Skip to main content
Log in

PEG-linked geminal dicationic ionic liquids as selective, high-stability gas chromatographic stationary phases

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

It is known that room-temperature ionic liquids (RTILs) have wide applicability in many scientific and technological fields. In this work, a series of three new dicationic room-temperature ionic liquids functionalized with poly(ethylene glycol) (PEG) linkages were synthesized and characterized via a linear solvation model. The application of these ILs as new GC stationary phases was studied. The efficient separation of several mixtures containing compounds of different polarities and 24 components of a flavor and fragrance mixture indicated comparable or higher resolving power for the new IL stationary phases compared to the commercial polysiloxane and poly(ethylene glycol)-based stationary phases. In addition, the selectivities of the IL stationary phases could be quite unique. The separation of a homologous alkane and alcohol mixture displayed the “dual nature” of these ionic liquids as GC stationary phases. The thermal stability study showed the column robustness up to 350 °C. The high separation power, unique selectivity, high efficiency and high thermal stability of the new dicationic ionic liquids indicate that they may be applicable as a new type of robust GC stationary phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Welton T (1999) Chem Rev 99:2071–2083

    Article  CAS  Google Scholar 

  2. Ding J, Desikan V, Han X, Xiao TL, Ding R, Jenks WS, Armstrong DW (2005) Org Lett 7:335–337

    Article  CAS  Google Scholar 

  3. Seddon KR (1997) J Chem Technol Biotechnol 68:351–356

    Article  CAS  Google Scholar 

  4. Wikes JS (2004) J Mol Catal A: Chem 51:251–284

    Google Scholar 

  5. Cole AC, Jensen JL, Ntai I, Tran KR, Weaver KJ, Forbes DC, Davis JH (2002) J Am Chem Soc 124:5962–5963

    Article  CAS  Google Scholar 

  6. Handy ST, Okello M (2005) J Org Chem 70:2874–2877

    Article  CAS  Google Scholar 

  7. Khosropour AR, Khodaei MM, Beygzadeh M, Jokar M (2005) Heterocycles 65:767–773

    CAS  Google Scholar 

  8. Han X, Armstrong DW (2005) Org Lett 19:4205–4208

    Article  CAS  Google Scholar 

  9. Sheldon RA, Lau RM, Sorgedrager MJ, van Rantwijk F, Seddon KR (2002) Green Chem 4:147–151

    Article  CAS  Google Scholar 

  10. Scheeren C, Machado G, Dupont J, Fichtner P, Texeira S (2003) Inorg Chem 42:4738–4742

    Article  CAS  Google Scholar 

  11. Dyson PJ (2002) Appl Organomet Chem 16:495–500

    Article  CAS  Google Scholar 

  12. Dyson PJ, Grossel MC, Srinivasan N, Vine T, Welton T, Williams DJ, White AJP, Zigras T (1997) J Am Chem Soc, Dalton Trans Inorg Chem 19:3465–3469

    Article  Google Scholar 

  13. Carda-Broch S, Berthod A, Armstrong DW (2003) Anal Bioanal Chem 375:191–199

    CAS  Google Scholar 

  14. Dai S, Ju YH, Barnes CE (1999) J Chem Soc, Dalton Trans 8:1201–1202

    Article  Google Scholar 

  15. Chun S, Dzyuba SV, Bartsch RA (2001) Anal Chem 73:3737–3741

    Article  CAS  Google Scholar 

  16. Li C, Xin B, Xu W, Zhang Q (2007) J Chem Tech Biotech 82:196–204

    Article  CAS  Google Scholar 

  17. Germani R, Mancini M, Savelli G, Spreti N (2007) Tetrahedron Lett 48:1767–1769

    Article  CAS  Google Scholar 

  18. Dickinson EV, Williams ME, Hendrickson SM, Masui H, Murray RW (1999) J Am Chem Soc 121:613–616

    Article  CAS  Google Scholar 

  19. Lagrost C, Carrie D, Vaultier M, Hapiot P (2003) J Phys Chem A 107:745–752

    Article  CAS  Google Scholar 

  20. Ue M, Takeda M (2002) J Korean Electrochem Soc 5:192–196

    CAS  Google Scholar 

  21. Wang CY, Mottaghitalab V, Too CO, Spinks GM, Wallace GG (2007) J Power Sources 163:1105–1109

    Article  CAS  Google Scholar 

  22. Doyle KP, Lang CM, Kim K, Kohl PA (2006) J Electrochem Soc 153:A1353–1357

    Article  CAS  Google Scholar 

  23. Xia Y, Wu H, Zhang Y, Fang Y, Sun S, Shi Y (2006) Huaxue Jinzhan 18:1660–1667

    CAS  Google Scholar 

  24. Naik PU, Nara SJ, Harjani JR, Salunkhe MM (2007) J Mol Catal B 44:93–98

    Article  CAS  Google Scholar 

  25. Rumbau V, Marcilla R, Ochoteco E, Pomposo JA, Mecerreyes D (2006) Macromolecules 39:8547–8549

    Article  CAS  Google Scholar 

  26. Paljevac M, Habulin M, Knez Z (2006) Chem Ind Chem Eng Quarterly 12:181–186

    Article  CAS  Google Scholar 

  27. Armstrong DW, Zhang LK, He L, Gross ML (2001) Anal Chem 73:3679–3686

    Article  CAS  Google Scholar 

  28. Carda-Broch S, Berthod A, Armstrong DW (2003) Rapid Commun Mass Spectrom 17:553–560

    Article  CAS  Google Scholar 

  29. Laremore TN, Zhang F, Linhardt R (2007) Anal Chem 79:1604–1610

    Article  CAS  Google Scholar 

  30. Tholey A, Heinzle E (2006) Anal Bioanal Chem 386:24–37

    Article  CAS  Google Scholar 

  31. Ding J, Welton T, Armstrong DW (2004) Anal Chem 76:6819–6822

    Article  CAS  Google Scholar 

  32. Yuan LM, Han Y, Zhou Y, Meng X, Li ZY, Zi M, Chang YX (2006) Anal Lett 39:1439–1449

    Article  CAS  Google Scholar 

  33. Tran CD, Oliveira D, Yu S (2006) Anal Chem 78:1349–1356

    Article  CAS  Google Scholar 

  34. Jimenez A, Bermudez M (2007) Tribology Lett 26:53–60

    Article  CAS  Google Scholar 

  35. Xia Y, Sasaki S, Murakami T, Nakano M, Shi L, Wang H (2007) Wear 262:765–771

    Article  CAS  Google Scholar 

  36. Armstrong DW, He L, Liu LS (1999) Anal Chem 71:3873–3876

    Article  CAS  Google Scholar 

  37. Berthod A, He L, Armstrong DW (2001) Chromatographia 53:63–68

    Article  CAS  Google Scholar 

  38. Anderson JL, Ding J, Welton T, Armstrong DW (2002) J Am Chem Soc 124:14247–14254

    Article  CAS  Google Scholar 

  39. Anderson JL, Armstrong DW (2005) Anal Chem 77:6453–6462

    Article  CAS  Google Scholar 

  40. Anderson JL, Armstrong DW (2003) Anal Chem 75:4851–4858

    Article  CAS  Google Scholar 

  41. Anderson JL, Ding R, Ellern A, Armstrong DW (2005) J Am Chem Soc 127:593–604

    Article  CAS  Google Scholar 

  42. Sumartschenkowa IA, Verevkin SP, Vasiltsova TV, Bich E, Heintz A, Shevelyava MP, Kabo GJ (2006) J Chem Eng Data 51:2138–2144

    Article  CAS  Google Scholar 

  43. Heintz A, Verevkin SP, Ondo DJ (2006) Chem Eng Data 51:434–437

    Article  CAS  Google Scholar 

  44. Heintz A, Verevkin SP (2005) J Chem Eng Data 50:1515–1519

    Article  CAS  Google Scholar 

  45. Reichardt C (1965) Angew Chem Int Ed Engl 4:29–40

    Article  Google Scholar 

  46. Carmichael AJ, Seddon KR (2000) J Phys Org Chem 13:591–595

    Article  CAS  Google Scholar 

  47. Lu H, Rutan SC (1996) Anal Chem 68:1387–1393

    Article  CAS  Google Scholar 

  48. Petsch M, Mayer-Helm BX, Soellner V (2005) Anal Bioanal Chem 383:322–326

    Article  CAS  Google Scholar 

  49. Berthod A, Zhou EY, Le K, Armstrong DW (1995) Anal Chem 67:849–857

    Article  CAS  Google Scholar 

  50. Vitha M, Carr PW (2006) J Chromatogr A 1126:143–194

    Article  CAS  Google Scholar 

  51. Abraham MH, Ibrahim A, Zissimos AM (2004) J Chromatogr A 1037:29–47

    Article  CAS  Google Scholar 

  52. Kamlet MJ, Carr PW, Taft RW, Abraham MH (1981) J Am Chem Soc 103:6062–6066

    Article  CAS  Google Scholar 

  53. Abraham MH, Whiting GS, Andonian-Haftvan J, Steed JW (1991) J Chromatogr 588:361–364

    Article  CAS  Google Scholar 

  54. Abraham MH (1993) Chem Soc Rev 22:73–83

    Article  CAS  Google Scholar 

  55. Jin C, Ye C, Phillips BS, Zabinski JS, Liu X, Liu W, Shreeve JM (2006) J Mater Chem 16:1529–1535

    Article  CAS  Google Scholar 

  56. Poole SK (1995) J Chromatogr A 697:415–427

    Article  CAS  Google Scholar 

  57. Maria Santiuste J (1998) Anal Chim Acta 377:71–83

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support from the Robert A. Welch Foundation (Y0026) for their support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel W. Armstrong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, K., Han, X., Zhang, X. et al. PEG-linked geminal dicationic ionic liquids as selective, high-stability gas chromatographic stationary phases. Anal Bioanal Chem 389, 2265–2275 (2007). https://doi.org/10.1007/s00216-007-1625-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1625-0

Keywords

Navigation