Skip to main content
Log in

Embeddings of Danielewski surfaces

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract.

A Danielewski surface is defined by a polynomial of the form P=x nzp(y). Define also the polynomial P =x nzr(x)p(y) where r(x) is a non-constant polynomial of degree ≤n−1 and r(0)=1. We show that, when n≥2 and deg p(y)≥2, the general fibers of P and P are not isomorphic as algebraic surfaces, but that the zero fibers are isomorphic. Consequently, for every non-special Danielewski surface S, there exist non-equivalent algebraic embeddings of S in ℂ3. Using different methods, we also give non-equivalent embeddings of the surfaces xz=(y d n >−1) for an infinite sequence of integers d n . We then consider a certain algebraic action of the orthogonal group \(\mathcal O(2)\) on ℂ4 which was first considered by Schwarz and then studied by Masuda and Petrie, who proved that this action could not be linearized. This was done by comparing the strata of this action to those of the induced tangent space action. Inequivalent embeddings of a certain singular Danielewski surface S in ℂ3 are found. We generalize their result and show how this leads to an example of two smooth algebraic hypersurfaces in ℂ3 which are algebraically non-isomorphic but holomorphically isomorphic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bandman, T., Makar-Limanov, L.: Affine surfaces with AK(S)=ℂ. Michigan Math. J. 49, 567–582 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Craighero, P.C.: A result on m-flats in \(\Bbb A\) n k . Rend. Sem. Mat. Univ. Padova 75, 39–46 (1986)

    MathSciNet  MATH  Google Scholar 

  3. Daigle, D.: A necessary and sufficient condition for triangulability of derivations. J. Pure Appl. Algebra 113, 297–305 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Daigle, D.: Locally nilpotent derivations and Danielewski surfaces. Preprint 2002

  5. Daigle, D., Freudenburg, G.: Locally nilpotent derivations over a UFD and an application to rank two locally nilpotent derivations of \(k[x_1,\ldots,x_n]\). J. Algebra 204, 353–371 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Danielewski, W.: On the cancellation problem and automorphism groups of affine algebraic varieties. Preprint, Warsaw, 1989

  7. Derksen, H., Kutzschebauch, F., Winkelmann, J.: Subvarieties of ℂn with non- extendable automorphisms. J. reine angew. Math. 508, 213–235 (1999)

    MathSciNet  MATH  Google Scholar 

  8. Fieseler, K.-H.: On complex affine surfaces with ℂ+-action. Comment. Math. Helvetici 69, 5–27 (1994)

    Google Scholar 

  9. Freudenburg, G.: Local slice constructions in k[x,y,z]. Osaka J. Math. 34, 757–767 (1997)

    MathSciNet  MATH  Google Scholar 

  10. Heinzner, P., Kutzschebauch, F.: Le principe d’Oka équivariant. C.R. Acad. Sci. Paris, Série I 315, 217–220 (1992)

    Google Scholar 

  11. Jelonek, Z.: The extension of regular and rational embeddings. Math. Ann. 277, 113–120 (1987)

    MathSciNet  MATH  Google Scholar 

  12. Kaliman, S.: Extensions of isomorphisms between affine algebraic subvarieties of k n to automorphisms of k n. Proc. of the AMS 113, 325–334 (1991)

    MathSciNet  MATH  Google Scholar 

  13. Kaliman, S.: Polynomials with general ℂ2-fibers are variables. Pacific J. Math. 203, 161–190 (2002)

    MathSciNet  MATH  Google Scholar 

  14. Kaliman, S., Zaidenberg, M.: Affine modifcations and affine hypersurfaces with a very transitive automorphism group. Transformation Groups 4, 53–95 (1999)

    MathSciNet  MATH  Google Scholar 

  15. Makar-Limanov, L.: On the group of automorphisms of a class of surfaces. Israel J. Math. 69, 250–256 (1990)

    Google Scholar 

  16. Makar-Limanov, L.: On the group of automorphisms of a surface x n y=P(z). Israel J. Math. 121, 113–123 (2001)

    MathSciNet  MATH  Google Scholar 

  17. Makar-Limanov, L.: On the hypersurface x+x 2 y+z 2+t 3 in ℂ4, or a ℂ3-like threefold which is not ℂ3. Israel J. Math. 96, 419–429 (1996)

    MathSciNet  MATH  Google Scholar 

  18. Masuda, M., Petrie, T.: Algebraic families of O(2)-actions on affine space C 4. Proceedings of Symposia in Pure Mathematics, American Mathematical Society, 56, 347–354 (1994)

    Google Scholar 

  19. Shastri, A.: Polynomial representation of knots. Tohoku Math. J. 4, 11–17 (1992)

    MathSciNet  Google Scholar 

  20. Shpilrain, V., Yu, J.-T.: Affine varieties with equivalent cylinders. Preprint 2002

  21. Shpilrain, V., Yu, J.-T.: Embeddings of hypersurfaces in affine spaces. J. Algebra 239, 161–173 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Srinivas, V.: On the embedding dimension of an affine variety. Math. Ann. 289, 125–132 (1991)

    MathSciNet  MATH  Google Scholar 

  23. Schwarz, G.: Exotic algebraic group actions. C.R. Acad. Sci. Paris Sér. I Math. 309, 89–94 (1989)

    MATH  Google Scholar 

  24. Wilkens, J.: On the cancellation problem for surfaces. C.R. Acad. Sci. Paris Sér. I Math. 326, 1111–1116 (1998)

    Article  MATH  Google Scholar 

  25. Zaidenberg, M.: Exotic algebraic structures on affine spaces. St. Petersburg Math. J. 11, 703–760 (2000); translation from Russian, Algebra and Analysis, 11, 3–73 (1999)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gene Freudenburg.

Additional information

Partially supported by NSF Grant DMS 0101836.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freudenburg, G., Moser-Jauslin, L. Embeddings of Danielewski surfaces. Math. Z. 245, 823–834 (2003). https://doi.org/10.1007/s00209-003-0572-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-003-0572-5

Keywords

Navigation