Skip to main content
Log in

Why calcium inhibits magnesium-dependent enzyme phosphoserine phosphatase? A theoretical study

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Phosphoserine phosphatase (PSP) utilizes one Mg2+ ion to catalyze the hydrolysis of phospho-l-serine. The displacement of Mg2+ by Ca2+ results in the loss of activity. The reaction mechanisms for the enzyme with both Mg2+ and Ca2+ bound were investigated using hybrid density functional theory. A large quantum chemical model abstracted from the X-ray crystal structure was employed in the calculations. Our calculations shed new insight into the catalytic mechanism of the natural enzyme and its lack of activity by Ca2+ substitution. For the catalytic reaction, our calculations showed that the whole reaction proceeds through two steps, namely dephosphorylation and phosphate hydrolysis. The associated barriers for these two steps are calculated to be 11.9 and 12.0 kcal mol−1, respectively. The Mg-bound Asp11 residue functions as a nucleophile to attack the phosphorus moiety, in concomitant with the departure of the leaving group, which takes a proton from the neutral Asp13 residue. In the subsequent step, the newly formed anionic Asp13 residue activates a water molecule to perform the reverse attack on the phosphoryl intermediate, affording the phosphate product. The substitution of Mg2+ by Ca2+ results in different metal coordination fashion, in which the Asp167 residue changes from bidentate to monodentate and a second water molecule becomes ligated to Ca2+. The calculated barriers for the hydrolysis are ca 8 kcal mol−1 higher than those in the native enzyme, which reconciles with the fact that Ca2+ inhibits the activity of PSP. Several possible reasons are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang W, Cho Ho S, Kim R, Jancarik J, Yokota H, Nguyen HH, Grigoriev Igor V, Wemmer DE, Kim S-H (2002) J Mol Biol 319:421–431

    Article  CAS  Google Scholar 

  2. Kim H-Y, Heo Y-S, Kim JH, Park MH, Moon J, Kim E, Kwon D, Yoon J, Shin D, Jeong E, Park SY, Lee TG, Jeon YH, Ro S, Cho JM, Hwang KY (2002) J Biol Chem 277:46651–46658

    Article  CAS  Google Scholar 

  3. Wang W, Kim R, Jancarik J, Yokota H, Kim S-H (2001) Structure 9:65–71

    Article  CAS  Google Scholar 

  4. Wolosker H, Sheth KN, Takahashi M, Mothet J-P, Brady RO Jr, Ferris CD, Snyder SO (1999) Proc Natl Acad Sci USA 96:721–725

    Article  CAS  Google Scholar 

  5. Dunlop DS, Neidle A (1997) Biochem Biophys Res Commun 235:26–30

    Article  CAS  Google Scholar 

  6. Matsui T, Sekiguchi M, Hashimoto A, Tomita U, Nishikawa T, Wada K (1995) J Neurochem 65:454–458

    Article  CAS  Google Scholar 

  7. Berger AJ, Dieudonné S, Ascher P (1998) J Neurophysiol 80:3336–3340

    CAS  Google Scholar 

  8. Sugiura N, Patel RG, Corriveau RA (2001) J Biol Chem 276:14257–14263

    CAS  Google Scholar 

  9. Wood PL (1995) Life Sci 57:301–310

    Article  CAS  Google Scholar 

  10. Paudice P, Gemignani A, Raiteri M (1998) Eur J Neurosci 10:2934–2944

    Article  CAS  Google Scholar 

  11. Veeranna, Shetty KT (1991) Neurochem Res 15:1203–1210

  12. Hawkinson JE, Acosta-Burruel M, Ta ND, Wood PL (1997) Eur J Pharmacol 337:315–324

    Article  CAS  Google Scholar 

  13. Collet J-F, Stroobant V, Van Schaftingen E (1999) J Biol Chem 274:33985–33990

    Article  CAS  Google Scholar 

  14. Collet J-F, Stroobant V, Pirard M, Delpierre G, Van Schaftingen E (1998) J Biol Chem 273:14107–14112

    Article  CAS  Google Scholar 

  15. MacLennan DH, Clarke DM, Loo TW, Skerjanc IS (1992) Acta Physiol Scand Suppl 607:141–150

    CAS  Google Scholar 

  16. Lingrel JB, Kuntzweiler T (1994) J Biol Chem 269:19659–19662

    CAS  Google Scholar 

  17. Cho H, Wang W, Kim R, Yokota H, Damo S, Kim S-H, Wemmer D, Kustu S, Yan D (2001) Proc Natl Acad Sci USA 98:8525–8530

    Article  CAS  Google Scholar 

  18. Peeraer Y, Rabijns A, Collet J-F, Van Schaftingen E, De Ranter C (2004) Eur J Biochem 271:3421–3427

    Article  CAS  Google Scholar 

  19. Peeraer Y, Rabijns A, Verboven C, Collet J-F, Van Schaftingen E, De Ranter C (2003) Acta Cryst D59:971–977

    CAS  Google Scholar 

  20. Rinaldo-Matthis A, Rampazzo C, Reichard P, Bianchi V, Nordlund P (2002) Nat Struct Biol 9:779–787

    Article  CAS  Google Scholar 

  21. Hisano T, Hata Y, Fujii T, Liu JQ, Kurihara T, Esaki N, Soda K (1996) J Biol Chem 271:20322–20330

    Article  CAS  Google Scholar 

  22. Toyoshima C, Nakasako M, Nomura H, Ogawa H (2000) Nature 405:647–655

    Article  CAS  Google Scholar 

  23. Lahiri SD, Zhang GF, Dunaway-Mariano D, Allen KN (2003) Science 299:2067–2071

    Article  CAS  Google Scholar 

  24. Allegrini S, Scaloni A, Ferrara L, Pesi R, Pinna P, Sgarrella F, Camici M, Eriksson S, Tozzi MG (2001) J Biol Chem 276:33526–33532

    Article  CAS  Google Scholar 

  25. Re S, Jung J, Ten-no S, Sugita Y (2009) Chem Phys Lett 480:284–288

    Article  CAS  Google Scholar 

  26. Re S, Imai T, Jung J, Ten-no S, Sugita Y (2011) J Comput Chem 32:260–270

    Article  CAS  Google Scholar 

  27. Dudev T, Lim C (2007) Acc Chem Res 40:85–93

    Article  CAS  Google Scholar 

  28. Babu CS, Dudev T, Casareno R, Cowan JA, Lim C (2003) J Am Chem Soc 125:9318–9328

    Article  CAS  Google Scholar 

  29. Dudev T, Lim C (2004) J Phys Chem B 108:4546–4557

    Article  CAS  Google Scholar 

  30. Becke AD (1993) J Chem Phys 98:1372–1377

    Article  CAS  Google Scholar 

  31. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  32. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  33. Himo F, Guo J-D, Rinaldo-Matthis A, Nordlund P (2005) J Phys Chem B 109:20004–20008

    Article  CAS  Google Scholar 

  34. Himo F, Siegbahn PEM (2003) Chem Rev 103:2421–2456

    Article  CAS  Google Scholar 

  35. Noodleman L, Lovell T, Han W-G, Li J, Himo F (2004) Chem Rev 104:459–508

    Article  CAS  Google Scholar 

  36. Siegbahn PEM, Borowski T (2006) Acc Chem Res 39:729–738

    Article  CAS  Google Scholar 

  37. Himo F (2006) Theo Chem Acc 116:232–240

    Article  CAS  Google Scholar 

  38. Ramos MJ, Fernandes PA (2008) Acc Chem Res 41:689–698

    Article  CAS  Google Scholar 

  39. Chen S-L, Fang W-H, Himo F (2007) J Phys Chem B 111:1253–1255

    Article  CAS  Google Scholar 

  40. Liao R-Z, Yu J-G, Himo F (2011) J Inorg Biochem 105:927–936

    Article  CAS  Google Scholar 

  41. Liao R-Z, Yu J-G, Raushel FM, Himo F (2008) Chem Eur J 14:4287–4292

    Article  CAS  Google Scholar 

  42. Liao R-Z, Yu J-G, Himo F (2009) Inorg Chem 48:1442–1448

    Article  CAS  Google Scholar 

  43. Chen S-L, Fang W-H, Himo F (2009) J Inorg Biochem 103:274–281

    Article  CAS  Google Scholar 

  44. Yang L, Liao R-Z, Yu J-G, Liu R-Z (2009) J Phys Chem B 113:6505–6510

    Article  CAS  Google Scholar 

  45. Liao R-Z, Himo F, Yu J-G, Liu R-Z (2009) Eur J Inorg Chem 20:2967–2972

    Article  Google Scholar 

  46. Liao R-Z, Himo F, Yu J-G, Liu R-Z (2010) J Inorg Biochem 104:37–46

    Article  CAS  Google Scholar 

  47. Liao R-Z, Himo F, Yu J-G (2010) J Phys Chem B 114:2533–2540

    Article  CAS  Google Scholar 

  48. Liao R-Z, Himo F, Yu J-G (2010) Inorg Chem 49:6883–6888

    Article  CAS  Google Scholar 

  49. Leopoldini M, Russo N, Toscano M (2007) J Am Chem Soc 129:7776–7784

    Article  CAS  Google Scholar 

  50. Abashkin YG, Burt SK, Collins JR, Cachau RE, Russo N, Erickson JW (1996) In: Russo N, Salahub DR (eds) Metal-ligand interactions: structure and reactivity, Nato Science Series. Kluwer, Dordrecht

    Google Scholar 

  51. Olsen L, Anthony J, Ryde U, Adolph H-W, Hemmingsen L (2003) J Phys Chem B 107:2366–2375

    Article  CAS  Google Scholar 

  52. Marino T, Russo N, Toscano M (2005) J Am Chem Soc 127:4242–4253

    Article  CAS  Google Scholar 

  53. Leopoldini M, Russo N, Toscano M (2006) J Phys Chem B 110:1063–1072

    Article  CAS  Google Scholar 

  54. Zhang ZY (1998) Crit Rev Biochem Mol Biol 33:1–52

    Article  Google Scholar 

  55. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision C02. Gaussian, Inc., Wallingford

    Google Scholar 

  56. Zhao Y, Truhlar DG (2004) J Phys Chem A 108:6908–6918

    Article  CAS  Google Scholar 

  57. Zhao Y, Truhlar DG (2008) Acc Chem Res 41:157–167

    Article  CAS  Google Scholar 

  58. Barone V, Cossi M (1998) J Phys Chem A 102:1995–2001

    Article  CAS  Google Scholar 

  59. Cammi R, Mennucci B, Tomasi J (1999) J Phys Chem A 103:9100–9108

    Article  CAS  Google Scholar 

  60. Klamt A, Schüürmann G (1993) J Chem Soc Perkin Trans 2:799–805

    Google Scholar 

  61. Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999–3093

    Article  CAS  Google Scholar 

  62. Hu P, Zhang Y (2006) J Am Chem Soc 128:1272–1278

    Article  CAS  Google Scholar 

  63. Senn HM, Thiel S, Thiel W (2005) J Chem Theory Comput 1:494–505

    Article  CAS  Google Scholar 

  64. Senn HM, Kästner J, Breidung J, Thiel W (2009) Can J Chem 87:1322–1337

    Article  CAS  Google Scholar 

  65. Sousa SF, Fernandes PA, Ramos MJ (2009) Chem Eur J 15:4243–4247

    Article  CAS  Google Scholar 

  66. Sousa SF, Fernandes PA, Ramos MJ (2007) J Am Chem Soc 129:1378–1385

    Article  CAS  Google Scholar 

  67. Sousa SF, Fernandes PA, Ramos MJ (2005) J Mol Struct: THEOCHEM 729:125–129

    Article  CAS  Google Scholar 

  68. Sousa SF, Fernandes PA, Ramos MJ (2005) J Biol Inorg Chem 10:3–10

    Article  CAS  Google Scholar 

  69. Sousa SF, Fernandes PA, Ramos MJ (2005) Biophys J 88:483–494

    Article  CAS  Google Scholar 

  70. Sousa SF, Fernandes PA, Ramos MJ (2007) J Comput Chem 28:1160–1168

    Article  CAS  Google Scholar 

  71. Ryde U (1999) Biophys J 77:2777–2787

    Article  CAS  Google Scholar 

  72. Tamames B, Sousa SF, Tamames J, Fernandes PA, Ramos MJ (2007) Proteins: Struct, Funct, Bioinf 69:466–475

    Article  CAS  Google Scholar 

  73. Robert V, Lemercier G (2006) J Am Chem Soc 128:1183–1187

    Article  CAS  Google Scholar 

  74. Szeto MWY, Mujika JI, Zurek J, Mulholland AJ, Harvey JN (2009) J Mol Struct: THEOCHEM 898:106–114

    Article  CAS  Google Scholar 

  75. Torrent M, Musaev DG, Morokuma K (2001) J Phys Chem B 105:322–327

    Article  CAS  Google Scholar 

  76. Gherman BF, Baik MH, Lippard SJ, Friesner RA (2004) J Am Chem Soc 126:2978–2990

    Article  CAS  Google Scholar 

  77. Voegtli WC, Khidekel N, Baldwin J, Ley BA, Bollinger JM, Rosenzweig AC (2000) J Am Chem Soc 122:3255–3261

    Article  CAS  Google Scholar 

  78. Rosenzweig AC, Nordlund P, Takahara PM, Frederick CA, Lippard SJ (1995) Chem Biol 2:409–418

    Article  CAS  Google Scholar 

  79. Whittington DA, Lippard S (2001) J Am Chem Soc 123:827–838

    Article  CAS  Google Scholar 

  80. Dunietz BD, Beachy MD, Cao YX, Whittington DA, Lippard SJ, Friesner RA (2000) J Am Chem Soc 122:2828–2839

    Article  CAS  Google Scholar 

  81. Paterová J, Heyda J, Jungwirth P, Shaffer CJ, Révész Á, Zins EL, Schröder D (2011) J Phys Chem A 115:6813–6819

    Article  Google Scholar 

  82. Demsar A, Kosmrlj J, Petricek S (2002) J Am Chem Soc 124:3951–3958

    Article  CAS  Google Scholar 

  83. Lemercier G, Mulliez E, Brouca-Cabarrecq C, Dahan F, Tuchagues JP (2004) Inorg Chem 43:2105–2113

    Article  CAS  Google Scholar 

  84. Kuzelka J, Spingler B, Lippard SJ (2002) Inorg Chim Acta 337:212–222

    Article  CAS  Google Scholar 

  85. Rardin RL, Bino A, Poganiuch P, Tolman WB, Liu S, Lippard SJ (1990) Angew Chem Int Ed 29:812–814

    Article  Google Scholar 

  86. Baffert C, Collomb MN, Deronzier A, Kjaergaard-Knudsen S, Latour JM, Lund KH, McKenzie CJ, Mortensen M, Nielsen L, Thorup N (2003) J Chem Soc, Dalton Trans 9:1765–1772

    Google Scholar 

  87. Pursche D, Triller MU, Reddig N, Rompel A, Krebs BZ (2003) Anorg Allg Chem 629:24–28

    Article  CAS  Google Scholar 

  88. Feig AL, Masschelein A, Bakac A, Lippard SJ (1997) J Am Chem Soc 119:334–342

    Article  CAS  Google Scholar 

  89. Ducháčková L, Schröder D, Roithová J (2011) Inorg Chem 50:3153–3158

    Article  Google Scholar 

  90. LeCloux DD, Barrios AM, Mizoguchi TJ, Lippard SJ (1998) J Am Chem Soc 120:9001–9014

    Article  CAS  Google Scholar 

  91. Calvaresi M, Garavelli M, Bottoni A (2008) Proteins 73:527–538

    Article  CAS  Google Scholar 

  92. Bounaga S, Laws AP, Galleni M, Page MI (1998) Biochem J 331:703–711

    CAS  Google Scholar 

  93. Åqvist J, Kolmodin K, Florian J, Warshel A (1999) Chem Biol 6:R71–R80

    Article  Google Scholar 

  94. Klähn M, Rosta E, Warshel A (2006) J Am Chem Soc 128:15310–15323

    Article  Google Scholar 

  95. Pelmenschikov V, Blomberg MRA, Siegbahn PEM (2002) J Biol Inorg Chem 7:284–298

    Article  CAS  Google Scholar 

  96. Pelmenschikov V, Siegbahn PEM (2002) Inorg Chem 41:5659–5666

    Article  CAS  Google Scholar 

  97. Siegbahn PEM (2004) J Biol Inorg Chem 9:577–590

    Article  CAS  Google Scholar 

  98. Siegbahn PEM (2011) ChemPhysChem 12:3274–3280

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We appreciate Dr. Sven de Marothy (from Stockholm University) for providing xyzviewer to create all the figures. This work was supported by grants from the National Natural Science Foundation of China (grant nos. 20733002, 20873008, 21073014, and 21203042), the Fundamental Research Funds for the Central Universities (Grant No. HIT. NSRIF. 2013057), and Major State Basic Research Development Programs (grant nos. 2004CB719903 and 2002CB613406).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rong-Zhen Liao or Jian-Guo Yu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 258 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, L., Liao, RZ., Ding, WJ. et al. Why calcium inhibits magnesium-dependent enzyme phosphoserine phosphatase? A theoretical study. Theor Chem Acc 131, 1275 (2012). https://doi.org/10.1007/s00214-012-1275-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-012-1275-y

Keywords

Navigation