Skip to main content
Log in

A primerless molecular diagnostic: phosphorothioated-terminal hairpin formation and self-priming extension (PS-THSP)

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

There are various ways that priming can occur in nucleic acid amplification reactions. While most reactions rely on a primer to initiate amplification, a mechanism for DNA amplification has been developed in which hairpin sequences at the 3’ terminus of a single-stranded oligonucleotide fold on themselves to initiate priming. Unfortunately, this method is less useful for diagnostic applications because the self-folding efficiency is low and only works over a narrow range of reaction temperatures. In order to adapt this strategy for analytical applications we have developed a variant that we term phosphorothioated-terminal hairpin formation and self-priming extension (PS-THSP). In PS-THSP a phosphorothioate (PS) modification is incorporated into the DNA backbone, leading to a reduction in the thermal stability of dsDNA and increased self-folding of terminal hairpins. By optimizing the number of PS linkages that are included in the initial template, we greatly increased self-folding efficiency and the range of reaction temperatures, ultimately achieving a detection limit of 1 pM. This improved method was readily adapted to the detection of single nucleotide polymorphisms and to the detection of non-nucleic acid analytes, such as alkaline phosphatase, which was quantitatively detected at a limit of 0.05 mU/mL, approximately 10-fold better than commercial assays.

Efficient self-folding by phosphorothioate (PS) modification

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erlich H. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol. 1986;51(1):263–73.

    Article  CAS  Google Scholar 

  2. Saiki RK, Scharf S, Faloona F, et al. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985;230:1350–4. doi:10.1126/science.2999980.

    Article  CAS  Google Scholar 

  3. Compton J. Nucleic acid sequence-based amplification. Nature. 1991;350:91–2. doi:10.1038/350091a0.

    Article  CAS  Google Scholar 

  4. Kurn N, Chen P, Heath JD, Kopf-Sill A, Stephens KM, Wang S. Novel isothermal, linear nucleic acid amplification systems for highly multiplexed applications. Clin Chem. 2005;51:1973–81. doi:10.1373/clinchem.2005.053694.

    Article  CAS  Google Scholar 

  5. Mukai H, Uemori T, Takeda O, et al. Highly efficient isothermal DNA amplification system using three elements of 5’-DNA-RNA-3’ chimeric primers, RNaseH and strand-displacing DNA polymerase. J Biochem (Tokyo). 2007;142:273–81. doi:10.1093/jb/mvm138.

    Article  CAS  Google Scholar 

  6. Walker GT, Fraiser MS, Schram JL, Little MC, Nadeau JG, Malinowski DP. Strand displacement amplification–an isothermal, in vitro DNA amplification technique. Nucleic Acids Res. 1992;20:1691–6.

    Article  CAS  Google Scholar 

  7. Walker GT, Little MC, Nadeau JG, Shank DD. Isothermal in vitro amplification of DNA by a restriction enzyme/DNA polymerase system. Proc Natl Acad Sci. 1992;89:392–6.

    Article  CAS  Google Scholar 

  8. Vincent M, Xu Y, Kong H. Helicase-dependent isothermal DNA amplification. EMBO Rep. 2004;5:795–800. doi:10.1038/sj.embor.7400200.

    Article  CAS  Google Scholar 

  9. Piepenburg O, Williams CH, Stemple DL, Armes NA. DNA detection using recombination proteins. PLoS Biol. 2006;4, e204. doi:10.1371/journal.pbio.0040204.

    Article  Google Scholar 

  10. Jung C, Chung JW, Kim UO, Kim MH, Park HG. Isothermal target and signaling probe amplification method, based on a combination of an isothermal chain amplification technique and a fluorescence resonance energy transfer cycling probe technology. Anal Chem. 2010;82:5937–43. doi:10.1021/ac100606m.

    Article  CAS  Google Scholar 

  11. Fire A, Xu SQ. Rolling replication of short DNA circles. Proc Natl Acad Sci. 1995;92:4641–5.

    Article  CAS  Google Scholar 

  12. Lizardi PM, Huang X, Zhu Z, Bray-Ward P, Thomas DC, Ward DC. Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nat Genet. 1998;19:225–32. doi:10.1038/898.

    Article  CAS  Google Scholar 

  13. Notomi T, Okayama H, Masubuchi H, et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000;28, e63. doi:10.1093/nar/28.12.e63.

    Article  CAS  Google Scholar 

  14. Mitani Y, Lezhava A, Kawai Y, et al. Rapid SNP diagnostics using asymmetric isothermal amplification and a new mismatch-suppression technology. Nat Methods. 2007;4:257–62. doi:10.1038/nmeth1007.

    Article  CAS  Google Scholar 

  15. Kato T, Liang X, Asanuma H. Model of elongation of short DNA sequence by thermophilic DNA polymerase under isothermal conditions. Biochemistry (Mosc). 2012;51:7846–53. doi:10.1021/bi3010413.

    Article  CAS  Google Scholar 

  16. Nagamine K, Hase T, Notomi T. Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol Cell Probes. 2002;16:223–9.

    Article  CAS  Google Scholar 

  17. Chen S, Ge B. Development of a toxR-based loop-mediated isothermal amplification assay for detecting Vibrio parahaemolyticus. BMC Microbiol. 2010;10:41. doi:10.1186/1471-2180-10-41.

    Article  Google Scholar 

  18. Boczkowska M, Guga P, Stec WJ. Stereodefined phosphorothioate analogues of DNA: relative thermodynamic stability of the model PS-DNA/DNA and PS-DNA/RNA complexes. Biochemistry (Mosc). 2002;41:12483–7. doi:10.1021/bi026225z.

    Article  CAS  Google Scholar 

  19. LaPlanche LA, James TL, Powell C, et al. Phosphorothioate-modified oligodeoxyribonucleotides. III. NMR and UV spectroscopic studies of the Rp-Rp, Sp-Sp, and Rp-Sp duplexes, [d(GGSAATTCC)]2, derived from diastereomeric O-ethyl phosphorothioates. Nucleic Acids Res. 1986;14:9081–93.

    Article  CAS  Google Scholar 

  20. Eckstein F. Nucleoside phosphorothioates. Annu Rev Biochem. 1985;54:367–402. doi:10.1146/annurev.bi.54.070185.002055.

    Article  CAS  Google Scholar 

  21. Stein CA, Cheng YC. Antisense oligonucleotides as therapeutic agents–is the bullet really magical? Science. 1993;261:1004–12. doi:10.1126/science.8351515.

    Article  CAS  Google Scholar 

  22. Jose D, Datta K, Johnson NP, von Hippel PH. Spectroscopic studies of position-specific DNA “breathing” fluctuations at replication forks and primer-template junctions. Proc Natl Acad Sci. 2009;106:4231–6. doi:10.1073/pnas.0900803106.

    Article  CAS  Google Scholar 

  23. Bruse SE, Moreau MP, Azaro MA, Zimmerman R, Hoffman A, Brzustowicz LM. Improvements to bead based oligonucleotide ligation SNP genotyping assays. BioTechniques. 2008;45:559–71. doi:10.2144/000112960.

    Article  CAS  Google Scholar 

  24. Conze T, Shetye A, Tanaka Y, et al. Analysis of genes, transcripts, and proteins via DNA ligation. Annu Rev Anal Chem (Palo Alto, Calif). 2009;2:215–39. doi:10.1146/annurev-anchem-060908-155239.

    Article  CAS  Google Scholar 

  25. Hardenbol P, Banér J, Jain M, et al. Multiplexed genotyping with sequence-tagged molecular inversion probes. Nat Biotechnol. 2003;21:673–8. doi:10.1038/nbt821.

    Article  CAS  Google Scholar 

  26. Qi X, Bakht S, Devos KM, Gale MD, Osbourn A. L-RCA (ligation-rolling circle amplification): a general method for genotyping of single nucleotide polymorphisms (SNPs). Nucleic Acids Res. 2001;29, e116.

    Article  CAS  Google Scholar 

  27. Shin GW, Chung B, Jung GY, Jung GY. Multiplex ligase-based genotyping methods combined with CE. Electrophoresis. 2014;35:1004–16. doi:10.1002/elps.201300361.

    Article  CAS  Google Scholar 

  28. Barany F. Genetic disease detection and DNA amplification using cloned thermostable ligase. Proc Natl Acad Sci. 1991;88:189–93.

    Article  CAS  Google Scholar 

  29. Barany F. The ligase chain reaction in a PCR world. Genome Res. 1991;1:5–16. doi:10.1101/gr.1.1.5.

    Article  CAS  Google Scholar 

  30. Zhang S, Wu Z, Shen G, Yu R. A label-free strategy for SNP detection with high fidelity and sensitivity based on ligation-rolling circle amplification and intercalating of methylene blue. Biosens Bioelectron. 2009;24:3201–7. doi:10.1016/j.bios.2009.03.012.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health [5 R01 AI092839, 5 R01 GM094933]. We sincerely thank Caitlin Sanford for her editing services.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew D. Ellington.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Published in the topical collection Isothermal Nucleic Acid Amplification in Bioanalysis with guest editor Maria Jesus Lobo Castañón.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 591 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, C., Ellington, A.D. A primerless molecular diagnostic: phosphorothioated-terminal hairpin formation and self-priming extension (PS-THSP). Anal Bioanal Chem 408, 8583–8591 (2016). https://doi.org/10.1007/s00216-016-9479-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9479-y

Keywords

Navigation