Skip to main content
Log in

Boundary integral formulation and semi-implicit scheme coupling for modeling cells under electrical stimulation

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We model the electrical activity of biological cells under external stimuli via a novel boundary integral (BI) formulation together with a suitable time-space numerical discretization scheme. Ionic channels follow a non-linear dynamic behavior commonly described by systems of ordinary differential equations dependent on the electric potential jump across the membrane. Since potentials in both intra– and extracellular domains satisfy an electrostatic approximation, we represent them using solely Dirichlet and Neumann traces over the membrane via boundary potentials. Hence, the volume problem is condensed to one posed over the cell boundary. A second-order time-stepping semi-implicit numerical Galerkin scheme is proposed and analyzed wherein BI operators are approximated by low-order basis functions, with stability independent of space discretization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Agudelo-Toro, A., Neef, A.: Computationally efficient simulation of electrical activity at cell membranes interacting with self-generated and externally imposed electric fields. J. Neural. Eng. 10(2), 19 (2013)

    Article  Google Scholar 

  2. Akrivis, G., Crouzeix, M., Makridakis, C.: Implicit-explicit multistep finite element methods for nonlinear parabolic problems. Math. Comput. 67(222), 457–477 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Amar, M., Andreucci, D., Bisegna, P., Gianni, R.: Existence and uniqueness for an elliptic problem with evolution arising in electrodynamics. Nonlinear Anal. Real World Appl. 6(2), 367–380 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Amsallem, D., Nordström, J.: High-order accurate difference schemes for the Hodgkin–Huxley equations. J. Comput. Phys. 252(1), 573–590 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ascher, U.M., Ruuth, S.J., Wetton, B.T.R.: Implicit-explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal. 32(3), 797–823 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Balay, S., Gropp, W., McInnes, L., Smith, B.: Petsc users manual, technical report anl-95/11- revision 2.1.0. Tech. rep., Argonne National Laboratory (2001)

  7. Bhadra, N., Lahowetz, E., Foldes, S., Kilgore, K.: Simulation of high-frequency sinusoidal electrical block of mammalian myelinated axons. J. Comput. Neurosci. 22(3), 313–326 (2007)

    Article  MathSciNet  Google Scholar 

  8. Bollini, C., Cacheiro, F.: Peripheral nerve stimulation. Tech. Region. Anesth. Pain Manag. 10(3), 79–88 (2006)

    Article  Google Scholar 

  9. Bowman, B., McNeal, D.: Response of single alpha motoneurons to high-frequency pulse trains. Firing behavior and conduction block phenomenon. Appl. Neurophysiol. 49(3), 121–138 (1986)

    Google Scholar 

  10. Choi, C., Sun, S.: Simulation of axon activation by electrical stimulation applying alternating-direction-implicit finite differences time-domain method. IEEE Trans. Magn. 48(2), 639–642 (2012)

    Article  Google Scholar 

  11. Choi, S.O., Kim, Y., Lee, J.W., Park, J.H., Prausnitz, M.R., Allen, M.G.: Intracellular protein delivery and gene transfection by electroporation using a microneedle electrode array. Small 10(8), 1081–1091 (2012)

    Article  Google Scholar 

  12. Claeys, X., Hiptmair, R., Jerez-Hanckes, C.: Multitrace boundary integral equations. In: Direct and Inverse Problems in Wave Propagation and Applications, Radon Series on Computational and Applied Mathematics, vol. 14, pp. 51–100. De Gruyter, Berlin (2013)

  13. Claeys, X., Hiptmair, R., Jerez-Hanckes, C., Pintarelli, S.: Novel multi-trace boundary integral equations for transmission boundary value problems. In: Fokas, A.S., Pelloni, B. (eds.) Unified Transform for Boundary Value Problems: Applications and Advances, chap. Novel Multi-Trace Boundary Integral Equations for Transmission Boundary Value Problems. SIAM (2015)

  14. Costabel, M.: Boundary integral operators on Lipschitz domains: elementary results. SIAM J. Math. Anal. 19(3), 613–626 (1988). doi:10.1137/0519043

    Article  MathSciNet  MATH  Google Scholar 

  15. Doi, S., Inoue., J., Pan, Z., Tsumoto, K.: Computational Electrophysiology, vol. 2. Tokyo, Japan: Springer Series, A First Course in On Silico Medicine (2010)

  16. Dotsinskya, I., Nikolovaa, B., Peychevab, E., Tsonevaa, I.: New modality for electrochemotherapy of surface tumors. Biotechnol. Biotechnol. Equip. 26(6), 3402–3406 (2012)

    Article  Google Scholar 

  17. Ethier, M., Bourgault, Y.: Semi-implicit time-discretization schemes for the bidomain model. SIAM J. Numer. Anal. 46(5), 2443–2468 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Evans, L.: Partial Differential Equations. Graduate Studies in Mathematics, vol. 19, 2nd edn. American Mathematical Society, New York (2010)

  19. Fear, E.C., Stuchly, M.A.: Modeling assemblies of biological cells exposed to electric fields. IEEE Trans. Biomed. Eng. 45(10), 1259–1271 (1998)

    Article  Google Scholar 

  20. Foster, K.R., Sowers, A.E.: Dielectrophoretic forces and potentials induced on pairs of cells in an electric field. Biophys. J. 69(3), 777–784 (1995)

    Article  Google Scholar 

  21. Gabriel, C., Gabriel, S., Corthout, E.: The dielectric properties of biological tissues: I. Literature survey. Phys. Med. Biol. 41(11), 2231–2249 (1996)

    Article  Google Scholar 

  22. Ganesh, M., Mustapha, K.: A fully discrete \(h^1\)-galerkin method with quadrature for nonlinear advection–diffusion-reaction equations. Numer. Algorithm. 43(4), 355–383 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gimsa, J., Wachner, D.: Analytical description of the transmembrane voltage induced on arbitrarily oriented ellipsoidal and cylindrical cells. Biophys. J. 81(4), 1888–1896 (2001)

    Article  Google Scholar 

  24. Hanslien, M., Karlsen, K.H., Tveito, A.: A maximum principle for an explicit finite difference scheme approximating the hodgkin-huxley model. BIT Numer. Math. 45(4), 725–741 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hiptmair, R., Jerez-Hanckes, C.: Multiple traces boundary integral formulation for Helmholtz transmission problems. Adv. Comput. Math. 37(1), 39–91 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hodgkin, A., Huxley, A.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500–544 (1952)

    Article  Google Scholar 

  27. Hsiao, G.C., Wendland, W.L.: Boundary Integral Equations, Applied Mathematical Sciences, vol. 164. Springer, Berlin (2008). doi:10.1007/978-3-540-68545-6

  28. Jackson, J.: Classical Electrodynamics, 3rd edn. Wiley, New York (1998)

    MATH  Google Scholar 

  29. Joucla, S., Yvert, B.: Modeling extracellular electrical neural stimulation: from basic understanding to mea-based applications. J. Physiol. Paris 106(3), 146–158 (2012)

    Article  Google Scholar 

  30. Keener, J., Sneyd, J.: Mathematical Physiology I: Cellular Physiology. Springer, New York (1998)

    MATH  Google Scholar 

  31. Kotnik, T., Miklavčič, D.M.: Analytical description of transmembrane voltage induced by electric fields on spheroidal cell. Biophys. J. 79(2), 670–679 (2000)

    Article  Google Scholar 

  32. Kotnik, T., Miklavčič, D., Slivnik, T.: Time course of transmembrane voltage induced by time-varying electric fields: a method for theoretical analysis and its application. Bioelectrochem. Bioenergy 45(1), 3–16 (1998)

    Article  Google Scholar 

  33. Krassowska, W., Neu, J.C.: Response of a single cell to an external electric field. Biophys. J. 66(6), 1768–1776 (1994)

    Article  Google Scholar 

  34. Leon, L.J., Roberge, F.A.: A new cable model formulation based on green’s theorem. Annl. Biomed. Eng. 18(1), 1–17 (1990)

    Article  Google Scholar 

  35. Lindsay, K.: From Maxwell’s equations to the cable equation and beyond. Progr. Biophys. Mol. Biol. 85(1), 71–116 (2004)

    Article  Google Scholar 

  36. Matano, H., Mori, Y.: Global existence and uniqueness of a three-dimensional model of cellular electrophysiology. Discr. Contin. Dyn. Syst. 29(4), 1573–1636 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  38. Mir, L.M., Bureau, M.F., Gehl, J., Rangara, R., Rouy, D., Caillaud, J.M., Delaere, P., Branellec, D., Schwartz, B., Scherman, D.: High-efficiency gene transfer into skeletal muscle mediated by electric pulses. Proc. Nat. Acad. Sci. USA 96(8), 4262–4267 (1999)

    Article  Google Scholar 

  39. Pavlin, M., Pavselj, N., Miklavčič, D.: Dependence of induced transmembrane potential on cell density, arrangement and cell position inside a cell system. IEEE Trans. Biomed. Eng. 49(6), 605–612 (2002)

    Article  Google Scholar 

  40. Pham-Dang, C., Kick, O., Collet, T., Gouin, F., Pinaud, M.: Continuous peripheral nerve blocks with stimulating catheters. Reg. Anesth. Pain Med. 28(2), 83–88 (2003)

    Article  Google Scholar 

  41. Plonsey, R., Heppner, D.: Considerations of quasi-stationarity in electrophysiological systems. Bull. Math. Biol. 29(4), 657–664 (1967)

    Google Scholar 

  42. Pods, J., Schönke, J., Bastian, P.: Electrodiffusion models of neurons and extracellular space using the Poisson–Nernst–Planck equations: numerical simulation of the intra-and extracellular potential for an axon model. Biophys. J. 105(1), 242–254 (2013)

    Article  Google Scholar 

  43. Pucihar, G., Miklavčič, D., Kotnik, T.: A time-dependent numerical model of transmembrane voltage inducement and electroporation of irregularly shaped cells. IEEE Trans. Biomed. Eng. 56(5), 1491–1501 (2009)

    Article  Google Scholar 

  44. Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics, 3rd edn. Springer, Berlin (2007)

    Book  MATH  Google Scholar 

  45. Rattay, F.: High frequency electrostimulation of excitable cells. J. Theor. Biol. 123(1), 45–45 (1986)

    Article  Google Scholar 

  46. van Rienen, U., Schreiber, U., Schulze, S., Gimsa, U., Baumann, W., Weiss, D., Gimsa, J., Benecke, R., Pau, H.: Electro-quasistatic simulations in bio-systems engineering and medical engineering. Adv. Radio Sci. 3, 39–49 (2005)

    Article  Google Scholar 

  47. Sauter, S., Schwab, C.: Boundary Element Methods. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  48. See, C.H., Abd-Alhameed, R.A., Excell, P.S.: Computation of electromagnetic fields in assemblages of biological cells using a modified finite-difference time-domain scheme. IEEE Trans. Microw. Theory Tech. 55(9), 1986–1994 (2007)

    Article  Google Scholar 

  49. Sepulveda, N., Wikswo, J., Echt, D.: Finite element analysis of cardiac defibrillation current distributions. IEEE Trans. Biomed. Eng. 37(4), 354–365 (1997)

    Article  Google Scholar 

  50. Sersa, G., Cufer, T., Cemazar, M., Rebersek, M., Zvonimir, R.: Electrochemotherapy with bleomycin in the treatment of hypernephroma metastasis: case repeat and literature review. Tumori 86(2), 163–165 (2000)

    Google Scholar 

  51. Steinbach, O.: Numerical Approximation Methods for Elliptic Boundary Value Problems. Springer, New York (2008)

    Book  MATH  Google Scholar 

  52. Susil, R., Semrov, D., Miklavčič, D.: Electric field-induced transmembrane potential depends on cell density and organization. Electr. Magnetobiol. 17(3), 391–399 (1998)

    Article  Google Scholar 

  53. Teissié, J., Eynard, N., Gabriel, B., Rols, M.P.: Electropermeabilization of cell membranes. Adv. Drug. Del. Rev. 35(1), 3–19 (1999)

    Article  Google Scholar 

  54. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Lecture Notes in Mathematics, vol. 1054. Springer, Berlin (1984)

  55. Trayanova, N., Constantino, J., Ashihara, T., Plank, G.: Modeling defibrillation of the heart: approaches and insights. IEEE Rev. Biomed. Eng. 4, 89–102 (2011)

    Article  Google Scholar 

  56. Veneroni, M.: Reaction diffusion systems for the microscopic cellular model of the cardiac electric field. Math. Methods Appl. Sci. 29(14), 1631–1661 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  57. Xylouris, K., Queisser, G., Wittum, G.: A three-dimensional mathematical model of active signal processing in axons. Comput. Vis. Sci. 13(8), 409–418 (2010)

    Article  MathSciNet  Google Scholar 

  58. Ying, W., Henriquez, C.: Hybrid finite element method for describing the electrical response of biological cells to applied fields. IEEE Trans. Biomed. Eng. 54(4), 611–620 (2007)

    Article  Google Scholar 

  59. Zeidler, E.: Nonlinear Functional Analysis and its Applications. Linear Monotone Operators, vol. II/A. Springer, New York (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Jerez-Hanckes.

Additional information

Work partially funded by projects Fondecyt 11121166, Conicyt ACT1118 and PUC Chile VRI Interdisciplina 11/2012.

Appendices

Appendix A: Proof of Lemma 7

Assume \(\phi \in \mathcal {C}^2[0,T]\), then for \(t_1\), \(t_2\in [0,T]\) and \(t^{\star }:=\dfrac{t_1+t_2}{2}\) it holds

$$\begin{aligned} \frac{\phi (t_1)+\phi (t_2)}{2}-\phi (t^{\star }) = \frac{1}{2}\left[ \int _{t_1}^{t^{\star }}(s-t_1)\phi _{ss}ds - \int _{t^{\star }}^{t_2}(s-t_2)\phi _{ss}ds \right] . \end{aligned}$$

Then

$$\begin{aligned} \left| \frac{\phi (t_1)+\phi (t_2)}{2}-\phi (t^{\star }) \right|\le & {} \frac{1}{2}\left| \int _{t_1}^{t^{\star }}(s-t_1)ds\right| \max _{t\in [t_1,t^{\star }]} |\phi _{tt}(t)|\nonumber \\&+\,\frac{1}{2}\left| \int _{t^{\star }}^{t_2}(s-t_{2})ds\right| \max _{t\in [t^{\star },t_2]} |\phi _{tt}(t)|\\\le & {} \,\frac{1}{4}\left( (t_1-t_{\star })^2+(t_2-t_{\star })^2\right) \max _{t\in [t_1,t_2]} |\phi _{tt}(t)|.\nonumber \end{aligned}$$
(38)

For \(u\in \mathcal {C}^2([0,T]; L^2(\Gamma ))\), from (38) and the definition of \(\bar{u}^{n+\frac{1}{2}}\) it holds

$$\begin{aligned} \left\| \bar{u}^{n+\frac{1}{2}}-u^{n+\frac{1}{2}} \right\| _{L^2(\Gamma )} \le \frac{\tau ^2}{4} \max _{t\in [t_{n},t_{n+1}]} \left\| u_{tt}(t) \right\| _{L^2(\Gamma )} \end{aligned}$$

and

$$\begin{aligned} \left\| \hat{u}^{n+\frac{1}{2}}-\bar{u}^{n+\frac{1}{2}} \right\| _{L^2(\Gamma )} = \left\| \frac{u^{n+1}+u^{n-1}}{2}-u^n \right\| _{L^2(\Gamma )} \\ {}&\!\!\!\!\!\!\!\! \le \frac{\tau ^2}{16} \max \nolimits _{t\in [t_{n-1},t_{n+1}]} \left\| u_{tt}(t) \right\| _{L^2(\Gamma )}. \end{aligned}$$

By writing \(u^{n+\frac{1}{2}}-\hat{u}^{n+\frac{1}{2}} = (u^{n+\frac{1}{2}}-\bar{u}^{n+\frac{1}{2}}) + (\bar{u}^{n+\frac{1}{2}}-\hat{u}^{n+\frac{1}{2}})\) together with the triangle inequality and (38) one can show that

$$\begin{aligned} \left\| u^{n+\frac{1}{2}}-\hat{u}^{n+\frac{1}{2}} \right\| _{L^2(\Gamma )} \le \frac{5}{16}\tau ^2 \max _{t\in [t_{n-1},t_{n+1}]} \left\| u_{tt}(t) \right\| _{L^2(\Gamma )}. \end{aligned}$$

If we further assume \(\phi \in \mathcal {C}^3[0,T]\), then it holds

$$\begin{aligned} \frac{\phi (t_2)-\phi (t_1)}{\tau } - \phi _t(t^{\star }) = \frac{1}{2\tau }\left[ \int _{t_1}^{t^{\star }}(s-t_1)^2\phi _{sss}ds - \int _{t^{\star }}^{t_2}(s-t_2)\phi _{sss}ds \right] \end{aligned}$$

Thus, for \(u\in \mathcal {C}^3([0,T]; L^2(\Gamma ))\), one proves

$$\begin{aligned} \left\| \bar{\partial }u^{n} - u^{n+\frac{1}{2}}_t \right\| _{L^2(\Gamma )} \le \frac{\tau ^2}{48} \max _{t\in [t_{n},t_{n+1}]} \left\| u_{ttt}(t) \right\| _{L^2(\Gamma )}, \end{aligned}$$

from where the result follows.

Appendix B: Proof of Lemma 10

For all \(\varphi _h\in \mathcal {S}^1_h(\Gamma )\), we compute the discrete quantities:

$$\begin{aligned} c_m \left( \bar{\partial } \theta ^n,\varphi _h\right) _{\Gamma }+\mathsf {d}_{\Gamma }\left( \bar{\theta }^{n+\frac{1}{2}},\varphi _h\right)= & {} \ c_m \left( \bar{\partial } w^n_h,\varphi _h\right) _{\Gamma }+\mathsf {d}_{\Gamma }\left( \bar{w}^{n+\frac{1}{2}}_h,\varphi _h\right) \\&-\,c_m \left( \bar{\partial } v^n_h,\varphi _h\right) _{\Gamma }-\mathsf {d}_{\Gamma }\left( \bar{v}^{n+\frac{1}{2}}_h,\varphi _h\right) \\= & {} \ c_m \left( \bar{\partial } w^n_h,\varphi _h\right) _{\Gamma }+\mathsf {d}_{\Gamma }\left( \bar{w}^{n+\frac{1}{2}}_h,\varphi _h\right) \\&-\,\left\langle i^{n+\frac{1}{2}},\varphi _h \right\rangle + \left\langle \hat{\mathcal {I}}^{n+\frac{1}{2}}_{\text{ ion }},\varphi _h\right\rangle , \end{aligned}$$

then by adding a suitable zero, we write

$$\begin{aligned} c_m \left( \bar{\partial } \theta ^n,\varphi _h\right) _{\Gamma }+\mathsf {d}_{\Gamma }\left( \bar{\theta }^{n+\frac{1}{2}},\varphi _h\right) =&\ c_m\left( \bar{\partial } w^n_h-v^{n+\frac{1}{2}}_t,\varphi _h\right) _{\Gamma } +\mathsf {d}_{\Gamma }\left( \bar{w}^{n+\frac{1}{2}}_h,\varphi _h\right) \\&+ c_m\left( v^{n+\frac{1}{2}}_t,\varphi _h\right) _{\Gamma }\\&-\left\langle i^{n+\frac{1}{2}},\varphi _h \right\rangle + \left\langle \hat{\mathcal {I}}^{n+\frac{1}{2}}_{\text{ ion }},\varphi _h\right\rangle . \end{aligned}$$

Then,

$$\begin{aligned} c_m (\bar{\partial } \theta ^n,\varphi _h)_{\Gamma }+\mathsf {d}_{\Gamma }\left( \bar{\theta }^{n+\frac{1}{2}},\varphi _h\right) =&\ c_m\left( \bar{\partial } w^n_h-v^{n+\frac{1}{2}}_t,\varphi _h\right) _{\Gamma } \\&+ \mathsf {d}_{\Gamma }\left( \bar{w}^{n+\frac{1}{2}}_h,\varphi _h\right) - \mathsf {d}_{\Gamma }\left( v^{n+\frac{1}{2}},\varphi _h\right) \\&+\left\langle i^{n+\frac{1}{2}},\varphi _h \right\rangle - \left\langle i_{\text{ ion }}(v^{n+\frac{1}{2}},\mathbf{g}^{n+\frac{1}{2}}),\varphi _h\right\rangle \\&-\left\langle i^{n+\frac{1}{2}},\varphi _h \right\rangle +\left\langle \hat{\mathcal {I}}^{n+\frac{1}{2}}_{\text{ ion }},\varphi _h \right\rangle . \end{aligned}$$

Choosing \(\varphi _h = \bar{\theta }^{n+\frac{1}{2}}\) and by ellipticity of \(\mathsf {d}_{\Gamma }(\cdot ,\cdot )\) (cf. Lemma 4), we get

$$\begin{aligned} \frac{c_m}{2}\bar{\partial }\left\| \theta ^n \right\| ^2_{L^2(\Gamma )} +\mu \left\| \bar{\theta }^{n+\frac{1}{2}} \right\| ^2_{H^{\frac{1}{2}}(\Gamma )}\le & {} \ c_m\left| \left( \bar{\partial } w^n_h-v^{n+\frac{1}{2}}_t, \bar{\theta }^{n+\frac{1}{2}}\right) _{\Gamma }\right| \nonumber \\&+\left| \mathsf {d}_{\Gamma }\left( \bar{w}^{n+\frac{1}{2}}_h-v^{n+\frac{1}{2}}, \bar{\theta }^{n+\frac{1}{2}}\right) \right| \\&+ \left| \left\langle \hat{\mathcal {I}}^{n+\frac{1}{2}}_{\text{ ion }}-i_{\text{ ion }}\left( v^{n+\frac{1}{2}},\mathbf{g}^{n+\frac{1}{2}}\right) , \bar{\theta }^{n+\frac{1}{2}}\right\rangle \right| .\nonumber \end{aligned}$$
(39)

For the first term on the right hand side of (39), employ Young’s inequality for \(\delta >0\), Lemmae 7 and 9 to obtain

$$\begin{aligned} \left| \left( \bar{\partial } w^n_h-v^{n+\frac{1}{2}}_t, \bar{\theta }^{n+\frac{1}{2}}\right) _{\Gamma }\right| \le&\, \frac{\delta }{2}\left\| \bar{\partial } w^n_h-v^{n+\frac{1}{2}}_t \right\| ^2_{L^2(\Gamma )} + \frac{1}{2\delta }\left\| \bar{\theta }^{n+\frac{1}{2}} \right\| ^2_{L^2(\Gamma )}\\ \le&\,\frac{\delta }{2}\left\| \bar{\partial }\rho ^{n+1} \right\| ^2_{L^2(\Gamma )} + \frac{\delta }{2}\left\| \bar{\partial }v^{n+\frac{1}{2}} - v^{n+\frac{1}{2}}_t \right\| ^2_{L^2(\Gamma )} + \frac{1}{2\delta }\left\| \bar{\theta }^{n+\frac{1}{2}} \right\| ^2_{L^2(\Gamma )}\\ \le&\, c\delta \left( h^2+\tau ^2\right) ^2 + \frac{1}{2\delta }\left\| {\bar{\theta }}^{n+1} \right\| ^2_{L^2(\Gamma )}. \end{aligned}$$

By (30), it holds \(\mathsf {d}_{\Gamma }\left( \bar{w}^{n+\frac{1}{2}}_h-v^{n+\frac{1}{2}}, \varphi _h\right) =\mathsf {d}_{\Gamma }\left( \bar{w}^{n+\frac{1}{2}}_h-w_h^{n+\frac{1}{2}}, \varphi _h\right) \) for all \(\varphi _h\in \mathcal {S}^1_h(\Gamma )\). Then, for the second term on the right hand side in (39) by Young’s inequality for \(\delta >0\), the continuity of \(\mathsf {d}_{\Gamma }(\cdot ,\cdot )\), Lemmae 4 and 7 we get

$$\begin{aligned} \left| \mathsf {d}_{\Gamma }\left( \bar{w}^{n+\frac{1}{2}}_h-v^{n+\frac{1}{2}}, \bar{\theta }^{n+\frac{1}{2}}\right) \right|&= \left| \mathsf {d}_{\Gamma }\left( \bar{w}^{n+\frac{1}{2}}_h-w_h^{n+\frac{1}{2}}, \bar{\theta }^{n+\frac{1}{2}}\right) \right| \\&\le \alpha \left\| \bar{w}^{n+\frac{1}{2}}_h-w_h^{n+\frac{1}{2}} \right\| _{H^{\frac{1}{2}}(\Gamma )}\left\| \bar{\theta }^{n+\frac{1}{2}} \right\| _{H^{\frac{1}{2}}(\Gamma )}\\&\le \frac{\alpha \delta }{2}\left\| \bar{w}^{n+\frac{1}{2}}_h-w_h^{n+\frac{1}{2}} \right\| ^2_{H^{\frac{1}{2}}(\Gamma )}+\frac{\alpha }{2\delta }\left\| \bar{\theta }^{n+\frac{1}{2}} \right\| ^2_{H^{\frac{1}{2}}(\Gamma )}\\&\le c\delta \tau ^4 + \frac{\alpha }{2\delta }\left\| \bar{\theta }^{n+\frac{1}{2}} \right\| ^2_{H^{\frac{1}{2}}(\Gamma )} \end{aligned}$$

As for the last term on the right hand side of (39), we estimate

$$\begin{aligned}&\left| \left\langle \hat{\mathcal {I}}^{n+\frac{1}{2}}_{\text{ ion }}-i_{\text{ ion }}\left( v^{n+\frac{1}{2}},\mathbf{g}^{n+\frac{1}{2}}\right) ,\bar{\theta }^{n+\frac{1}{2}}\right\rangle \right| \le \left| \left\langle \hat{\mathcal {I}}^{n+\frac{1}{2}}_{\text{ ion }}- \mathcal {I}_hi_{\text{ ion }}\left( v^{n+\frac{1}{2}},\mathbf{g}^{n+\frac{1}{2}}\right) ,\bar{\theta }^{n+\frac{1}{2}}\right\rangle \right| \\&\quad + \left| \left\langle \mathcal {I}_hi_{\text{ ion }}\left( v^{n+\frac{1}{2}},\mathbf{g}^{n+\frac{1}{2}}\right) -i_{\text{ ion }}\left( v^{n+\frac{1}{2}},\mathbf{g}^{n+\frac{1}{2}}\right) ,\bar{\theta }^{n+\frac{1}{2}}\right\rangle \right| , \end{aligned}$$

where \(\mathcal {I}_hi_{\text{ ion }}(v^{n+\frac{1}{2}},\mathbf{g}^{n+\frac{1}{2}})\) is the nodal interpolation of the function \(i_{\text{ ion }}(v^{n+\frac{1}{2}},\mathbf{g}^{n+\frac{1}{2}})\). Again by Young’s inequality for \(\delta >0\)

$$\begin{aligned}&\left| \left\langle \hat{\mathcal {I}}^{n+\frac{1}{2}}_{\text{ ion }}-i_{\text{ ion }}\left( v^{n+\frac{1}{2}},\mathbf{g}^{n+\frac{1}{2}}\right) ,\bar{\theta }^{n+\frac{1}{2}}\right\rangle \right| \le \frac{\delta }{2} \left\| \hat{\mathcal {I}}^{n+\frac{1}{2}}_{\text{ ion }}- \mathcal {I}_hi_{\text{ ion }}\left( v^{n+\frac{1}{2}},\mathbf{g}^{n+\frac{1}{2}}\right) \right\| ^2_{L^2(\Gamma )}\\&\quad + \frac{\delta }{2} \left\| \mathcal {I}_hi_{\text{ ion }}\left( v^{n+\frac{1}{2}},\mathbf{g}^{n+\frac{1}{2}}\right) -i_{\text{ ion }}\left( v^{n+\frac{1}{2}},\mathbf{g}^{n+\frac{1}{2}}\right) \right\| ^2_{L^2(\Gamma )}\\&\quad + \frac{1}{\delta } \left\| \bar{\theta }^{n+\frac{1}{2}} \right\| ^2_{L^2(\Gamma )}. \end{aligned}$$

Then, by Lemma 5 we conclude

$$\begin{aligned} \left\| \mathcal {I}_hi_{\text{ ion }}\left( v^{n+\frac{1}{2}},\mathbf{g}^{n+\frac{1}{2}}\right) -i_{\text{ ion }}\left( v^{n+\frac{1}{2}},\mathbf{g}^{n+\frac{1}{2}}\right) \right\| _{L^2(\Gamma )}\le c_{1}h^2. \end{aligned}$$

By (3), one derives

$$\begin{aligned}&\left\| \hat{\mathcal {I}}^{n+\frac{1}{2}}_{\text{ ion }}- \mathcal {I}_hi_{\text{ ion }}\left( v^{n+\frac{1}{2}},\mathbf{g}^{n+\frac{1}{2}}\right) \right\| ^2_{L^2(\Gamma )}\\&\quad \le 2 c^2_{\text{ ion }}\left( \left\| \hat{v}^{n+\frac{1}{2}}_h-v^{n+\frac{1}{2}} \right\| ^2_{L^2(\Gamma )} + \left\| \hat{\mathbf{g}}^{n+\frac{1}{2}}_h - \mathcal {I}_h \mathbf{g}^{n+\frac{1}{2}} \right\| ^2_{L^2(\Gamma )}\right) . \end{aligned}$$

Putting all bounds together yields

$$\begin{aligned} \frac{c_m}{2}\bar{\partial }\left\| \theta ^n \right\| ^2_{L^2(\Gamma )} +\mu \left\| \bar{\theta }^{n+\frac{1}{2}} \right\| ^2_{H^{\frac{1}{2}}(\Gamma )} \le&\ \frac{1}{\delta }\left( \frac{c_m}{2}+1\right) \left\| \bar{\theta }^n \right\| ^2_{L^2(\Gamma )} + \frac{\alpha }{2\delta } \left\| \bar{\theta }^{n+\frac{1}{2}} \right\| ^2_{H^{\frac{1}{2}}(\Gamma )}\\&+ c^2_{\text{ ion }}\delta \left\| \hat{v}^{n+\frac{1}{2}}_h-v^{n+\frac{1}{2}} \right\| ^2_{L^2(\Gamma )}\\&+ c^2_{\text{ ion }}\delta \left\| \hat{\mathbf{g}}^{n+\frac{1}{2}}_h - \mathcal {I}_h \mathbf{g}^{n+\frac{1}{2}} \right\| ^2_{L^2(\Gamma )}\\&+ c\delta \left( h^2+\tau ^2\right) ^2. \end{aligned}$$

The continuous embedding of \(H^{\frac{1}{2}}(\Gamma )\) into \(L^2(\Gamma )\) means \(\left\| u \right\| _{L^2(\Gamma )}\le c_{\Gamma }\left\| u \right\| _{H^{\frac{1}{2}}(\Gamma )}\) for all \(u\in H^{\frac{1}{2}}(\Gamma )\) [51]. Then choosing \(\delta = \frac{c^2_{\Gamma }}{\mu }\left( \frac{c_m}{2}+1\right) +\frac{\alpha }{2\mu }\) renders

$$\begin{aligned} \frac{c_m}{2}\bar{\partial }\left\| \theta ^n \right\| ^2_{L^2(\Gamma )} \le&\ c^2_{\text{ ion }}\delta \left\| \hat{v}^{n+\frac{1}{2}}_h-v^{n+\frac{1}{2}} \right\| ^2_{L^2(\Gamma )}\\&+ c^2_{\text{ ion }}\delta \left\| \hat{\mathbf{g}}^{n+\frac{1}{2}}_h - \mathcal {I}_h \mathbf{g}^{n+\frac{1}{2}} \right\| ^2_{L^2(\Gamma )}\\&+ c\delta \left( h^2+\tau ^2\right) . \end{aligned}$$

Observe that \(\delta \) is independent of h and \(\tau \). By (36), it holds

$$\begin{aligned} \hat{v}^{n+\frac{1}{2}}_h-v^{n+\frac{1}{2}} = \theta ^{n} + \theta ^{n-1} + \rho ^n + \rho ^{n-1} + \hat{v}^{n+\frac{1}{2}}-v^{n+\frac{1}{2}}. \end{aligned}$$

Now, by Lemmae 7 and 9

$$\begin{aligned} \left\| \hat{v}^{n+\frac{1}{2}}_h-v^{n+\frac{1}{2}} \right\| _{L^2(\Gamma )} \le \left\| \theta ^{n} \right\| _{L^2(\Gamma )} + \left\| \theta ^{n-1} \right\| _{L^2(\Gamma )} + c\left( h^2+\tau ^2\right) \end{aligned}$$

and

$$\begin{aligned} \frac{c_m}{2}\bar{\partial }||\theta ^n||^2_{L^2(\Gamma )} \le&\ 2c^2_{\text{ ion }}\delta ||\theta ^{n}||^2_{L^2(\Gamma )} + 2c^2_{\text{ ion }}\delta ||\theta ^{n-1} ||^2_{L^2(\Gamma )}\\&+ c^2_{\text{ ion }}\delta ||\hat{\mathbf{g}}^{n+\frac{1}{2}}_h - \mathcal {I}_h \mathbf{g}^{n+\frac{1}{2}}||^2_{L^2(\Gamma )} \\&+ c(h^2+\tau ^2). \end{aligned}$$

Reordering terms yields

$$\begin{aligned} \left\| \theta ^{n+1} \right\| ^2_{L^2(\Gamma )} + \tilde{\delta }\tau \left\| \theta ^{n} \right\| ^2_{L^2(\Gamma )} \le&\left( 1+2\tilde{\delta }\tau \right) \left( \left\| \theta ^{n} \right\| ^2_{L^2(\Gamma )} + \tilde{\delta }\tau \left\| \theta ^{n-1} \right\| ^2_{L^2(\Gamma )}\right) \\&+ \tilde{\delta }\tau ||\hat{\mathbf{g}}^{n+\frac{1}{2}}_h - \mathcal {I}_h \mathbf{g}^{n+\frac{1}{2}}||^2_{L^2(\Gamma )} \\&+ c\tau \left( h^2+\tau ^2\right) ^2, \end{aligned}$$

where \(\tilde{\delta } = 4\displaystyle \delta \frac{c^2_{\text{ ion }}}{c_m}\). Using the discrete version of Gronwall’s Lemma [44, Lemma 11.2] leads to

$$\begin{aligned} \left\| \theta ^{n+1} \right\| ^2_{L^2(\Gamma )} + \tilde{\delta }\tau \left\| \theta ^{n} \right\| ^2_{L^2(\Gamma )}\le & {} \ \left( 1+2\tilde{\delta }\tau \right) ^{n+1}\left( \left\| \theta ^{1} \right\| ^2_{L^2(\Gamma )}+ \tilde{\delta }\tau \left\| \theta ^{0} \right\| ^2_{L^2(\Gamma )} \right. \nonumber \\&\left. +\, \tilde{\delta }\tau \sum _{j=1}^{n}\left( 1+2\tilde{\delta }\tau \right) ^{-(j+1)}\left\| \hat{\mathbf{g}}^{j+\frac{1}{2}}_h - \mathcal {I}_h \mathbf{g}^{j+\frac{1}{2}} \right\| ^2_{L^2(\Gamma )}\right. \nonumber \\&+\left. c\tau \left( h^2+\tau ^2\right) ^2\sum _{j=1}^{n}\left( 1+2\tilde{\delta }\tau \right) ^{-(j+1)}\right) . \end{aligned}$$
(40)

Finally, by recalling

$$\begin{aligned} \sum _{j=1}^{n} \left( 1+2\tilde{\delta }\tau \right) ^{-(j+1)} = \frac{1}{2(1+2\tilde{\delta }\tau )\tilde{\delta }\tau }\left( 1 - \frac{1}{\left( 1+2\tilde{\delta }\tau \right) ^n}\right) \end{aligned}$$

together with \(1+2\tilde{\delta }\tau \le \exp \left( 2\tilde{\delta }\tau \right) \) and \(t_{n} = n\tau \),

$$\begin{aligned} \left\| \theta ^{n+1} \right\| ^2_{L^2(\Gamma )} \le&\ \exp \left( 2c_{\mathcal {HH}}t_{n+1}\right) \left( \left\| \theta ^{1} \right\| ^2_{L^2(\Gamma )}+ \tilde{\delta }\tau \left\| \theta ^{0} \right\| ^2_{L^2(\Gamma )} \right. \\&\left. + \tilde{\delta }\tau \sum _{j=1}^{n}\left( 1+2\tilde{\delta }\tau \right) ^{-(j+1)}\left\| \hat{\mathbf{g}}^{j+\frac{1}{2}}_h - \mathcal {I}_h \mathbf{g}^{j+\frac{1}{2}} \right\| ^2_{L^2(\Gamma )}\right) \\&+\frac{c}{2\tilde{\delta }}\left( h^2+\tau ^2\right) ^2\left( \exp \left( 2c_{\mathcal {HH}}t_{n}\right) -1\right) \end{aligned}$$

which is the first estimate stated in Lemma 10. For the second one, at each node \(\mathbf{x}_m\), \(m=1,\ldots , L\), it holds

$$\begin{aligned} \frac{d}{dt}{} \mathbf{g}^{n+\frac{1}{2}}_m = \mathcal {HH}\left( v^{n+\frac{1}{2}}_m,\mathbf{g}^{n+\frac{1}{2}}_m\right) \end{aligned}$$
(41)

where \(v^{n+\frac{1}{2}}_m =v^{n+\frac{1}{2}}(\mathbf {x}_m)\) and \(\mathbf{g}^{n+\frac{1}{2}}_m = \mathbf{g}^{n+\frac{1}{2}}(\mathbf {x}_m)\). From Taylor’s expansion around \(t_{n+\frac{1}{2}}\), we obtain

$$\begin{aligned} \mathbf{g}^{n+1}_m&= \mathbf{g}^{n+\frac{1}{2}}_m+\frac{\tau }{2}\frac{d}{dt}\mathbf{g}^{n+\frac{1}{2}}_m + \frac{\tau ^2}{8}\frac{d^2}{dt^2}\mathbf{g}^{n+\frac{1}{2}}_m + \frac{\tau ^3}{48}\frac{d^3}{dt^3}\mathbf{g}^{\xi ^n_1}_m \end{aligned}$$
(42a)
$$\begin{aligned} \mathbf{g}^{n}_m&= \mathbf{g}^{n+\frac{1}{2}}_m-\frac{\tau }{2}\frac{d}{dt}\mathbf{g}^{n+\frac{1}{2}}_m + \frac{\tau ^2}{8}\frac{d^2}{dt^2}\mathbf{g}^{n+\frac{1}{2}}_m + \frac{\tau ^3}{48}\frac{d^3}{dt^3}\mathbf{g}^{\xi ^n_2}_m, \end{aligned}$$
(42b)

where \(\xi ^n_1\in \left[ t_{n+\frac{1}{2}},t_{n+1}\right] \) and \(\xi ^n_2\in \left[ t_n,t_{n+\frac{1}{2}}\right] \). Subtracting (42a) and (42b) and using (41) yields

$$\begin{aligned} \mathbf{g}^{n+1}_m - \mathbf{g}^{n}_m = \tau \mathcal {HH}\left( v^{n+\frac{1}{2}}_m,\mathbf{g}^{n+\frac{1}{2}}_m\right) + \frac{\tau ^3}{48}\left( \frac{d^3}{dt^3}{} \mathbf{g}^{\xi ^n_1}_m - \frac{d^3}{dt^3}{} \mathbf{g}^{\xi ^n_2}_m \right) . \end{aligned}$$
(43)

From Problem 5, at each node it holds

$$\begin{aligned} \bar{\partial }{} \mathbf{g}^n_{h,m}&= \mathcal {HH}\left( \hat{v}^{n+\frac{1}{2}}_{h,m},\hat{\mathbf{g}}^{n+\frac{1}{2}}_{h,m}\right) , \end{aligned}$$

for \(m=1,\ldots ,L\), and subtraction with (43) delivers

$$\begin{aligned} \left( {\mathbf {g}}^{n+1}_{h,m} - {\mathbf {g}}^{n+1}_{m}\right) - \left( {\mathbf {g}}^{n}_{h,m} - {\mathbf {g}}^{n}_{m}\right) =&\ \tau \mathcal {HH}\left( \hat{v}^{n+\frac{1}{2}}_{h,m},\hat{\mathbf {g}}^{n+\frac{1}{2}}_{h,m}\right) - \tau \mathcal {HH}\left( v^{n+\frac{1}{2}}_m,{\mathbf {g}}^{n+\frac{1}{2}}_m\right) \\&- \frac{\tau ^3}{48}\left( \frac{d^3}{dt^3}{\mathbf {g}}^{\xi ^n_1}_m - \frac{d^3}{dt^3}{\mathbf {g}}^{\xi ^n_2}_m \right) . \end{aligned}$$

By (4) we have

$$\begin{aligned} \left| {\mathbf {g}}^{n+1}_{h,m} - {\mathbf {g}}^{n+1}_{m}\right| \le&\left| {\mathbf {g}}^{n}_{h,m} - {\mathbf {g}}^{n}_{m}\right| + c_{\mathcal {HH}}\tau \left| \hat{v}^{n+\frac{1}{2}}_{h,m} - v^{n+\frac{1}{2}}_m\right| \\&+ c_{\mathcal {HH}}\tau \left| \hat{\mathbf {g}}^{n+\frac{1}{2}}_{h,m} - {\mathbf {g}}^{n+\frac{1}{2}}_m\right| + \frac{\tau ^3}{48}\left| \frac{d^3}{dt^3}{\mathbf {g}}^{\xi ^n_1}_m - \frac{d^3}{dt^3}{\mathbf {g}}^{\xi ^n_2}_m \right| . \end{aligned}$$

Moreover, by Lemma 7, it holds

$$\begin{aligned} \left| \hat{\mathbf {g}}^{n+\frac{1}{2}}_{h,m} - {\mathbf {g}}^{n+\frac{1}{2}}_m\right| \le&\left| \hat{\mathbf {g}}^{n+\frac{1}{2}}_{h,m} - \hat{\mathbf { g}}^{n+\frac{1}{2}}_m\right| + \left| \hat{\mathbf {g}}^{n+\frac{1}{2}}_{m} - {\mathbf {g}}^{n+\frac{1}{2}}_m\right| \\ \le&\,\frac{3}{2}\left| {\mathbf {g}}^{n}_{h,m} - {\mathbf {g}}^{n}_m\right| + \frac{1}{2}\left| {\mathbf {g}}^{n-1}_{h,m} - {\mathbf {g}}^{n-1}_m\right| \\&+ \frac{5}{16}\tau ^2 \max _{t\in [t_{n-1},t_{n+1}]} \left| \frac{d^2}{dt^2}{\mathbf {g}}_m(t)\right| \end{aligned}$$

Then,

$$\begin{aligned} \left| \mathbf{g}^{n+1}_{h,m} - \mathbf{g}^{n+1}_{m}\right| \le&\left| \mathbf{g}^{n}_{h,m} - \mathbf{g}^{n}_{m}\right| + \frac{3}{2}c_{\mathcal {HH}}\tau \left| \mathbf{g}^{n}_{h,m} - \mathbf{g}^{n}_{m}\right| + \frac{1}{2}c_{\mathcal {HH}}\tau \left| \mathbf{g}^{n-1}_{h,m} - \mathbf{g}^{n-1}_{m}\right| \\&+ c_{\mathcal {HH}}\tau \left| \hat{v}^{n+\frac{1}{2}}_{h,m} - v^{n+\frac{1}{2}}_m\right| \\&+ \tau ^3\left( \frac{5}{16}c_{\mathcal {HH}} \max _{t\in [t_{n-1},t_{n+1}]} \left| \frac{d^2}{dt^2}\mathbf{g}_m(t)\right| + \frac{1}{48}\left| \frac{d^3}{dt^3}\mathbf{g}^{\xi ^n_1}_m - \frac{d^3}{dt^3}{} \mathbf{g}^{\xi ^n_2}_m \right| \right) \end{aligned}$$

Reordering terms and naming \(\mathbf{e}^{n}_m = \mathbf{g}^{n}_{h,m} - \mathbf{g}^{n}_{m}\) we get

$$\begin{aligned}&\left| \mathbf{e}^{n+1}_m \right| + \frac{c_{\mathcal {HH}}}{2}\tau \left| \mathbf{e}^{n}_m \right| \le \left( 1+2c_{\mathcal {HH}}\tau \right) \left( \left| \mathbf{e}^{n}_m \right| + \frac{c_{\mathcal {HH}}}{2}\tau \left| \mathbf{e}^{n-1}_m \right| \right) \\&\quad +\, c_{\mathcal {HH}}\tau \left| \hat{v}^{n+\frac{1}{2}}_{h,m} - v^{n+\frac{1}{2}}_m\right| + \tilde{c} \tau ^3 \end{aligned}$$

where

$$\begin{aligned} \tilde{c} = \max _{n=1,\dots ,N-1}\left\{ \left( \frac{5}{16}c_{\mathcal {HH}} \max _{t\in [t_{n-1},t_{n+1}]} \left| \frac{d^2}{dt^2}{} \mathbf{g}_m(t)\right| + \frac{1}{48}\left| \frac{d^3}{dt^3}{} \mathbf{g}^{\xi ^n_1}_m - \frac{d^3}{dt^3}{} \mathbf{g}^{\xi ^n_2}_m \right| \right) \right\} \end{aligned}$$

Again, using the discrete version of Gronwall’s Lemma [44, Lemma 11.2]

$$\begin{aligned}&\left| \mathbf{e}^{n+1}_m\right| + \frac{c_{\mathcal {HH}}}{2}\tau \left| \mathbf{e}^{n}_m\right| \le \left( 1+2c_{\mathcal {HH}}\tau \right) ^{n+1}\left( \left| \mathbf{e}^{1}_m\right| + \frac{c_{\mathcal {HH}}}{2}\tau \left| \mathbf{e}^{0}_m\right| \right. \\&\quad \left. +\,c_{\mathcal {HH}}\tau \sum _{j=1}^{n}\left( 1+2c_{\mathcal {HH}}\tau \right) ^{-(j+1)}\left| \hat{v}^{j+\frac{1}{2}}_{h,m} - v^{j+\frac{1}{2}}_m\right| \right. \\&\quad \left. +\,\tilde{c}\tau ^3 \sum _{j=1}^{n}\left( 1+2c_{\mathcal {HH}}\tau \right) ^{-(j+1)}\right) . \end{aligned}$$

From the component-wise inequalities one derives estimates for entire \(L^2(\Gamma )\)-norm and one can conclude,

$$\begin{aligned} \left\| \mathbf{e}^{n+1} \right\| _{L^2(\Gamma )} \le \left( 1+2c_{\mathcal {HH}}\tau \right) ^{n+1}&\left( \left\| \mathbf{e}^{1} \right\| _{L^2(\Gamma )} + \frac{c_{\mathcal {HH}}}{2}\tau \left\| \mathbf{e}^{0} \right\| _{L^2(\Gamma )}\right. \\&\left. +\,c_{\mathcal {HH}}\tau \sum _{j=1}^{n}\left( 1+2c_{\mathcal {HH}}\tau \right) ^{-(j+1)}\left\| \hat{v}^{j+\frac{1}{2}}_{h} - \mathcal {I}_hv^{j+\frac{1}{2}} \right\| _{L^2(\Gamma )}\right. \\&\left. +\,\tilde{c}\tau ^3 |\Gamma |\sum _{j=1}^{n}\left( 1+2c_{\mathcal {HH}}\tau \right) ^{-(j+1)}\right) . \end{aligned}$$

Finally, recalling the basic geometric sum:

$$\begin{aligned} \sum _{j=1}^{n} \left( 1+2c_{\mathcal {HH}}\tau \right) ^{-(j+1)} = \frac{1}{2(1+2c_{\mathcal {HH}}\tau )c_{\mathcal {HH}}\tau }\left( 1 - \frac{1}{\left( 1+2c_{\mathcal {HH}}\tau \right) ^n}\right) \end{aligned}$$

together with \(1+2c_{\mathcal {HH}}\tau \le \exp \left( 2c_{\mathcal {HH}}\tau \right) \) and \(t_{n} = n\tau \), one finally obtains

$$\begin{aligned} \left\| \mathbf{e}^{n+1} \right\| _{L^2(\Gamma )} \le&\exp \left( 2c_{\mathcal {HH}}t_{n+1}\right) \left( \left\| \mathbf{e}^{1} \right\| _{L^2(\Gamma )} + \frac{c_{\mathcal {HH}}}{2}\tau \left\| \mathbf{e}^{0} \right\| _{L^2(\Gamma )}\right) \\&+ \exp \left( 2c_{\mathcal {HH}}t_{n+1}\right) \left( c_{\mathcal {HH}}\tau \sum _{j=1}^{n}\left( 1+2c_{\mathcal {HH}}\tau \right) ^{-(j+1)}\left\| \hat{v}^{j+\frac{1}{2}}_{h} - \mathcal {I}_hv^{j+\frac{1}{2}} \right\| _{L^2(\Gamma )}\right) \\&+ |\Gamma | \frac{\tilde{c}}{2 c_{\mathcal {HH}}}\tau ^2 \left( \exp \left( 2c_{\mathcal {HH}}t_{n}\right) -1\right) . \end{aligned}$$

as stated.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Henríquez, F., Jerez-Hanckes, C. & Altermatt, F. Boundary integral formulation and semi-implicit scheme coupling for modeling cells under electrical stimulation. Numer. Math. 136, 101–145 (2017). https://doi.org/10.1007/s00211-016-0835-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-016-0835-9

Mathematics Subject Classification

Navigation