Gött., 273–291, (1927). (see also J. von Neumann, Mathematical Foundations of Quantum Mechanics. Princeton, NJ: Princeton University Press, 1996

  14. Ohya, M., Petz, D.: Quantum Entropy and Its Use. Texts and Monographs in Physics, Berlin-Heidelberg: Springer Verlag, 1993

  15. Petz, D.: Sufficient subalgebras and the relative entropy of states of a von Neumann algebra. Commun. Math. Phys. 105, no. 1, 123–131, 1986. Sufficiency of channels over von Neumann algebras. Quart. J. Math. Oxford Ser. 39(153), 97–108 (1988)

    Google Scholar 

  16. Petz, D.: Monotonicity of quantum relative entropy revisited. Rev. Math. Phys. 15, 79–91 (2003)

    Article  MathSciNet  Google Scholar 

  17. Ruskai, M. B.: Inequalities for Quantum Entropy: A Review with Conditions for Equality. J. Math. Phys. 43, 4358–4375 (2002)

    Article  Google Scholar 

  18. Schumacher, B., Nielsen, M. A.: Quantum data processing and error correction. Phys. Rev. A. 54, 2629–2635 (1996)

    Article  MathSciNet  Google Scholar 

  19. Shannon, C. E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423, 623–656 (1948)

    MathSciNet  Google Scholar 

  20. Shor, P. W.: Additivity of the Classical Capacity of Entanglement–Breaking Quantum Channels. J. Math. Phys. 43, 4334–4340 (2002)

    Article  MathSciNet  Google Scholar 

  21. Stinespring, W. F.: Positive functions on C*–algebras. Proc. Am. Math. Soc. 6, 211–216 (1955)

    MathSciNet  MATH  Google Scholar 

  22. Takesaki, M.: Theory of Operator Algebras I. New York–Heidelberg–Berlin: Springer–Verlag, 1979

  23. Uhlmann, A.: Relative entropy and the Wigner–Yanase–Dyson–Lieb concavity in an interpolation theory. Commun. Math. Phys. 54(1), 21–32 (1977)

    MATH  Google Scholar 

  24. Umegaki, H.: Conditional expectation in an operator algebra IV. Entropy and information. Kōdai Math. Sem. Rep. 14, 59–85 (1962)

    MATH  Google Scholar 

  25. Wehrl, A.: General properties of entropy. Rev. Mod. Phys. 50(2), 221–260 (1978)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Winter.

Additional information

M.B. Ruskai

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayden, P., Jozsa, R., Petz, D. et al. Structure of States Which Satisfy Strong Subadditivity of Quantum Entropy with Equality. Commun. Math. Phys. 246, 359–374 (2004). https://doi.org/10.1007/s00220-004-1049-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-004-1049-z

Keywords

Navigation