Skip to main content
Log in

Compatibility Equations of Nonlinear Elasticity for Non-Simply-Connected Bodies

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

Compatibility equations of elasticity are almost 150 years old. Interestingly, they do not seem to have been rigorously studied, to date, for non-simply-connected bodies. In this paper we derive necessary and sufficient compatibility equations of nonlinear elasticity for arbitrary non-simply-connected bodies when the ambient space is Euclidean. For a non-simply-connected body, a measure of strain may not be compatible, even if the standard compatibility equations (“bulk” compatibility equations) are satisfied. It turns out that there may be topological obstructions to compatibility; this paper aims to understand them for both deformation gradient F and the right Cauchy-Green strain C = F T F. We show that the necessary and sufficient conditions for compatibility of deformation gradient F are the vanishing of its exterior derivative and all its periods, that is, its integral over generators of the first homology group of the material manifold. We will show that not every non-null-homotopic path requires supplementary compatibility equations for F and linearized strain e. We then find both necessary and sufficient compatibility conditions for the right Cauchy-Green strain tensor C for arbitrary non-simply-connected bodies when the material and ambient space manifolds have the same dimensions. We discuss the well-known necessary compatibility equations in the linearized setting and the Cesàro-Volterra path integral. We then obtain the sufficient conditions of compatibility for the linearized strain when the body is not simply-connected. To summarize, the question of compatibility reduces to two issues: i) an integrability condition, which is d(F dX) = 0 for the deformation gradient and a curvature vanishing condition for C, and ii) a topological condition. For F dx this is a homological condition because the equation one is trying to solve takes the form dφ = F dX. For C, however, parallel transport is involved, which means that one needs to solve an equation of the form dR/ ds = RK, where R takes values in the orthogonal group. This is, therefore, a question about an orthogonal representation of the fundamental group, which, as the orthogonal group is not commutative, cannot, in general, be reduced to a homological question.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Acharya A.: On compatibility conditions for the left Cauchy-Green deformation field in three dimensions. J. Elast. 56(2), 95–105 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barber, J.R.: Elasticity, Kluwer, Dordrecht, 2002

  3. Baumslag, G.: Topics in Combinatorial Group Theory, Birkhäuser, Basel, 1993

  4. Berger, M.: A Panoramic View of Riemannian Geometry, Springer, New York, 2003

  5. Blume J.A.: Compatibility conditions for a left Cauchy-Green strain field. J. Elast. 21(3), 271–308 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cantarella J., DeTurck D., Gluck H.: Vector calculus and the topology of domains in 3-space. Am. Math. Mon. 109(5), 409–442 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Casey J.: On Volterra dislocations of finitely deforming continua. Math. Mech. Solids 9, 473–492 (1995)

    Article  MathSciNet  Google Scholar 

  8. Cesàro E.: Sulle formole del Volterra, fondamentali nella teoria delle distorsioni elastiche. Rend. Accad. R. Napoli 12, 311–321 (1906)

    MATH  Google Scholar 

  9. Chiskis A.: A generalization of Cesáro’s relation for plane finite deformations. ZAMP 46(5), 812–817 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Ciarlet P.G., Laurent F.: On the recovery of a surface with prescribed first and second fundamental forms. J. Math. Pures Appl. 81(2), 167–185 (2002)

    MathSciNet  MATH  Google Scholar 

  11. De Rham G.: Sur l’analysis situs des variétés à n dimensions. J. Math. Pures Appl. Sér 9(10), 115–200 (1931)

    Google Scholar 

  12. Delphenich, D.H.: On the topological nature of Volterra’s theorem. arXiv:1109.2012v1 (2011)

  13. Dieudonné, J.: A History of Algebraic and Differential Topology 1900–1960. Birkhäuser, Boston, 1989

  14. Dollard J.D., Friedman, C.N. Product Integration with Applications to Differential Equations, Addison-Wesley, London, 1979

  15. Duda F.P., Martins L.C.: Compatibility conditions for the Cauchy-Green strain fields: Solutions for the plane case. J. Elast. 39(3), 247–264 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fosdick, R.L., Remarks on compatibility, In: Modern Developments in the Mechanics of Continua, Academic Press, London, pp. 109–127, 1966

  17. GreenA.E. Zerna W.: Theory of elasticity in general coordinates. Phil. Mag. 41(315), 313–336 (1950)

    Google Scholar 

  18. Gross, P. Kotiuga, P.R.: Electromagnetic Theory and Computation: A Topological Approach. Cambridge University Press, Cambridge, 2004

  19. Hetenyi, M.: Saint-Venant theory of torsion and flexure. In: Hetenyi M. (eds), Handbook of Experimental Stress Analysis. Wiley , New York, 1950

  20. Lefschetz, S.: Topology. American Mathematical Society, New York, 1930

  21. Love, A.E.H.:A Treatise on the Mathematical Theory of Elasticity, Dover, New York, 1927

  22. Marsden, J.E., Hughes T.J.R.: Mathematical Foundations of Elasticity, Dover, New York, 1983

  23. Maxwell, J.C.: A Treatise on Electricity and Magnetism. Oxford University Press, Clarendon, 1891

  24. Michell, J.H.: On the direct determination of stress in an elastic solid, with application to the theory of plates. Proc. Lond. Math. Soc. s1–31, 100–124 (1899)

  25. Pietraszkiewicz W.: Determination of displacements from given strains in the non-linear continuum mechanics. ZAMM 62(4), T154–T156 (1982)

    MathSciNet  MATH  Google Scholar 

  26. Pietraszkiewicz W., Badur J.: Finite rotations in the description of continuum deformation. Int. J. Eng. Sci. 21(9), 1097–1115 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  27. Poincaré, H.: Analysis Situs. J. l’École Polytech. ser 2 1,1–123 (1895)

  28. Seugling W.R.: Equations of compatibility for finite deformation of a continuous medium. Am. Math. Mon. 57(10), 679–681 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  29. Shield R.T.: Rotation associated with large strains. SIAM J. Appl. Math. 25(3), 483–491 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  30. Skalak R., ZargaryanS. Jain R.K., NettiP.A. Hoger A.: Compatibility and the genesis of residual stress by volumetric growth. J. Math. Biol. 34, 889–914 (1996)

    MATH  Google Scholar 

  31. Slavìk, A.: Product Integration, Its History and Applications. Matfyzpress, Prague, 2007

  32. Sternberg E.: On Saint-Venant torsion and the plane problem of elastostatics for multiply connected domains. Arch. Rational Mech. Anal. 85(4), 295–310 (1984)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. Stillwell, J.: Classical Topology and Combinatorial Group Theory. Springer, New York, 1993

  34. Volterra V.: Sulle equazioni di erenziali lineari. Rend. Acad. Lincei 3, 393–396 (1887)

    MATH  Google Scholar 

  35. Volterra V.: Sur l’équilibre des corps élastiques multiplement connexes. Annales Scientifiques de l’Ecole Normale Supérieure, Paris 24(3), 401–518 (1907)

    MathSciNet  MATH  Google Scholar 

  36. Weingarten, G.: Sulle superficie di discontinuità nella teoria della elasticità dei corpi solidi. Atti della Reale Accademia dei Lincei, Rendiconti, Series 5 10, 57–60 (1901)

  37. Yavari A., Goriely A.: Riemann-Cartan geometry of nonlinear dislocation mechanics. Arch. Rational Mech. Anal. 205(1), 59–118 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. Yavari A., Goriely A.: Weyl geometry and the nonlinear mechanics of distributed point defects. Proc. R. Soc. A 468, 3902–3922 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  39. Yavari A., Goriely A.: Riemann-Cartan geometry of nonlinear disclination mechanics. Math. Mech. Solids 18(1), 91–102 (2013)

    Article  Google Scholar 

  40. Zubov, L.M.: Nonlinear Theory of Dislocations and Disclinations in Elastic Bodies. Springer, Berlin, 1997

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Yavari.

Additional information

Communicated by J. Ball

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yavari, A. Compatibility Equations of Nonlinear Elasticity for Non-Simply-Connected Bodies. Arch Rational Mech Anal 209, 237–253 (2013). https://doi.org/10.1007/s00205-013-0621-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-013-0621-0

Keywords

Navigation