Skip to main content
Log in

A Density Problem for Sobolev Spaces on Planar Domains

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We prove that for a bounded, simply connected domain \({\Omega \subset {\mathbb{R}^{2}}}\), the Sobolev space \({W^{1,\,\infty}(\Omega)}\) is dense in \({W^{1,\,p}(\Omega)}\) for any \({1\leqq p < \infty}\). Moreover, we show that if \({\Omega}\) is Jordan, then \({C^{\infty}({\mathbb{R}^{2}})}\) is dense in \({W^{1,\,p}(\Omega)}\) for \({1\leqq p < \infty}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev spaces. Second edition. Pure Applied Mathematics, p. 140. Elsevier/Academic Press, Amsterdam, 2003.

  2. Ambrosio, L., Fusco, N., Pallara, D.: Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2000.

  3. Astala, K., Iwaniec, T., Martin, G.: Elliptic partial differential equations and quasiconformal mappings in the plane. Princeton Mathematical Series, 48. Princeton University Press, Princeton, 2009.

  4. Bishop C.J.: A counterexample concerning smooth approximation. Proc. Am. Math. Soc. 124(10), 3131–3134 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gehring F.W., Hayman W.K.: An inequality in the theory of conformal mapping. J. Math. Pures Appl. (9) 41, 353–361 (1962)

    MathSciNet  MATH  Google Scholar 

  6. Giacomini A., Trebeschi P.: A density result for Sobolev spaces in dimension two, and applications to stability of nonlinear Neumann problems, J. Differ. Equ. 237(1), 27–60 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Koskela, P., Rajala, T., Zhang, Y.R.-Y.: A geometric characterization of planar W 1,p-extension domains. arXiv:1502.04139.

  8. Koskela, P., Rajala, T., Zhang, Y. R.-Y.: Planar W 1,1 -extension domains (In preparation).

  9. Lewis J. L.: Approximation of Sobolev functions in Jordan domains. Ark. Mat. 25(2), 255–264 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  10. Rickman, S.: Quasiregular mappings, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. p. 26. Springer-Verlag, Berlin, 1993.

  11. Smith W., Stanoyevitch A., Stegenga D.A.: Smooth approximation of Sobolev functions on planar domains. J. London Math. Soc. 49(2), 309–330 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Väisälä, J.: Lectures on n-dimensional quasiconformal mappings. Lecture Notes in Mathematics, vol. 229. Springer-Verlag, Berlin-New York, 1971.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Ru-Ya Zhang.

Additional information

Communicated by C. De Lellis

This work was supported by the Academy of Finland via the Centre of Excellence in Analysis and Dynamics Research (Grant no. 271983).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koskela, P., Zhang, Y.RY. A Density Problem for Sobolev Spaces on Planar Domains. Arch Rational Mech Anal 222, 1–14 (2016). https://doi.org/10.1007/s00205-016-0994-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-016-0994-y

Keywords

Navigation