Skip to main content
Log in

A high order discontinuous Galerkin Nitsche method for elliptic problems with fictitious boundary

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We present a discontinuous Galerkin method, based on the classical method of Nitsche, for elliptic problems with an immersed boundary representation on a structured grid. In such methods very small elements typically occur at the boundary, leading to breakdown of the discrete coercivity as well as numerical instabilities. In this work we propose a method that avoids using very small elements on the boundary by associating them to a neighboring element with a sufficiently large intersection with the domain. This construction allows us to prove the crucial inverse inequality that leads to a coercive bilinear form and as a consequence we obtain optimal order a priori error estimates. Furthermore, we prove a bound of the condition number of the stiffness matrix. All the results are valid for polynomials of arbitrary order. We also discuss the implementation of the method and present numerical examples in three dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  3. Burman, E.: Ghost penalty. Comptes Rendus Mathematique 348, 1217–1220 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Burman, E., Hansbo, P.: An interior-penalty-stabilized Lagrange multiplier method for the finite-element solution of elliptic interface problems. IMA J. Numer. Anal. 30, 870–885 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Burman, E., Hansbo, P.: Fictitious domain finite element methods using cut elements: I. A stabilized Lagrange multiplier method. Comput. Methods Appl. Mech. Eng. 199(4144), 2680–2686 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Burman, E., Hansbo, P.: Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method. Appl. Numer. Math. 62(4), 328–341 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cockburn, B., Karniadakis, G., Shu, C.W. (eds.): Discontinuous Galerkin methods–theory. In: Computation and Applications, LNCS, vol. 11. Springer, Berlin (1994)

  8. Ern, A., Guermond, J.L.: Theory and Practice of Finite Elements. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  9. Frisken, S., Perry, R.: Simple and efficient traversal methods for quadtrees and octrees. JGT 7(3) (2002)

  10. Hansbo, A., Hansbo, P.: An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems. Comput. Method. Appl. M 191(47–48), 5537–5552 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hansbo, A., Hansbo, P., Larson, M.G.: A finite element method on composite grids based on Nitsche’s method. ESAIM Math. Model. Numer. 37(3), 495–514 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Huh, J.S., Sethian, J.A.: Exact sub-grid interface correction schemes for elliptic interface problems. Proc. Natl. Acad. Sci. 105, 9874–9879 (2008)

    Article  MATH  Google Scholar 

  13. Lorensen, W., Cline, H.: Marching cubes: a high resolution 3d surface construction algorithm. Comput. Graphics 21, 163–169 (1978)

    Google Scholar 

  14. Nitsche, J.: Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Sem. Hamburg 36, 9–15 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  15. Reusken, A.: Analysis of an extended pressure finite element space for two-phase incompressible flows. Comput. Vis. Sci. 11, 293–305 (2008)

    Google Scholar 

  16. Sethian, J.A.: Level Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  17. Sevilla, R., Fernández-Méndez, S., Huerta, A.: NURBS-enhanced finite element method (NEFEM). Int. J. Numer. Eng. 76(1), 56–83 (2008)

    Article  MATH  Google Scholar 

  18. Sukumar, N., Chopp, D.L., Mos, N., Belytschko, T.: Modeling holes and inclusions by level sets in the extended finite-element method. Comput. Methods Appl. Mech. Eng. 190(46–47), 6183–6200 (2001)

    Article  MATH  Google Scholar 

  19. Zunino, P., Cattaneo, L., Colciago, C.M.: An unfitted interface penalty method for the numerical approximation of contrast problems. Appl. Numer. Math. 61(10), 1059–1076 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to August Johansson.

Additional information

A. Johansson is supported by the Miller Institute for Basic Research in Science.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johansson, A., Larson, M.G. A high order discontinuous Galerkin Nitsche method for elliptic problems with fictitious boundary. Numer. Math. 123, 607–628 (2013). https://doi.org/10.1007/s00211-012-0497-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-012-0497-1

Mathematics Subject Classification (2000)

Navigation