Skip to main content
Log in

Delivering quantum dots into cells: strategies, progress and remaining issues

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The use of semiconductor quantum dots (QDs) in biological sensing and labeling continues to grow with each year. Current and projected applications include use as fluorescent labels for cellular labeling, intracellular sensors, deep-tissue and tumor imaging agents, sensitizers for photodynamic therapy, and more recently interest has been sparked in using them as vectors for studying nanoparticle-mediated drug delivery. Many of these applications will ultimately require the QDs to undergo targeted intracellular delivery, not only to specific cells, but also to a variety of subcellular compartments and organelles. It is apparent that this issue will be critical in determining the efficacy of using QDs, and indeed a variety of other nanoparticles, for these types of applications. In this review, we provide an overview of the current methods for delivering QDs into cells. Methods that are covered include facilitated techniques such as those that utilize specific peptide sequences or polymer delivery reagents and active methods such as electroporation and microinjection. We critically examine the benefits and liabilities of each strategy and illustrate them with selected examples from the literature. Several important related issues such as QD size and surface coating, methods for QD biofunctionalization, cellular physiology and toxicity are also discussed. Finally, we conclude by providing a perspective of how this field can be expected to develop in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Murray CB, Kagan CR, Bawendi MG (2000) Ann Rev Mater Sci 30:545–610

    Article  CAS  Google Scholar 

  2. Medintz I, Uyeda H, Goldman E, Mattoussi H (2005) Nature Mater 4:435–446

    Article  CAS  Google Scholar 

  3. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Science 307:538–544

    Article  CAS  Google Scholar 

  4. Alivisatos AP, Gu W, Larabell CA (2005) Ann Rev Biomed Eng 7:55–76

    Article  CAS  Google Scholar 

  5. Alivisatos AP (2004) Nature Biotech 22:47–52

    Article  CAS  Google Scholar 

  6. Klostranec JM, Chan WCW (2006) Adv Mater 18:1953–1964

  7. Larson DR, Zipfel WR, Williams RM, Clark SW, Bruchez MP, Wise FW, Webb WW (2003) Science 300:1434–1437

    Article  CAS  Google Scholar 

  8. Clapp AR, Pons T, Medintz IL, Delehanty JB, Melinger JS, Tiefenbrunn T, Dawson PE, Fisher BR, O'Rourke B, Mattoussi H (2007) Adv Mater 19:1921–1926

    Article  CAS  Google Scholar 

  9. Clapp AR, Medintz IL, Mattoussi H (2005) ChemPhysChem 7:47–57

    Article  CAS  Google Scholar 

  10. Medintz IL, Clapp AR, Brunel FM, Tiefenbrunn T, Uyeda HT, Chang EL, Deschamps JR, Dawson PE, Mattoussi H (2006) Nature Mater 5:581–589

    Article  CAS  Google Scholar 

  11. Medintz IL, Clapp AR, Mattoussi H, Goldman ER, Fisher B, Mauro JM (2003) Nature Mater 2:630–638

    Article  CAS  Google Scholar 

  12. Goldman ER, Medintz IL, Whitley J, Hayhurst A, Clapp AR, Uyeda HT, Deschamps JR, Lassman M, Mattoussi H (2005) J Am Chem Soc 127:6744–6751

    Article  CAS  Google Scholar 

  13. Susumu K, Uyeda HT, Medintz IL, Pons T, Delehanty JB, Mattoussi H (2007) J Am Chem Soc 129:13987–13996

    Article  CAS  Google Scholar 

  14. Pinaud F, King D, Moore HP, Weiss S (2004) J Am Chem Soc 126:6115–6123

    Article  CAS  Google Scholar 

  15. Sapsford KE, Pons T, Medintz IL, Higashiya S, Brunel FM, Dawson PE, Mattoussi H (2007) J Phys Chem C 111:11528–11538

    Article  CAS  Google Scholar 

  16. Wu X, Liu H, Liu J, Haley KN, Treadway JA, Larson JP, Ge N, Peale F, Bruchez MP (2003) Nature Biotech 21:41–46

    Article  CAS  Google Scholar 

  17. Howarth M, Takao K, Hayashi Y, Ting A (2005) Proc Natl Acad Sci USA 102:7583–7588

    Article  CAS  Google Scholar 

  18. Chattopadhyay PK, Price DA, Harper TF, Betts MR, Yu J, Gostick E, Perfetto SP, Goepfert P, Koup RA, De Rosa SC, Bruchez MP, Roederer M (2006) Nature Med 12:972–977

    Article  CAS  Google Scholar 

  19. Luccardini C, Yakovlev A, Gaillard S, van't Hoff M, Alberola AP, Mallet JM, Parak WJ, Feltz A, Oheim M (2007) J Biomed Biotechnol 2007(7):68963

  20. Ozkan M (2004) Drug Discov Today 9:1065–1071

    Article  CAS  Google Scholar 

  21. Emerich DF, Thanos CG (2006) Biomol Eng 23:171–184

    Article  CAS  Google Scholar 

  22. Hild WA, Breunig M, Goepferich A (2008) Eur J Pharm Biopharm 68:153–168

    Article  CAS  Google Scholar 

  23. Sukhorukov GB, Mohwald H (2007) Trends Biotechnol 25:93–98

    Article  CAS  Google Scholar 

  24. Jiang W, Kim BYS, Rutka JT, Chan WCW (2007) Exp Opin Drug Deliv 4:621–633

    Article  CAS  Google Scholar 

  25. Kim S, Lim YT, Soltesz EG, De Grand AM, Lee J, Nakayama A, Parker JA, Mihaljevic T, Laurence RG, Dor DM, Cohn LH, Bawendi MG, Frangioni JV (2004) Nature Biotech 22:93–97

    Article  CAS  Google Scholar 

  26. Groman EV, Bouchard JC, Reinhardt CP, Vaccaro DE (2007) Bioconjug Chem 18:1763–1771

    Article  CAS  Google Scholar 

  27. Bakalova R, Zhelev Z, Aoki I, Kanno I (2007) Nature Photonics 1:487–489

    Article  CAS  Google Scholar 

  28. Watson P, Jones AT, Stephens DJ (2005) Adv Drug Deliv Rev 57:43–61

    Article  CAS  Google Scholar 

  29. Jaiswal JK, Mattoussi H, Mauro JM, Simon SM (2003) Nature Biotech 21:47–51

    Article  CAS  Google Scholar 

  30. Delehanty JB, Medintz IL, Pons T, Brunel FM, Dawson PE, Mattoussi H (2006) Bioconjug Chem 17:920–927

    Article  CAS  Google Scholar 

  31. Helmick L, Antúnez de Mayolo A, Zhang Y, Cheng CM, Watkins SC, Wu C, LeDuc PR (2008) Nano Lett 8:1303–1308

    Article  CAS  Google Scholar 

  32. Nabiev I, Mitchell S, Davies A, Williams Y, Kelleher D, Moore R, Gun'ko YK, Byrne S, Rakovich YP, Donegan JF, Sukhanova A, Conroy J, Cottell D, Gaponik N, Rogach A, Volkov Y (2007) Nano Lett 7:3452–3461

    Article  CAS  Google Scholar 

  33. Hardman R (2006) Environ Health Perspect 114:165–172

    Article  Google Scholar 

  34. El-Andaloussi S, Holm T, Langel U (2005) Curr Pharm Des 11:3597–3611

    Article  CAS  Google Scholar 

  35. Frankel AD, Pabo CO (1988) Cell 1988:1189–1193

    Article  Google Scholar 

  36. Ruan G, Agrawal A, Marcus AI, Nie S (2007) J Am Chem Soc 129:14759–14766

    Article  CAS  Google Scholar 

  37. Lei Y, Tang H, Yao L, Yu R, Feng M, Zou B (2008) Bioconjug Chem 19:421–427

    Article  CAS  Google Scholar 

  38. Santra S, Yang H, Holloway PH, Stanley JT, Mericle RA (2005) J Am Chem Soc 127:1656–1657

    Article  CAS  Google Scholar 

  39. Santra S, Yang H, Stanley JT, Holloway PH, Moudgil BM, Walter G, Mericle RA (2005) Chem Commun 25:3144–3146

    Article  CAS  Google Scholar 

  40. Xue FL, Chen JY, Guo J, Wang CC, Yang WL, Wang PN, Lu DR (2007) J Fluoresc 17:149–154

    Article  CAS  Google Scholar 

  41. Munoz-Morris MA, Heitz F, Divita G, Morris MC (2007) Biochem Biophys Res Commun 355:877–882

    Article  CAS  Google Scholar 

  42. Rozenzhak SM, Kadakia MP, Caserta TM, Westbrook TR, Stone MO, Naik RR (2007) Chem Commun 17:2217–2219

    Google Scholar 

  43. Lieleg O, Lopez-Garcia M, Semmrich C, Auernheimer J, Kessler H, Bausch AR (2007) Small 3:1560–1565

    Article  CAS  Google Scholar 

  44. Smith BR, Cheng Z, De A, Koh AL, Sinclair R, Gambhir SS (2008) Nano Lett 8(9):2599–2606

    Article  CAS  Google Scholar 

  45. Biju V, Muraleedharan D, Nakayama K, Shinohara Y, Itoh T, Baba Y, Ishikawa M (2007) Langmuir 23:10254–10261

    Article  CAS  Google Scholar 

  46. Lidke DS, Nagy P, Heintzmann R, Arndt-Jovin DJ, Post JN, Grecco HE, Jares-Erijman EA, Jovin TM (2004) Nat Biotechnol 22:198–203

    Article  CAS  Google Scholar 

  47. Liu W, Howarth M, Greytak AB, Zheng Y, Nocera DG, Ting AY, Bawendi MG (2008) J Am Chem Soc 130:1274–1284

    Article  CAS  Google Scholar 

  48. Diagaradjane P, Orenstein-Cardona JM, E Colon-Casasnovas N, Deorukhkar A, Shentu S, Kuno N, Schwartz DL, Gelovani JG, Krishnan S (2008) Clin Cancer Res 14:731–741

    Article  CAS  Google Scholar 

  49. Chan WCW, Nie S (1998) Science 281:2016–2018

    Article  CAS  Google Scholar 

  50. Pan YL, Cai JY, Qin L, Wang H (2006) Acta Biochim Biophys Sin 38:646–652

    Article  CAS  Google Scholar 

  51. Qian J, Yong KT, Roy I, Ohulchanskyy TY, Bergey EJ, Lee HH, Tramposch KM, He S, Maitra A, Prasad PN (2008) J Phys Chem B 111:6969–6972

    Article  CAS  Google Scholar 

  52. Yong KT, Qian J, Roy I, Lee HH, Bergey EJ, Tramposch KM, He S, Swihart MT, Maitra A, Prasad PN (2007) Nano Lett 7:761–765

    Article  CAS  Google Scholar 

  53. Zheng J, Ghazani AA, Song Q, Mardyani S, Chan WCW, Wang C (2006) Lab Hematol 12:94–98

    Article  CAS  Google Scholar 

  54. Kloepfer JA, Mielke RE, Wong MS, Nealson KH, Stucky G, Nadeau JL (2003) Appl Environ Microbiol 69:4205–4213

    Article  CAS  Google Scholar 

  55. Zhang H, Sachdev D, Wang C, Hubel A, Gaillard-Kelly M, Yee D (2008) Breast Cancer Res Treat (in press)

  56. Chakraborty SK, Fitzpatrick JA, Phillippi JA, Andreko S, Waggoner AS, Bruchez MP, Ballou B (2007) Nano Lett 7:2618–2626

    Article  CAS  Google Scholar 

  57. Schroeder JE, Shweky I, Shmeeda H, Banin U, Gabizon A (2007) J Control Release 124:28–34

    Article  CAS  Google Scholar 

  58. Derfus AM, Chan WCW, Bhatia SN (2004) Adv Mater 16:961–966

    Article  CAS  Google Scholar 

  59. Gopalakrishnan G, Danelon C, Izewska P, Prummer M, Bolinger PY, Geissbuhler I, Demurtas D, Dubochet J, Vogel H (2006) Angew Chem Int Ed 45:5478–5483

    Article  CAS  Google Scholar 

  60. Al-Jamal WT, Al-Jamal KT, Tian B, Lacerda L, Bornans PH, Frederik PM, Kostarelos K (2008) ACS Nano 2:408–418

    Article  CAS  Google Scholar 

  61. Duan H, Nie S (2007) J Am Chem Soc 129:3333–3338

    Article  CAS  Google Scholar 

  62. de Farias PMA, Santos BS, Menezes FD, Brasil Jr AG, Ferreira R, Motta MA, Castro-Neto AG, Vieira AAS, Silva DCN, Fontes A, Cesar CL (2007) Appl Phys A 89:957–961

    Google Scholar 

  63. Bharali DJ, Lucey DW, Jayakumar H, Pudavar HE, Prasad PN (2005) J Am Chem Soc 127:11364–11371

    Article  CAS  Google Scholar 

  64. Ciofani G, Raffa V, Menciass A, Cuschieri A (2008) Biotechnol Bioeng 101:850–858

    Article  CAS  Google Scholar 

  65. Hess GT, Humphries WH, Fay NC, Payne CK (2007) Biochim Biophys Acta 1773:1583–1588

    Article  CAS  Google Scholar 

  66. Chen FQ, Gerion D (2004) Nano Lett 4:1827–1832

    Article  CAS  Google Scholar 

  67. Slotkin JR, Chakrabarti L, Dai HN, Carney RS, Hirata T, Bregman BS, Gallicano GI, Corbin JG, Haydar TF (2007) Dev Dyn 236:3393–3401

    Article  CAS  Google Scholar 

  68. Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A (2002) Science 298:1759–62

    Article  CAS  Google Scholar 

  69. Zhang Y, So MK, Rao JH (2006) Nano Lett 6:1988–1992

    Article  CAS  Google Scholar 

  70. So MK, Xu CJ, Loening AM, Gambhir SS, Rao JH (2006) Nat Biotechnol 24:339–343

    Article  CAS  Google Scholar 

  71. Medintz IL (2006) Nature Mater 5:842

    Article  CAS  Google Scholar 

  72. Pons T, Uyeda HT, Medintz IL, Mattoussi H (2006) J Phys Chem B 110:20308–20316

    Article  CAS  Google Scholar 

  73. Colvin VL (2003) Nature Biotech 21:1166–1170

    Article  CAS  Google Scholar 

  74. Cho SJ, Maysinger D, Jain M, Roder B, Hackbarth S, Winnik FM (2007) Langmuir 23:1974–1980

    Article  CAS  Google Scholar 

  75. Nel A, Xia T, Madler L, Li N (2006) Science 311:622–627

    Article  CAS  Google Scholar 

  76. Warheit DB (2008) Toxicol Sci 101:183–185

    Article  CAS  Google Scholar 

  77. Hood E (2004) Environ Health Perspect 112:A740–A749

    Google Scholar 

  78. Tekle C, van Deurs B, Sandvig K, Iversen TG (2008) Nano Lett 8:1858–1865

    Article  CAS  Google Scholar 

  79. Richard JP, Melikov K, Vives E, Ramos C, Verbeure B, Gait MJ, Chernomordik LV, Lebleu B (2003) J Biol Chem 278:585–590

    Article  CAS  Google Scholar 

  80. Derfus AM, Chan WCW, Bhatia SN (2004) Nano Lett 4:11–18

    Google Scholar 

  81. Murray CB, Norris DJ, Bawendi MG (1993) J Am Chem Soc 115:8706–1875

    Article  CAS  Google Scholar 

  82. Medintz IL, Pons T, Delehanty JB, Susumu K, Brunel FM, Dawson PE, Mattoussi H (2008) Bioconjug Chem 19:1785–1795

    Article  CAS  Google Scholar 

  83. Mok H, Park JW, Park TG (2008) Bioconjug Chem 19:797–801

    Article  CAS  Google Scholar 

  84. Silver J, Ou W (2005) Nano Lett 5:1445–1449

    Article  CAS  Google Scholar 

  85. Toita S, Hasegawa U, Koga H, Sekiya I, Muneta T, Akiyoshi K (2008) J Nanosci Nanotechnol 8:2279–2285

    Article  CAS  Google Scholar 

  86. Jaiswal JK, Goldman ER, Mattoussi H, Simon SM (2004) Nature Methods 1:73–78

    Article  Google Scholar 

  87. Rajan SS, Vu TQ (2006) Nano Lett 6:2049–2059

    Article  CAS  Google Scholar 

  88. Rajan SS, Liu HY, Vu TQ (2008) ACS Nano 2:1153–1166

    Article  CAS  Google Scholar 

  89. Dudu V, Ramcharan M, Gilchrist ML, Holland EC, Vazquez M (2008) J Nanosci Nanotechnol 8:2293–2300

    Article  CAS  Google Scholar 

  90. Voura EB, Jaiswal JK, Mattoussi H, Simon SM (2004) Nature Med 10:993–998

    Article  CAS  Google Scholar 

  91. Hasegawa U, Nomura SM, Kaul SC, Hirano T, Akiyoshi K (2005) Biochem Biophys Res Commun 331:917–921

    Article  CAS  Google Scholar 

  92. de la Fuente JM, Fandel M, Berry CC, Riehle M, Cronin L, Aitchison G, Curtis AS (2005) Chembiochem 6:989–991

    Article  CAS  Google Scholar 

  93. Clarke S, Nadeau J, Bahcheli D, Zhang Z, Hollmann C (2005) Conf Proc IEEE Eng Med Biol Soc 1:504–507

    CAS  Google Scholar 

  94. Clarke SJ, Hollmann CA, Zhang ZJ, Suffern D, Bradforth SE, Dimitrijevic NM, Minarik WG, Nadeau JL (2006) Nature Mater 5:409–417

    Google Scholar 

  95. Mattheakis LC, Dias JM, Choi YJ, Gong J, Bruchez MP, Liu J, Wang E (2004) Anal Biochem 327:200–208

    Article  CAS  Google Scholar 

  96. Akerman ME, Chan WCW, Laakkonen P, Bhatia SN, Ruoslahti E (2002) Proc Natl Acad Sci USA 99:12617–1262

    Article  CAS  Google Scholar 

  97. Stroh M, Zimmer JP, Duda DG, Levchenko TS, Cohen KS, Brown EB, Scadden DT, Torchilin VP, Bawendi MG, Fukumura D, Jain RK (2005) Nature Med 11:678–682

    Article  CAS  Google Scholar 

  98. Pellegrino T, Parak WJ, Boudreau R, Le Gros MA, Gerion D, Alivisatos AP, Larabell CA (2002) Differentiation 71:542–548

    Article  Google Scholar 

  99. Serge A, Bertaux N, Rigneault H, Marguet D (2008) Nature Methods 5:687694

    Article  CAS  Google Scholar 

  100. Parak WJ, Boudreau R, Le Gros M, Gerion D, Zanchet D, Micheel CM, Williams SC, Alivisatos AP, Larabell C (2002) Adv Mater 14:882–885

    Article  CAS  Google Scholar 

  101. Lewin M, Carlesso N, Tung CH, Tang XW, Cory D, Scadden DT, Weissleder R (2000) Nat Biotechnol 18:410–414

    Article  CAS  Google Scholar 

  102. De la Fuente JM, Penades S (2006) Biochim Biophys Acta 1760:636–651

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge Jennifer Becker and Ilya Elashvilli of the CB Directorate/Physical S&T Division (ARO/DTRA), ONR, NRL, and the NRL-NSI for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor L. Medintz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delehanty, J.B., Mattoussi, H. & Medintz, I.L. Delivering quantum dots into cells: strategies, progress and remaining issues. Anal Bioanal Chem 393, 1091–1105 (2009). https://doi.org/10.1007/s00216-008-2410-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2410-4

Keywords

Navigation