Skip to main content
Log in

Biosensor-based on-site explosives detection using aptamers as recognition elements

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Reliable observation, detection and characterisation of polluted soil are of major concern in regions with military activities in order to prepare efficient decontamination. Flexible on-site analysis may be facilitated by biosensor devices. With use of fibre-optic evanescent field techniques, it has been shown that immunoaffinity reactions can be used to determine explosives sensitively. Besides antibodies as molecular recognition elements, high-affinity nucleic acids (aptamers) can be employed. Aptamers are synthetically generated and highly efficient binding molecules that can be derived for any ligand, including small organic molecules like drugs, explosives or derivatives thereof. In this paper we describe the development of specific aptamers detecting the explosives molecule TNT. The aptamers are used as a sensitive capture molecule in a fibre-optic biosensor. In addition, through the biosensor measurements the aptamers could be characterised. The advantages of the aptamer biosensor include its robustness, its ability to discriminate between different explosives molecules while being insensitive to other chemical entities in natural soil and its potential to be incorporated into a portable device. Results can be obtained within minutes. The measurement is equally useful for soil that has been contaminated for a long time and for urgent hazardous spills.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Styles JA, Cross MF (1993) Cancer Lett 20(1):103–108

    Article  Google Scholar 

  2. Levine BS, Furedi EM, Gordon DE, Barkley JJ, Lish PM (1990) Fundam Appl Toxicol 15(2):373–380

    Article  CAS  Google Scholar 

  3. Banerjee HN, Verma M, Hou LH, Ashraf M, Dutta SK (1999) Yale J Biol Med 72(1):1

    CAS  Google Scholar 

  4. Hawari J, Halasz A, Beaudet S, Paquet L, Amoleman G, Thiboutot S (1999) Appl Environ Microbiol 65(7):2977–2986

    CAS  Google Scholar 

  5. Best EP, Zappi ME, Fredrickson HL, Sprecher SL, Larson SL, Ochman M (1997) Ann N Y Acad Sci 21(829):179–194

    Article  Google Scholar 

  6. Best EP, Sprecher SL, Larson SL, Fredrickson HL, Bader DF (1999) Chemosphere 38(14):3383–3396

    Article  CAS  Google Scholar 

  7. Naal Z, Park JH, Bernhard S, Shapleigh JP, Batt CA, Abruna HD (2002) Anal Chem 74(1):140–148

    Article  CAS  Google Scholar 

  8. Narang U, Anderson GP, Ligler FS, Burans J (1997) Biosens Bioelectron 12(9-10):937–945

    Article  CAS  Google Scholar 

  9. Pinnaduwage LA, Gehl A, Hedden DL, Muralidharan G, Thundat T, Lareau RT, Sulchek T, Manning L, Rogers B, Jones M, Adams JD (2003) Nature 425:474

    Article  CAS  Google Scholar 

  10. Pinnaduwage LA, Wig A, Hedden DL, Gehl A, Yi D, Thundat T, Lareau RT (2004) J Appl Phys 95:5871

    Article  CAS  Google Scholar 

  11. Sapsford KE, Charles PT, Patterson CH Jr, Ligler FS (2002) Anal Chem 74(5):1061–1068

    Article  CAS  Google Scholar 

  12. Goldman ER, Hayhurst A, Lingerfelt BM, Iverson BL, Georgiou G, Anderson GP (2003) J Environ Monit 5(3):380–383

    Article  CAS  Google Scholar 

  13. Shriver-Lake LC, Donner BL, Ligler FS (1997) Environ Sci Technol 31:837–841

    Article  CAS  Google Scholar 

  14. Shriver-Lake LC, Patterson CH, van Bergen SK (2000) Field Anal Chem Technol 4:239–245

    Article  CAS  Google Scholar 

  15. Singh S (2007) J Hazard Mater 144:15–28

    Article  CAS  Google Scholar 

  16. Rimmele M (2003) Chembiochem 4:963–971

    Article  CAS  Google Scholar 

  17. Menger M, Glökler J, Rimmele M (2006) RNA Towards Med 173:359–373

    Article  CAS  Google Scholar 

  18. Song S, Wang L, Li J, Zhao J, Fan C (2008) Trends Anal Chem 27(2):108–117

    Article  CAS  Google Scholar 

  19. Tuerk C, Gold L (1990) Science 249:505–510

    Article  CAS  Google Scholar 

  20. Ellington AD, Szostak J (1990) Nature 346:812–822

    Article  Google Scholar 

  21. Kleinjung F, Bier FF, Warsinke A, Scheller FW (1997) Anal Chim Acta 350:51–58

    Article  CAS  Google Scholar 

  22. Kleinjung F, Klussmann S, Erdmann VA, Scheller FW, Fürste JP, Bier FF (1998) Anal Chem 70:328–331

    Article  CAS  Google Scholar 

  23. Zeck A, Waller MG, Niessner R (1999) Fresenius J Anal Chem 364:51–63

    Article  Google Scholar 

  24. Klussmann S, Nolte A, Bald R, Erdmann VA, Fürste JP (1996) Nat Biotechnol 14:1112–1115

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the German Bundesministerium für Bildung und Forschung (BMBF) and the Senate of Berlin for kindly supporting the project, Protekum GmbH for providing TNT in the beginning, as well as the Wehrwissenschaftliches Institut für Werks-, Explosiv- und Betriebsstoffe (WIWEB) for providing different analytical and soil samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Ehrentreich-Förster.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ehrentreich-Förster, E., Orgel, D., Krause-Griep, A. et al. Biosensor-based on-site explosives detection using aptamers as recognition elements. Anal Bioanal Chem 391, 1793–1800 (2008). https://doi.org/10.1007/s00216-008-2150-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2150-5

Keywords

Navigation